
Query Cost Estimation through Remote System Contention States Analysis over
the Internet

 Weiru Liu Zhining Liao Jun Hong
 School of C&M School of C&M School of C&M
 Univ. of Ulster Univ. of Ulster Univ. of Ulster
 w.liu@ulster.ac.uk z.liao@ulster.ac.uk j.hong@ulster.ac.uk

Abstract

Query processing over the Internet involving autonomous data sources is a major task in data

integration. It requires the estimated costs of possible query plans in order to select the best one with

the minimum cost. In this context, the cost of a query is affected by three factors: network congestion,

server contention state, and complexity of the query. In this paper, we study the effects of both the

network congestion and server contention state on the cost of a query. We refer to these two factors

together as system contention states. We present a new approach to determining the system contention

states by clustering the costs of a sample query. We construct two cost formulas for each of the system

contention states respectively using the multiple regression process. When a new query is submitted, its

system contention state is estimated first using either the time slides method or the statistical method.

The cost of the query is then calculated using the corresponding cost formulas. The estimated cost of

the query is further adjusted to improve its accuracy. Our experiments show that our methods can

produce quite accurate cost estimates of the submitted queries to remote data sources over the Internet.

1 Introduction

 To meet the growing needs for sharing pre-existing data sources over the Internet, data

integration from a multitude of autonomous data sources has recently been a research focus.

Query optimization is one of the major stages in data integration over the Internet. It requires

the estimated costs of possible query plans to select the best query plan in terms of costs. The

key challenges arise due to the dynamics and unpredictability of the workloads of both the

network and remote servers, and the autonomy of remote data sources. These sources may not

provide necessary metrics for accurate cost estimation. Therefore in such an environment, it has

become necessary to estimate query costs [9].

 Several methods have been proposed for query cost estimation (e.g., [1, 3, 8, 10, 13-15]).

All these methods assume that both the network itself and remote servers do not change

significantly over time. Therefore, the impact of these two factors has not been explicitly

mailto:w.liu@ulster.ac.uk
mailto:z.liao@ulster.ac.uk
mailto:j.hong@ulster.ac.uk

considered in query cost estimation. In this paper, we refer to these two factors together as

system contention states.

 The significance of recognizing the impact of system contention states has recently been

studied. In [16, 17], the effects of the workload of a server on the cost of a query are

investigated and a method to determine the contention states of a server is developed. Cost

models are derived through sampling queries for each contention state for estimating the costs

of new queries. This research has however been concentrated only on the workload of a server

(contention states) in the local network environment and it is assumed that the network is steady

and transferring data over the network involves very little cost. In [5, 12], on the other hand, the

importance of coping with the dynamic network environment is addressed. The effects of the

network are investigated and a cost estimation model is proposed for estimating the costs of the

same query in different network situations, e.g., different times of the day. This method splits

the large time interval, over a period of seven days (of a week), into time slides, with each slide

being further split based on the quantity of data being transferred over the network in the time

slide. A Multi-Dimensional Table (MDT) is built to establish how the cost of a query varies in

terms of Day, Time, and Quantity of Data. A predict response time is attached to each cell of

the MDT which gives the estimation of the cost of a query belonging to the cell.

Table 1. An intermediate MDT structure

Day Monday-Friday
Saturday-Sunday

Time 8am-2pm 2pm-8pm 8pm-8am 12am-12am
Qty
<200k

200k
-400k

400k
-600k

>600k <200k 200k
-400k

>400k 0-Max 0-Max

 The main drawbacks of the method are twofold. First, the dimension of Time has the

minimum scale of one hour. If a remote source is highly dynamic, hourly intervals may be too

large to reflect the change of the server. Second, this approach considers only the quantity of

data to be transferred and does not consider the variety of queries using different operators. The

complexity of a query can significantly affect its response time even when the network has the

same workload.

 In this paper, we investigate how system contention states (the network behavior and the

workload of a server) affect the cost of a query and propose our approaches to establishing the

relationship between them. We assume that a higher system contention state implies a busier

system situation. For instance, if three system contention states are identified, then their

corresponding system situations are not busy, average, and busy respectively.

 We make three major contributions in the paper. First, we propose a clustering approach to

determining the system contention states related to a remote server. A sample query is tested on

a server at fixed time intervals over a period of 24 hours, and a set of costs are collected. These

costs are then clustered into a number of groups, each determining one system contention state.

Second, for each system contention state, two cost formulae for estimating the costs of unary

and join queries respectively are constructed using the multiple regression model [2]. The

estimated cost of a query is further adjusted in order to reflect the fact that the costs in each

contention state can still be diverse. The adjustment leads to a more accurate cost estimation.

Third, we determine the current system contention state using either the time slides method or

the statistical approach at the time when a query is submitted to a remote server. The time slides

method is adequate when the progression from one contention state to another is smooth. The

statistical approach is more suitable when the progression is either fast or slow, but not beyond

the scope of the two contention states involved. Our experiments show that our methods can

produce quite accurate cost estimates of the queries submitted to remote data sources over the

Internet. In addition, we have also carried out experiments on recording and simulating the

network speed. Our initial study suggests that by modelling the patterns of the network speed,

we will be able to estimate the pattern of the workload of a remote server. This knowledge

would be useful when multiple sources are available, as we can then select a server with a lower

workload.

