
Determining remote system contention states in query processing over the
Internet

Weiru Liu
School of C&M

University of Ulster

Zhining Liao
School of C&M

University of Ulster

Jun Hong
School of C&M

University of Ulster

Abstract

 In the environment of data integration over the
Internet, three major factors affect the cost of a query:
network congestion situation, server contention states
(workload), and data/query complexity. In this paper, we
concentrate on system contention states. For a remote
data source, we first determine the total number of
contention states of the system through applying
clustering techniques to the costs of sample queries. We
then develop a set of cost formulae for each of the
contention states using a multiple regression process.
Finally, we estimate the system’s current contention state
when a query is issued and using either a time slides
method or a statistical method depending on the
information we have about the system. Our method can
accurately predict the system contention state so that the
effect of the contention states on the cost of queries can be
estimated precisely.

1 Introduction

To meet users’ growing needs for sharing pre-existing
data sources, query processing in data integration from a
multitude of data sources over the Internet has become a
research focus. One major challenge to wide applications
processing is the dynamics and unpredictability of the
workloads of both the network and remote servers.
Another challenge is the autonomy of remote data sources.
These sources may not provide metrics needed for
accurate cost estimation. However the query processing
procedure does need such information to re-write queries,
and to decide where to send these sub-queries and how to
integrate the returned data from different data sources.
Therefore, methods of deriving cost models for
autonomous data sources at a global level are significantly
important in order to efficiently process queries. Several
such methods have been proposed in the literature. A
calibration method was proposed [3] to deduce necessary
local (remote) cost parameters. This method was extended
in [4] to calibrate cost models for object-oriented multi-
database systems.

A query sampling method was proposed and applied
in [11,12,13]. The key idea is to use sampling query
technique to collect the cost model parameters for each
local database and to keep the collected information in the
MDBS catalog and to use these parameters during query
optimization. The effects of the workload of a server on
the cost of a query were examined from a different
perspective in [14]. If a server was very busy, the server
was likely to take longer time to answer the query, and the
cost of the query was high. A method to decide the
contention states of a server was developed and the cost
models are constructed for each contention state in a
multi-database system environment. Alternatively, an
approach to combining a generic cost model with specific
cost information exported by wrappers for local database
systems was proposed in [8] and another approach to
maintaining a cost vector database recording the cost
information for every query issued to a local database was
discussed in [1]. The estimated cost of a new query was
calculated based on the costs of similar queries. Roth et al
introduced a framework for calculating costs in a
federated system, named Garlic [9]. Because Garlic was
based on federated databases, it assumed that the
optimizer had accurate information on the cost of each
alternative query plan. The above-mentioned methods
have all assumed that the network environment does not
change significantly over time and some of methods are
done in local network environment. They do not consider
the impact of the wide area environment.

The importance of coping with a dynamic network
environment has recently been addressed. The effects of
network factors have been investigated in [5, 10] and a
cost estimation model has been proposed that takes these
factors into account by means of measuring the costs of
the same query in different situations, e.g., different times
of the day. Based on the feedback of queries, this method
splits the time into time slides during seven days (of a
week). So the costs of the same query at different time
slides give the indication of whether the cost of other
queries would be high or low at a particular time. Since
the minimum time unit is one hour, this method cannot
estimate the cost of a query accurately is the network is
highly dynamic.

 In this paper, we investigate how system contention
state affects the cost of a query in wide area environment

and propose our solutions to establish the relationship
between them. There are three major contributions in the
paper. First, we propose a clustering approach to
determining the system contention states of a remote
server. Given a particular server, one sample query is
tested against it at fixed time intervals for 24 hours, so
that a set of costs at those (clock) time points are
collected. These costs will then be clustered into a number
of groups. Each group determines one system contention
state. Second, a set of cost formulae for each system
contention state is constructed using a multiple regression
model [2]. An adjustment of estimated cost is added to the
cost formula in order to reflect the fact that the costs in
each contention state can be diverse, that is, the difference
between the minimum and maximum costs is big. This
adjustment to the cost formulae enables more accurate
prediction of the estimated cost. Finally, we predict the
current contention state of system using either a time
slides method or a statistical approach at the time when a
query is submitted to a remote server. The time slides
method is more suitable when the progression from one
contention state to another is smooth. The statistical
approach is more suitable when the progression is either
fast or slow, but not beyond the scope of the two targeted
contention states. Our cost model provides a more
accurate cost of a query over the Internet.