 The rest of the paper is organized as follows. Section 2 describes the clustering algorithm

for determining the system contention states, and the extension of the contention state from

discrete time points to continuous time points using the time slides method. Section 3 discusses

how cost formulae can be obtained through the multi-regression process and how the

adjustment is made to minimize the error of cost estimation. Section 4 investigates the selection

of the right cost formula and introduces the statistical approach to determining the contention

state when the time slides method is not applicable. In Section 5, we present our experimental

results and investigate how to use the knowledge on the dynamics of the network to estimate the

pattern of a server’s workload. Section 6 concludes the paper.

2 Determining System Contention States

 To establish the relationship between a system contention state and the cost of a query, a

sample query is carefully designed, which is of reasonable complexity and can be quickly

evaluated by the remote server. The sample query is tested on the remote server at fixed time

intervals over a period of 24 hours, and the tests are repeated for many times. The (average)

costs of the query at these time points are collected. Below, Ti denotes the cost of the query at

time point ti.

2.1 Clustering query costs

 Our clustering algorithm places each data object (a cost at a clock time point) in its own

cluster initially and gradually merges clusters into larger ones until a desirable number of

clusters are left. The criterion for merging two clusters C1 and C2 is that they have the minimum

distance. A widely used distance measuring technique is to measure the distance between

centroids or means of two clusters. Assume mean (C1) and mean (C2) are the means of two

clusters, then the distance between them is Dmean(C1,C2) =|mean(C1)-mean(C2)|. When more

than one pair of clusters has the same minimum distance, the pair containing more objects in its

union than other pairs is merged first. Let K be the maximum number of possible system

contention states. The clustering algorithm constructs clusters Ωk = {C1, …, Ck} such that

mean(Ci) < mean(Ci+1) for i =1, …,k based on a set of costs (Ti) at time points (ti).

 The algorithm below creates K clusters to generate K system contention states, with a set of

costs in T_cost (on a one-dimension axis in terms of cost time) as an initial input. In this

algorithm, we assume that Temp is a set of records, each record consisting of six slots:
Temp[i].name: the name of the temporary cluster i,

Temp[i].min : the minimum cost (value) in cluster i,

Temp[i].max : the maximum cost (value) in cluster i,

Temp[i].mean : the average cost (value) of cluster i,

Temp[i].dist : the distance between the means of two neighboring clusters, that is

 Temp[i+1].mean-Temp[i].mean. For the last cluster, Temp[n]. dist is defined as

 the whole interval of all the costs of the sample query. (So this distance is

 larger than the distance of any pair and will never be selected.)

Temp[i].num : the total number of individual costs (values) in cluster i.

Clustering Algorithm

Input: T_cost // a set of costs of the sample query

Initialization:

 Rank(T_cost) // rank the elements of T_cost by the cost in ascending order

 FOR i=1 to Size(T_cost) DO // Size(S) returns the total number of elements in S

 {

 Temp[i].min:=Temp[i].max:=Temp[i].mean := T_cost [i]

 Temp[i].num:=1

 Temp[i].name:=Ci

 }// initialize the values in Temp, put each initial cost in one cluster

 FOR i=1 to Size(T_cost)-1 DO

Temp[i].dist:=Temp[i+1].mean-Temp[i].mean

 Temp[n].dist:= T_cost [n]- T_cost [1] // the whole interval of the costs

Begin

WHILE Size(Temp) >k DO

 {IF (Ci, Ci+1) is the pair with the minimum distance, or the pair with the minimum distance and with

 the most elements in its union than any other pair with the same distance

 THEN //merge cluster Ci and Ci+1

 {

 Temp[i].max:= Temp[i+1].max

 Temp[i].mean := (Temp[i].max –Temp[i].min)/2 +Temp[i].min

Temp[i].dist := Temp[i+2].mean - Temp[i].mean

 Temp[i].num := Temp[i].num + Temp[i+1].num

 Temp[i -1].dist := Temp[i].mean – Temp[i -1].mean

 Delete(Temp[i+1])

 }

 FOR j=i+1 to Size[Temp]-1 do // move the clusters after Ci up

 Temp[j].name:=Temp[j+1].name

 Temp[j].min:=Temp[j+1].min

 Temp[j].max:=Temp[j+1].max

 Temp[j].mean:=Temp[j+1].mean

 Temp[j].dist:=Temp[j+1].dist

 Temp[j].num:=Temp[j+1].num

 }

End
End Algorithm

 The whole interval of the collected costs is T_cost [n]- T_cost [i]. Each cluster derived from

the algorithm covers a section of the interval, and there is no overlap between any two clusters.

In fact, any two neighboring clusters would have a gap, max(Ci+1)-min(Ci), between them,

where min(Ci) and max(Ci) represent the minimum and maximum values in cluster Ci

respectively. To let the system contention states cover any possible value in the interval T_cost

[n]- T_cost [i], we define k system contention states from the k clusters as follows.

System contention state one is defined as

 [min(C1), (max(C1)+ min(C2))/2].

System contention state i is defined as

 [(max(Ci-1)+min(Ci))/2, (max(Ci)+ min(Ci-1))/2], for i=2, … k-

System contention state k is defined as

 [(max(Ck-1)+min(Ck))/2, max(Ck)].

To make the notation simpler in the rest of the paper, we let

 lower(C1)= min(C1),

 lower(Ci)=(max(Ci-1) + min(Ci))/2 for i=2, … k,

and

 upper(Ci)=(max(Ci) + min(Ci-1))/2 for i=1, … k-1,

 upper(Ck) = max(Ck).

Then,

C= {[lower(C1), upper(C1)], …, [lower(Ck), upper(Ck)]}

defines k system contention states.

 The computational complexity of the algorithm is in the order of O(n2) where n is the initial

number of costs in T_cost.

2.2 The relationship between contention states and time slides

 Let T_cost={T1, T2, …, Tn} be a set of costs of a sample query collected at clock time points

T_time={t1, t2, …, tn}. We assume that ten minutes pass the midnight is the first time point the

sample query is sent and tn=24.00 is the last time point, and the query is sent at the interval of

every ten minutes. The time interval can be changed to adapt to a specific application. When the

elements in T_cost are divided into clusters Ci, the elements in T_time can be divided into

corresponding clusters Ci′, where Ci′={ti| Ti ∈ Ci and Ti is collected at time point ti}.

 To extend the contention states at discrete time points to any time points, for each time slide

[ti, ti+1] and the corresponding costs Ti, and Ti+1 collected at ti, ti+1 respectively, there are two

possible scenarios.

 Scenario one: if costs Ti and Ti+1 are in the same cluster Ci, then a contention state at any

time point in time slide [ti, ti+1] is defined by contention state [lower(Ci), upper(Ci)] through

cluster Ci.

 Scenario two: if costs Ti and Ti+1 are in two different clusters Ci and Cj, then a contention

state at any time point in time slide [ti, ti+α) is [lower(Ci), upper(Ci)], a contention state in time

slide (ti+α, ti+1] is [lower(Ci+1), upper(Ci+1)], and a contention state in time point ti+α can be

defined by either [lower(Ci), upper(Ci)] or [lower(Ci+1), upper(Ci+1)], where α=(ti+ti+1)/2.

 However, using different contention states at time point ti+α may result in a rather different

estimated cost. In Section 4 we discuss how to choose the correct cost formula for this case.

 Therefore, given any specific clock time point, we can determine the system contention state

by finding the time slide it falls in. It needs to be pointed out that this method is useful only

when the progression from one contention state to another is smooth. In Section 4, we discuss

the statistical approach to determining a system contention state when the progression is not

smooth.

3 Cost Formulae for Query Cost Estimation

 To construct cost formulae of both unary and join queries for each system contention state,

we carry out multiple regression analysis [2, 14]. The multiple regression process allows us to

establish a statistical relationship between the costs of a class of queries and the relevant

contributing (explanatory) variables, in the form of a cost formula. This formula is used to

estimate costs for other queries of the same class in the same system contention state.

3.1 Factors affecting the cost of a query

 Five main factors affect the cost of a query over the Internet.

1) The number of tuples in an operand table.

2) The number of tuples in the result table.

3) The cardinality of an intermediate table.

4) The tuple length of the result table.

5) System contention states. A system contention state represents factors from both a server

(e.g., CPU, I/O, query index method, etc.), and the network (e.g., speed and congestion).

 The first two factors are commonly used in query cost estimation. The second and fourth

factors together decide the data volume to be transferred over the Internet in unary queries. For

a join query, factors 2-4 should be considered for the same purpose. Factor 5 covers the overall

environment affecting the cost of a query in addition to factors 1-4. Other possible factors are

either less important in the wide area environment (e.g., the tuple length of an operand table), or

not available from autonomous data sources (e.g., the index method of a database).

3.2 Multiple linear regression cost models

 Let X1, X2, …, Xp be p explanatory variables (They do not have to represent independent

variables. It is allowed, for example, that X3 = X1× X2.), which may correspond to the factors we

discussed above. The response (dependent) variable Y (which is the query cost in this

application) tends to depend on explanatory variables Xs in a systematic way. If this dependency

is a statistical linear relationship, which we assume is true in our application, a multiple linear

regression model is defined as:

 Y = B0 +B1 X1 +B2 X2 + …+ Bp Xp +σ. (1)

 Assume that there are n observations (given n values) of dependent variable Y through p

explanatory variables X1, X2, …, Xp, each observation defines an equation,

 Y i = B0 +B1 Xi1 +B2 Xi2 + …+ Bp Xip +σ (i = 1,2, … , n) (2)

where Xij (j = 1, 2, …, p) denotes the value of the j-th explanatory variable Xj in the i-th

observation (or experiment); Yi is the value of the dependent random variable Y in i-th

observation. B1, …, Bp are regression coefficients for p explanatory variables which are

unknown constants and will be determined by solving multiple (more than p) equations like Eq.

(1) in each contention state. σ is the error caused by noisy data.

 In this paper, we look into unary and join queries separately, because they require different

explanatory variables to build their cost formulae.

 Unary query cost formula. For a unary query, we define RU as its operand table, SU as its

selectivity of a conjunctive term, NU as its cardinality of RU, Nrt as its cardinality of the result

table, Lr as its tuple length of the result table. Then LNrt = Nr×Lr is the data volume of the result

table transferred back to where the query is submitted. The cost formula for unary queries from

the regression model described above is as:

 Y = B0 + B1×NU + B2×Nrt +B3× LNrt (3)

 Join query cost formula. For a join query with two operand tables both in the same server,

we let RU1 and RU2 be the two operand tables, NU1 and NU2 be the cardinalities of them, Nr be the

cardinality of the result table, and Lr be the tuple length of the result table. Then LNr = Nr×Lr is

the data volume of the result table that needs to be transferred. The cost formula is defined as

 Y=B0+B1×NU1+B2×NU2+B3×Nr+B4×LNr (4)

 For join queries with operand tables in different servers, the cost formula requires some

additional variables, such as, the data volume of intermediate results. This is however not

addressed in this paper.