The rest of the paper is organized as follows. Section
2 describes the clustering algorithm for determining the
total number of system contention states for a remote
server, and the extension of the contention state from
discrete time points to continuous time points using the
time slides method. Section 3 discusses how cost formulae
can be obtained through a multi-regression process and
how the adjustment is made to minimize the error of cost
estimation. Section 4 investigates the selection of the right
cost formula first and then introduces the statistical
approach to determining the contention state when the
time slides method is not applicable. In Section 5, we
show some experimental results. Finally, Section 6
summarizes the paper.

2 Determination of System Contention
States

 In this section, we look at how the contention state of a
system affects the time it takes to answer a query, so that
we are able to establish the relationship between the
contention state of a system and the cost of a query. To do
so, a sample query is carefully designed. This query is of
reasonable complexity and can be evaluated by the remote
server quickly. It is tested on the remote server at a fixed
time interval over 24 hours period. The costs of the query
(Ti) at these time points (ti) are collected.

2.1 Grouping costs of sample queries using
clustering techniques

 To determine an appropriate set of contention states for
a dynamic environment, an algorithm often used for multi-
dimensional data clustering [6] is modified to cluster one-
dimensional data (i.e., the cost of the sample query in
terms of time spent by the server). The key idea
underlying the algorithm is to place each data object (the
cost of a sample query) in its own cluster initially and then
gradually merge clusters into larger ones until a desired
number of clusters have been found. The criterion used to
merge two clusters C1 and C2 is to make their distance of
minimal. One widely used distance measuring technique is
the distance between the centroids or means. To assume
mean (C1) and mean (C2) of two clusters, i.e.,

Dmean(C1, C2) =||mean(C1)-mean(C2)||.
 Let K be the maximum number of possible system
contention states. The clustering algorithm can be used to
obtain clusters Ωk = { C1, C2,…, Ck } such that mean(Ci)
< mean(Ci+1) for i =1, 2, …, k based on the costs of a
chosen sample query at different time points. Then, C=
{[min(C1), max(C1)], …, [min(Ck), max(Ck)]} gives a set
of system contention states for a dynamic environment,
where min(Ci) and max(Ci) stand for the minimum and
maximum values in cluster Ci.

1.2 The relationship between contention states
and time slides

 As the response time of a query does have connections
with the Day and the Time of a day, below we discuss how
we link Day and Time with a system’s contention states.
 Let T_cost={T1, T2, …, Tn} be a set of costs of a sample
query collected at clock time points T_time={t1, t2, …tn}
on a weekday. Under our assumption, t1=0.10 (ten
minutes after the midnight) is the first time point we send
the sample query to obtain T1 and tn=24.00 is the last time
point to obtain Tn. The query is sent repeatedly at ten
minutes intervals. (In fact, the time interval can be defined
based on the requirement of a specific application.) Since
the elements in T_cost have been divided into clusters Ci,
the elements in T_time can be organized into the same
number of clusters Ci′, where Ci′ contains those time
points (ti) at which the sample query costs fall into Ci.
 For each time slide [ti, tj] where ti and tj are two
neighboring time points in T_time, there are following two
situations when we extend contention states.
 Situation A: if costs Ti and Tj at time points ti, and tj
are in the same cluster Ci, then a contention state at any
time point in time slide [ti, tj] is defined by range [min(Ci),
max(Ci)] through cluster Ci.
 Situation B: if costs Ti and Tj at time points ti, and tj
are in two different clusters Ci and Cj, then a contention

state at any time point in time slide [ti, ti+α) is defined by
the range [min(Ci), max(Ci)], a contention state in time
slide (ti+α, tj] is defined by the range [min(Cj), max(Cj)],
and a contention state in time point ti+α can be defined
by either the range [min(Ci), max(Ci)] or [min(Cj),
max(Cj)]. Here, α=(ti+tj)/2. However, using different
contention states at time point ti+α may result in a rather
different estimated cost. In Section, 4 we will discuss how
to choose the correct cost formula for this case.
 Therefore, given any specific clock time point t, we can
estimate the system’s contention state by finding the time
slide it falls in.

3 Cost Estimation Formulae

 To determine appropriate cost models for system
contention states, we carry out multiple regression
analysis to build cost formulae [2,12]. The multiple
regression process allows us to establish a statistical
relationship between the costs of queries and the relevant
contributing (explanatory) variables, as listed below. Such
a statistical relationship can be used to establish a cost
estimation formula for other queries in the same query
class under the same system contention state.