 Given a system contention state [lower(Ci), upper(Ci)] containing l costs, it is possible to

calculate B0, B1, B2, and B3 (and B4), in the above two cost formulae for unary and join queries

respectively. When l is much larger than the total number of coefficients that we need to

calculate, there can be many sets of possible combinations of costs (among l) to enable the

calculation. The coefficients calculated from these different sets are usually different and will

result in different cost estimates of the same query.

3.3 Adjustments to cost formulae

 In this section, we take the unary query cost formula as an example to discuss how to select

the costs of a sample query to calculate coefficients and how to adjust an estimated cost. The

query cost formula for join queries can be done similarly. Assume that l costs (l>>4) fall into

cluster Ci (for contention state [lower(Ci), upper(Ci)]) after the costs in T_cost are clustered. We

choose 4 out of l costs in Ci which are among the closest to mean(Ci). These four costs are then

used to calculate the coefficients in Eq. (3) for contention state [lower(Ci), upper(Ci)].

Obviously, if we had chosen four smallest (or largest) costs from Ci to get the coefficients, we

would have had rather different values for them. To solve this problem, we modify Eq. (3) as

follows.

 Y’=B0+B1×NU+B2×Nr+B3×LNr+σ(Y,Ci) (5)

where σ(Y, Ci) represents the adjustment to the estimated cost of a query and is defined as:

 σ(Y, Ci)= ((Ti
tj- mean(Ci))/mean(Ci)) ×YQ (6)

 Here YQ=(B0 + B1×NU + B2×Nr+B3×LNr) is the estimated cost of query Q at time point t

(when the query is submitted) using Eq. (3) at system contention state [lower(Ci), upper(Ci)]. Ti
tj

∈ T_cost is the cost within Ci at observation time point tj∈ T_time which is the closest to time

point t. The adjustment states what fraction of the estimated cost should be deducted from or

added to the estimated cost. For example, when Ti
tj almost equals to mean(Ci), the adjustment is

close to 0. This means that using Eq. (3) itself can get the correct estimate. The adjustment is

however significant when |lower(Ci)-mean(Ci)|/mean(Ci) >=10% (or ((upper(Ci)-

mean(Ci))/mean(Ci)>=10%), since this indicates that in this contention state, there is a big

difference between the lowest (highest) and average costs of the same query. In other words, in

the same system contention state, the system is busier at certain times than other times. On the

other hand, if |lower(Ci)-mean(Ci)|/mean(Ci)<ε (a pre-defined threshold, e.g., 10%) (or

|(upper(Ci)-mean(Ci)| /mean(Ci) <ε), the adjustment is not needed, since this indicates that

there is no significant difference between any two estimated costs of the same query at any two

time points in this same contention state, e.g., the workload of the system is almost constant.

4. Determining the Current Contention State and Selecting the Correct Cost

Formula
4.1 Selecting the correct cost formula using the time slides method

 Assume that query Q is submitted to a remote server, and the progression from one system

contention state to another is smooth. Let t be the clock time when Q is submitted and fall

between two time points ti and ti+1 (or time slide [ti, ti+1]) in T_time. Let Ti and Ti+1 be the two

corresponding costs obtained at these two time points. Assume that the two clusters containing

Ti and Ti+1 are Ci and Cj respectively. We now use a unary query as an example to show how to

select the correct cost formula (especially the variable in the adjustment).

• Scenario one: when Ci = Cj, the workload of the system is steady and the contention state is

[lower(Ci), upper(Ci)]. Using Eq. (5), the cost of Q is estimated as

 Y’ = B0 + B1 × NU + B2× Nr +B3× LNr + σ(Y, Ci),

with σ(Y, Ci)= {(Ti
ti - mean(Ci))/mean(Ci)}×YQ, where Ti

ti=Ti when |ti-t|<|ti+1-t|; Ti
ti=Ti+1

when |ti-t|>|ti+1-t|; and Ti
ti=mean(Ci) when |ti-t|=|ti+1-t|.

• Scenario two-A: when lower(Ci)<lower(Cj), the workload of the system is increased from

state [lower(Ci), upper(Ci)] to [lower(Cj), upper(Cj)]. Using Eq. (5), the cost of Q is

estimated as Y’ = B0 + B1 × NU + B2×Nr +B3× LNr + σ(Y, Ci), with σ(Y, Ci)= {(Ti
ti -

mean(Ci))/mean(Ci)}×YQ where Ti
ti=upper(Ci) when |ti-t|<|ti+1-t|; Ti

ti=lower(Cj) when |ti-

t|>|ti+1-t|; and Ti
ti=(upper(Ci)+ lower(Cj))/2 when |ti-t|=|ti+1-t|.

• Scenario two-B: when lower(Ci)>lower(Cj), the workload of the system is decreased from

state [lower(Ci), upper(Ci)] to [lower(Cj), upper(Cj)]. Using Eq. (5), the cost of Q is

estimated as Y’ = B0 + B1 × NU + B2× Nr +B3× LNr + σ(Y, Ci), with σ(Y, Ci)= {(Ti
ti -

mean(Ci))/mean(Ci)} ×YQ where Ti
ti=lower(Ci) when |ti-t|<|ti+1-t|; Ti

ti=upper(Cj) when |ti-

t|>|ti+1-t|; and Ti
ti=(lower(Ci)+ upper(Cj))/2 when |ti-t|=|ti+1-t|.

4.2 Determining contention states using a statistical method

 In this section, we develop a statistical model that uses a statistical function to describe the

progression from system contention state Ci to Cj, when the progression is not smooth. Assume

that we have collected a number of costs of the sample query within the two time points ti and

ti+1 (or time slide [ti, ti+1]), and the contention states at these two time points are represented by

clusters Ci and Cj. The distribution of these costs can be illustrated using one of the diagrams

below. Fig. 1a shows that in time interval (slide) [ti, ti+1] the cost increases, and Fig. 1b shows

that the cost decreases. If some of the costs within the interval are above the maximum or below

the minimum cost in Ci and Cj (Fig. 1c), there is at least another contention state occurring

within the time interval. Therefore this time slide should be split. This topic is beyond the scope

of this paper. Here, we assume that all the additional observed costs in the time slide [ti, ti+1] fall

into interval [min(lower(Ci),lower(Cj)), max(upper(Ci) upper(Cj))].

Figure 1a. Query costs increase from tI to ti+1

 Figure 1b. Query costs decrease from tI to ti+1

!
x

Tx

1 2 3 4 5 6 7 8 9 1 0

 T i m e p o i n t t

C
os

t

 T

1 2 3 4 5 6 7 8 9 1 0

 T i m e p o i n t t

C
os

t

T

 Figure 1c. More contention states between time points ti to ti+1

Figure 1. Possible progressions from one contention state to another. t and T represent time point and the

cost of the sample query respectively. The dotted lines represent the lowest and the highest costs from the

union of contention states Ci and Cj.

 The best mathematical simulation of the observed data (as shown in Fig.1a and Fig. 1b) is a

function

 y= a ×e-b/t with (b>0) (7)

where a and b are two parameters, and e is the usual constant in mathematics with value

2.718282. t is the time point when a query is submitted. When t is given, this function is used to

estimate the cost y of the query at this time point. Parameters a and b are determined using the

observed data (costs yi) at certain time points (ti). It is easy to see that this function is

exponential. To reduce the computational complexity, we adopt the method proved in [5] and

transform this function into a linear regression formula by changing the variables as y′= β0 +β1

× t′ where y′ = loge y and t′= 1/t. The relationship between these two pairs of variables is β0=

loge a, and β1 = -b. β0 and β1 are calculated using equations below, known as the least squares

method, for determining the parameters that best describe the relationship between the expected

and observed sets of data minimizing the sums of the squares of deviation between observed

and expected values.

Here β0=
_
y ′- β1×

_
t ′

and

β1=(Σi=1
n (ti’×yi’) - n×

_
t ′×

_
y ′)/ (Σi=1

n ti’2 - n ×
_
t 2')

 with
_
t ′=1/n (Σi=1

n ti’) and
_
y ′= 1/n (Σi=1

n yi’), and yi (yi′= loge yi) being the observed costs at

time points ti (ti′=1/ti). Finally, the parameters (a and b) in the function are calculated by a= eβ0

1 2 3 4 5 6 7 8 9 1 0

 T im e p o in t t

 C

os
t

 T

and b=-β1. Assume n costs at n different clock time points are available in this time slide, then a

and b can be calculated. We can then use Eq. (7) to estimate the cost of a sample query Q,

denoted as yQ, at time point t in time slide [ti, ti+1]. Based on the value of yQ, we are able to

decide which system contention state should be chosen to estimate the cost of a given query.

For example, if a query is submitted just after time point 3 in the situation as shown in Fig. 1a,

we choose the formula in cluster Ci with a suitable adjustment, based on the time slides method.

However, the estimated cost of the sample query using this statistical method indicates that the

contention state at time point 3 is closer to Cj and should use Cj rather than Ci. Therefore, in this

circumstance, a statistical method is more accurate.

5 Experimental Results
5.1 Experimental settings

 We have carried out experiments to evaluate the accuracy of our cost formulae in each

system contention state. Our experiments were conducted between a remote server and a user. A

server has been established at the University of Ulster using Windows 2000 as the operating

system and Oracle 9.0 as database management system with 56 tables installed with tuple

numbers ranging from 200 ~ 800,000. A sample query was sent from a user in China to this

server a number of times at fixed time points and the corresponding query costs were collected.

The costs collected at the same time points (in different runs) were averaged and a final set of

(averaged) costs was used as an input to the clustering algorithm for deriving the system

contention states. We obtained 4 systems contention states in our testing environment.

5.2 Analysis of cost estimation formulae

 A number of unary sample queries were sent to the server to record the costs and the

coefficients in the cost formula (Eq. (5)) were calculated for the unary query class in each

contention state as shown in Table 2. Similarly, some sample join queries were sent by the user

and the costs were used to calculate the coefficients of the cost estimation formula (Eq. (6)) for

the join query class in each contention state as shown in Table 3.