3.1 Factors affecting the cost of a query

 There are mainly five factors affecting the cost of a
query in the wide area environment that we have
mentioned as following:
1. How many tuples in an operand table.
2. How many tuples in the result table.
3. The cardinality of an intermediate table.
4. The tuple length of the result table..
5. Contention about the system, including system factors,

such as CPU, I/O, or data items, and network factors,
such as, network speed and data volume.
The first two factors are often used by the query cost

estimation. The 2nd and 4th factors decide the data volume
that is being transferred on the Internet in a unary query.
For a join query, the 2nd - 4th factors should be considered
for the same reason. Factor 5th covers the overall
environment affecting the cost of a query in addition to
factors 1-4. Other factors (i.e. the tuple length of an
operand) are less important in wide area environment and
some other factors (i.e. the physical size, index of
database) are not available in most cases in query
processing systems over the Internet, since every data
source is autonomous.

3.2 Multiple linear regression cost models

 As we know the factors affecting the cost of query, we
can construct the cost model as following. Let X1,
X2,,…,Xp be p explanatory variables, which correspond to
the factors we discussed above in query processing. They
do not have to represent different independent variables. It
is allowed, for example, that X3 = X1 * X2. The response
(dependent) variable Y (which is the query cost in this
paper) tends to vary in a systematic way with the
explanatory variables Xs. If the systematic way is a
statistical linear relationship between Y and Xs, which we
assume is true in our application, a multiple linear
regression model is defined as:
 Y=B0+B1 X1 +B2 X2 + …+ Bp Xp +σ … (1)

Assume there are n observations (given n values) of
dependent variable Y through p explanatory variables X1,
X2,…,Xp, each observation defines an equation:

 Y = B0 +B1 Xi1 +B2 Xi2 + …+ Bp Xip +σ
 (i = 1,2, … , n) …(2)
where Xij (j = 1, 2, … , p) denotes the value of the j-th
explanatory variable Xj in the i-th observation (or
experiment); Yi is the value of i-th observation of
dependent random variable Y corresponding to Xi1, Xi2,…
Xip. B0, B1,…, Bp are regression coefficients for p
explanatory variables which are unknown constants and
will be determined by solving multiple (more than p)
equations like (1) in each contention state (see details in
the next section). X 1, X 2,…, X p are known values as
explained above.
 In this paper, we discuss unary queries and join queries
separately because these two kinds of queries require
different parameters.
 For an unary query, we let RU be the operand table, SU
be its selectivity of a conjunctive term, NU be the
cardinalities of the operand table, Nresult be the
cardinalities of the result table, Lresult is the tuple length of
the result table. Then LNresult = Nresult * Lresult is the data
volume that is to be transferred to the user. The cost
estimation formula for unary queries is:
 Y = B0 + B1 * NU + B2* Nresult +B3* LNresult …(3)
 For a join query, we let RU1 be one of the operand
tables and RU2 be the other operand table, NU1 and NU1 be
its cardinalities of the operand tables, Nresult be the
cardinality of the result table, Lresult be the tuple length of
the result table. Then LNresult = Nresult * Lresult is the data
volume of the result table that is to be transferred to the
user.
 Y = B0 + B1 * NU1 + B2 * NU2 + B3* Nresult +B4* LNresult …(4)

Given a system contention state [min(Ci), max(Ci)]
with l costs falling into it, it is possible to calculate B0, B1,

not guaranteed to be the same. As a consequence, these
different sets of coefficients will result in different cost
estimation of the same query. We will show how to solve
this problem in the next subsection.

3.3 Adjustment of cost formulae

 In this section, we use the unary query as an example to
discuss how to select costs to calculate coefficients and
how to adjust the cost variant within a single contention
state. Assume there are l costs (l>>4) falling into cluster
Ci (for contention state [min(Ci), max(Ci)]) after applying
the clustering algorithm to costs in T_cost={T1, T2, …,
Tn}. We choose 4 costs (Ti) among l cost within Ci which
are the closest to the mean(Ci). These four costs are then
used to calculate the coefficients in Formula (2) for
contention state [min(Ci), max(Ci)]. Obviously, if we had
chosen four smallest (or largest) costs within Ci to get the
coefficients, we would have had rather different values for
the coefficients. To solve this problem, we modify
Formula (2) as follows.