 A number of testing queries (both unary and join) were designed. We applied these cost

formulae to estimate the cost of these queries in different system contention states before each

of them was sent to the server for execution. The analysis below (Figures 2a-2d) shows the

comparison between estimated and observed costs in each contention state for both unary and

join testing queries.
Table 2. Cost Estimation Formulae for Unary Query in each contention state

Con.

States

Cost Estimation Formulae for Unary Queries in each contention state and a single state

State 1: Y = 1.84168657223 –8.01832057E-5 * NU + 0.24199654066* Nr –4.83872528E-6* LNr

State 2 Y = -5.1653349448 + 6.062131E-5 * NU + 0.258267878* Nr –2.8606061E-4* LNr

State 3 Y = 2.09676928248E1 –1.8766981E-4 * NU –+0.272761212* Nr +3.9059394E-4* LNr

State 4 Y =8.3451255319E1 – 7.1109199E-4 * NU + 0.153626666* Nr +9.83466667E-4* LNr

Single

State

Y=2.4497292496E1 –2.295809239E-4 * NU + 0.2316508 * Nr +2.707889437E-4* LNr

Table 3. Cost Estimation Formulae for join Query in each contention state

Cont. States Cost Estimation Formulae for Join Queries in each contention state and the single state

State 1: Y = 0.9538376+0.13936762E-3* NU1+0.1707536E-3* NU2 +2.1415252E-4* Nr +

6.0141673E-6* LNr.

State 2 Y =1.3361241 + 0.2215472E-3* NU1 + 0.21611079E-3* NU2 +3.507236E-4* Nr +

1.1179426E-5* LNr.

state 3 Y = 1.91621544 +0.5764138E-3* NU1 + 0.7265162E-3* NU2+ 9.0576512E-4* Nr+

2.172937E-5* LNr.

state 4 Y =7.42515906E1+1.1109199E-3* NU1+2.27620745E-3*NU2+2.55655532E-

3*Nr+7.717473E-5* LNr.

Single state Y=6.977701891E1+5.07278115E-3*NU1+0.91683423E-3*NU2+1.19382323E-

4*Nr+3.55945865E-5* LNr.

Figure 2a. Contention state 1

X 104

X 104

0

500

1000

1500

2000

2500

0 0.5 1 1.5 2 2.5 3 3.5

N o . o f R e s u l t T u p l e s

Q
u
e
r
y

C
o
s
t
(
S
e
c

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

4 5 0 0

5 0 0 0

0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2

N o . o f R e s u l t T u p l e s

Q
u
e
r
y

C
o
s
t
(
S
e
c

 Figure 2b. Contention state 2

Figure 2c. Contention state 3

Figure 2d. Contention state 4

Figure 2. Estimated verses observed costs of test queries for both unary and join queries in each system

contention state. Dashed lines with ♦ are for estimated costs of unary queries and solid lines with solid

squares are for the observed costs of the same unary queries. Similarly, a dashed line with solid ∆ and a

solid line with × are estimated and observed costs for join queries respectively.

 The error rate for each testing query is calculated by ∂=1/n×(Σi=1
n ((Yi - Ye)2)1/2) / Ya× 100%,

where Yi –the ith observed cost of the same query (i =1,2,…,n), Ya – the average observed cost of

that query, Ye – the estimated cost of the same query. The average error rates for unary testing

queries in these four contention states are 6.912%, 7.517%, 12.272%, and 12.637%

respectively. The average error rates for join queries are 9.162%, 14.838%, 21.314% and

13.686%. The error rate for join queries in contention state 3 is much higher than that in the

other states. We are examining its causes.

 On the other hand, we also investigated that if we did not distinguish system contention

situations, and took the overall environment as almost steady, we obtained a single cost formula

X 104

X 104

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.5 1 1.5 2 2.5 3

No.of Result Tuples

Q
u
e
r
y

C
o
s
t
(
S
e
c

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5

No.of Result Tuples

Q
u
e
r
y

C
o
s
t
(
S
e
c

for unary queries and one for join queries. Since the system is assumed static, a query will have

exactly the same estimated cost at any time. The analysis below shows that a single cost

formula gives much higher error rates at certain time points. This suggests that dividing a

system into different workload based periods (contention states) is necessary to accurately

estimate query costs.

0

20

40

60

80

100

120

140

160

180

200

00:00:00 04:48:00 09:36:00 14:24:00 19:12:00 00:00:00 04:48:00

Tim e Point

Q
u
e
r
y

C
o
s
t
(
s

Figure 3. Estimated query costs verses observed costs in a single system contention state. The steady line

shows the estimated cost of a unary query at any time point in it. The curved line shows the observed

costs of the same query.

5.3 Analysis of network behavior

 To find out how the network behavior affects the query cost, we conducted an experiment

to measure the network speed at different time points (with a fixed interval 10 minutes). The

network graph (Figure 4) reflects the average speed of a week’s observation.

0

100

200

300

400

500

600

700

0
0
:
0
0
:
0
0

0
1
:
0
0
:
0
0

0
2
:
0
0
:
0
0

0
3
:
0
0
:
0
0

0
4
:
0
0
:
0
0

0
5
:
0
0
:
0
0

0
6
:
0
0
:
0
0

0
7
:
0
0
:
0
0

0
8
:
0
0
:
0
0

0
9
:
0
0
:
0
0

1
0
:
0
0
:
0
0

1
1
:
0
0
:
0
0

1
2
:
0
0
:
0
0

1
3
:
0
0
:
0
0

1
4
:
0
0
:
0
0

1
5
:
0
0
:
0
0

1
6
:
0
5
:
0
0

1
6
:
4
0
:
0
0

1
7
:
4
0
:
0
0

1
8
:
4
0
:
0
0

1
9
:
4
0
:
0
0

2
0
:
4
0
:
0
0

2
1
:
4
0
:
0
0

2
2
:
4
0
:
0
0

2
3
:
4
0
:
0
0

Figure 4. Network average speed data in a week

 It is assumed that the recorded raw data about the speed of the network, Nspeed(t), is

composed additively of a long-term signal Nlspeed(t) and a noise)(tn , that is Nspeed(t) =

Nlspeed(t) +)(tn . If we are able to reduce)(tn form Nspeed(t), then we can obtain the main

trend of the network speed. In our study, the Fourier transform [6, 11] is applied to the raw

graph to identify the long-term signal Nlspeed(t) as it is constructed mainly from waves with

low frequency (slow changes over time), while the noise signal is constructed from waves with

high frequency (fast changes over time). The formulae are as follows.

The n-point (n=power of 2) Real Discrete Fourier Transform of a signal

x =[tx], t=0, 1, …, n-1

is defined to be a sequence X of n/2+1complex numbers fX , f=0, 1, …, n/2, given

by fX = fR +i fI where

fR = ∑
−

=

1

0

n

t
tx cos(2π ft/n) and fI = ∑

−

=

1

0

n

t
tx sin(2π ft/n), f=0, …, n/2

 Here i is the imaginary unit. The signal x can be recovered by the inverse transform with

the reduction of noise:

tx = 0(R + 2/nR cos(π t))/2+ ∑
−

=

12/

1

n

f
fR cos(2π ft/n) + ∑

−

=

12/

1

n

f
fI sin(2π ft/n), t=0, …, n-1 (8)

 A smooth graph of the revised network signals is illustrated in Figure 5.

0

100

200

300

400

500

600

700

0
0
:
0
0
:
0
0

0
1
:
0
0
:
0
0

0
2
:
0
0
:
0
0

0
3
:
0
0
:
0
0

0
4
:
0
0
:
0
0

0
5
:
0
0
:
0
0

0
6
:
0
0
:
0
0

0
7
:
0
0
:
0
0

0
8
:
0
0
:
0
0

0
9
:
0
0
:
0
0

1
0
:
0
0
:
0
0

1
1
:
0
0
:
0
0

1
2
:
0
0
:
0
0

1
3
:
0
0
:
0
0

1
4
:
0
0
:
0
0

1
5
:
0
0
:
0
0

1
6
:
0
5
:
0
0

1
6
:
4
0
:
0
0

1
7
:
4
0
:
0
0

1
8
:
4
0
:
0
0

1
9
:
4
0
:
0
0

2
0
:
4
0
:
0
0

2
1
:
4
0
:
0
0

2
2
:
4
0
:
0
0

2
3
:
4
0
:
0
0

Figure 5. Using FT to transform the network speed data

 With formula (8) simulating signal x , we can use the least squares method [4] to generate a

polynomial equation as shown below to describe a graph which best fits discrete data tx , as illustrated in

Figure 6.

 Y= - 0.0005*x^3 + 0.0863*x^2 - 2.5878*x+ 334.7420 (9)

 Based on formula (9), given any time (x), we will be able to estimate the likely state of the cost of the

network on a query.

Y

X

Figure 6 Distribution of discrete data (dotts) and their best simulation graph

 Figures 6 and 7 show the comparison of the system contention states and the network

behavior. The system contention states graph (Figure 7) is obtained by averaging the observed

costs over the period of a week. From these graphs we can conclude that most of the time when

the network is busy the system contention state is high. However, a situation that the network is

not busy but the system contention state is still high indicates a busy state of the remote server.

This comparison can be used to approximately model the pattern of the workload of a server.

50

70

90

110

130

150

170

190

210

00:00:00 04:48:00 09:36:00 14:24:00 19:12:00 00:00:00 04:48:00

Tim e Point

Q
u
e
r
y

C
o
s
t

(
s

 Figure 7. Summary of the system contention states

 The contention states of a remote server is derived through the modelling of system

contention states (Figure 7) and the pattern of the network behavior (Figure 6). The estimated

server contention states, demonstrated in Figure 8, are consistent with the real situation of the

server in our experiment, as we had run a number of application programs on the server

irregularly during the testing period in order to avoid a steady server workload.

0

0.5

1

1.5

2

2.5

3

3.5

00
:2
0:
00

01
:2
0:
00

02
:2
0:
00

03
:2
0:
00

04
:2
0:
00

05
:2
0:
00

06
:2
0:
00

07
:2
0:
00

08
:2
0:
00

09
:2
0:
00

10
:2
0:
00

11
:2
0:
00

11
:4
0:
00

11
:5
0:
00

12
:2
0:
00

12
:4
0:
00

13
:3
0:
00

14
:2
0:
00

15
:2
0:
00

16
:2
0:
00

17
:2
0:
00

18
:2
0:
00

19
:2
0:
00

20
:2
0:
00

21
:2
0:
00

22
:1
4:
53

23
:2
4:
00

24
:2
0:
00

Figure 8. Estimated Server contention states

 The estimation of the behavior of a remote server can be used at the query optimization

stage to choose which server to use, when two (or more) servers are available with similar data.

This knowledge can help to avoid the selection of a busier server.

6. Comparison with Related Work and Conclusion
 In [16, 17], the relationship between the workload of a server and the cost of a query is

investigated in terms of system contention states. A sampling query is sent to a remote server

repeatedly to obtain sample costs. The cost interval determined by the minimum and maximum

sample costs is divided into fix-length intervals first. Then some of these intervals are merged

based on merging criteria until a certain number of intervals are left. Each interval determines

one contention state. The sample costs in an interval are used to calculate not only the

coefficients of regression cost formulae, but also the coefficients of a regression equation

between the estimated costs of the sampling query and some of the major system parameters,

such as, the CPU load, I/O utilization, and the size of used memory space of the remote server.

When a query Q is submitted, these system parameters are obtained and the cost of sampling

query Y is estimated. Based on the sub-interval that Y falls in, the correct cost formula is

selected to estimate the cost. Both methods for determining system contention states and

selecting the regression formula are different from our methods. Our clustering method with no

fixed length is more accurate when determining contention states. Also, we do not require those

system parameters for determining a contention state when a query is submitted, since these

parameters may not be available in a wide area environment.

 The common feature between our approach and the Multi-Dimensional Table (MDT)

approach in [5, 12] is to use time slides to help decide the overall environment condition when a

query is submitted. However, the two approaches are completely different in terms of how the

time slides are defined and used during the estimation of query costs. Our method takes into

account more of the connection between the data volume and the query cost.

 In summary, in this paper, we have proposed a method to determine the contention states of

a system by clustering costs of a sample query. For each system contention state, we have

established cost formulae for the unary query class and the join query class respectively. The

system contention state, when a query is submitted, is determined using either the time slides

method or the statistical method. As a consequence, the correct cost formula can be chosen for

the query. The estimated cost is then adjusted to minimize estimation error. Our experimental

results show that our methods can provide accurate query costs estimates.

 Our immediate future work is to study the refinement of clusters when either two sets of

clusters generated by two sample queries disagree with each other or the error rate of the

estimated verses observed costs of queries is high. Our future work is to further investigate the

behavior of the network and attempt to model the contention states of a server and the network

more accurately.

References
1 Adali, S., Candan, K.S., Papakonstantinou, Y., and Subrahmanian, V.S. Query caching and

optimization in distributed mediator systems. In Proc. of ACM SIGMOD’96, 137–48

2 Chatterjee, S. and Price, B. Regression Analysis by Example (2nd ed.) John Wiley & Sons,

Inc. 1991

3 Du, W., Krishnamurthy, R., and Shan, M.C. Query optimization in heterogeneous DBMS. In

Proc. of VLDB’92, 277–291

4 Folland, G.B. Fourier analysis and its applications Brooks/Cole Publishing Company', 1992

5 Gruser, J.R., Raschid, L, Zadorozhny, V., and Zhan, T. Learning response time for web-

sources using query feedback and application in query optimization. VLDB Journal, 9(1),

18-37. 2000

6 Guo, G., Wang. H. and Bell, D.A., Data Reduction and Noise Filtering for Predicting Times

Series. Proc. of WAIM’2002, 421-429

7 Hald, A. Statistical theory with engineering application. Jon Wiley & Sons, Inc. 1952

8 Muralikrishna, M. Dewitt, D.J. Equi-Depth histograms for estimating selectivity factors for

multi-dimensional queries. In Proc. of SIGMOD’88, 28-36

9 Roth, M.T., Ozcan, F., and Haas, L.M. Cost models DO matter: providing cost information

for diverse data sources in a federated system. In Proc. of VLDB’99, 599–610

10 Ling, Y. and Sun, W. A supplement to sampling-based methods for query size estimation in

a database system. SIGMOD Record, 21(4), 12-15, Dec.1992

11 Wang, G., Huo, Z. and Shuo, J. Applied numerical method, Science Press in China, 1992

12 Zadorozhny, V., Raschid, L., Zhan, T., and Bright, L. Validating an Access Cost Model for

Wide Area Applications. Cooperative Information Systems, Vol ? 371-385. 2001

13 Zhu, Q. and Larson, P.A. A Query Sampling Method of Estimating Local Cost Parameters in

a Multidatabase System. Proc. of ICDE’94, 144-153

14 Zhu, Q. and Larson, P.A. Building Regression Cost Models for Multidatabase Systems.

PDIS’96, 220-231.

15 Zhu, Q. and Larson, P.A. Solving local cost estimation problem for global query

optimization in multidatabase system. Distributed and parallel databases, 6(4), 373-421,

1998

16 Zhu, Q., Motheramgari, S., and Sun, Y. Cost estimation for large queries via fractional

analysis and probabilistic approach in dynamic multidatabase environments, Proc. of

DEXA’2000, 509-525

17 Zhu, Q., Motheramgari, S., and Sun, Y. Developing cost models with qualitative variables

for dynamic multidatabase environments. Proc. of ICDE’2000, 315-355

	Abstract
	Clustering Algorithm
	End
	End Algorithm