Y’ = B0 + B1 * NU + B2* Nresult +B3* LNresult + σ(Y, Ci) … (5)
σ(Y, Ci) is called the adjustment of the cost model and it is
defined as:
 σ(Y, Ci)= ((Ti

tj- mean(Ci))/mean(Ci))* Y … (6)
Here Y=(B0+B1* NU + B2* Nresult +B3* LNresult) is the

estimated cost of query Q at time point t using Formula
(2) at system contention state [min(Ci), max(Ci)] from
cluster Ci. Ti

tj ∈ T_cost is the cost within Ci at observing
time point tj∈ T_time which is the closest to time point t.
The adjustment says what fraction of the estimated cost
should be subtracted off (added on) to the estimated cost,
in order to show that the estimated cost is only for the
average cases. For example, when Ti

tj almost equals to
mean(Ci), the adjustment is close to 0 which implies that
using Formula (2) itself can get the correct estimation.
This adjustment is significant when |min(Ci)-mean(Ci)|/
mean(Ci)>=10% (or ((max(Ci)-mean(Ci))/
mean(Ci)>=10%), since this condition says that within
this contention state, this is a big drop (increase) between
the lowest (highest) cost and the average cost of the same
query. On the other hand, if |min(Ci)-mean(Ci)|/mean(Ci)
< ε (a pre-defined threshold, e.g., 10%) (or ((max(Ci)-
mean(Ci))/mean(Ci)< ε), the adjustment loses its
meaning, since this condition says that there is not much
difference between any two costs of the same query
obtained from two time points in this same contention
state.

4 Selection of the correct cost formula

 4.1 Selection of the correct cost formula in the
time slides method

Assume query Q is submitted to a remote server for
which we have derived a set of contention states using the
clustering method defined above. We also assume that the
system contention states have been extended to any time
point as discussed in Section 2.3. Let t be the clock time
when Q is submitted, t should fall between two time
points ti and tj (or time slide [ti, tj]) in T_time. Let Ti and Tj
be the costs obtained at time points ti and tj. Assume that
the two clusters containing Ti and Tj are Ci and Cj. Based
on the discussion in Section 2.3, there are two situations
in which the contention states can be extended. Below we
will use unary query as an example to see how to select
the correct cost formula (especially the variable in the
adjustment) for these situations. Situation B is further
divided into two cases.
Situation A: where Ci = Cj, it is said that the system is at a
steady workload situation and the contention state is
[min(Ci), max(Ci)]. Using Formula (3), the cost of Q is
estimated as
Y’ = B0 + B1 * NU + B2* Nresult +B3* LNresult + σ(Y, Ci)
with σ(Y, Ci)= {(Ti

ti - mean(Ci))/mean(Ci)}*Y, where
Ti

ti=Ti when |ti-t|<|tj-t|; Ti
ti=Tj when |ti-t|>|tj-t|; and

Ti
ti=mean(Ci) when |ti-t|=|tj-t|.

Situation B1: when min(Ci)<min(Cj), it is said that the
server’s workload is increased from state [min(Ci),
max(Ci)] to [min(Cj), max(Cj)]. Using Formula (3), the
cost of Q is estimated as
Y’ = B0 + B1 * NU + B2* Nresult +B3* LNresult + σ(Y, Ci)
with σ(Y, Ci)= {(Ti

ti -mean(Ci))/mean(Ci)}*Y where
Ti

ti=max(Ci) when |ti-t|<|tj-t|; Ti
ti=min(Cj) when |ti-t|>|tj-t|;

and Ti
ti=(max(Ci)+ min(Cj))/2 when |ti-t|=|tj-t|.

Situation B2: when min(Ci)> min(Cj), it is said that the
server’s workload is decreased from state [min(Ci),
max(Ci)] to [min(Cj), max(Cj)]. Using Formula (3), the
cost of Q is estimated as
Y’ = B0 + B1 * NU + B2* Nresult +B3* LNresult + σ(Y, Ci)
with σ(Y, Ci)= {(Ti

ti -mean(Ci))/mean(Ci)}*Y where
Ti

ti=min(Ci) when |ti-t|<|tj-t|; Ti
ti=max(Cj) when |ti-t|>|tj-t|;

and Ti
ti=(min(Ci)+ max(Cj))/2 when |ti-t|=|tj-t|.

The last two estimations are suitable for situations
where a server’s workload changes from one state to
another steadily. If the increase (decrease) of the
workload is not steady, we will use a statistical method.

4.2 Determination of contention states using a
statistical method

 In this section, we develop a statistical model that uses a
statistical function to describe the progression from
system contention state Si to Sj, when the progression is
not smooth. Assume we have collected a number of costs
of the sample query within the two time points ti and tj (or
time slide [ti, tj]), and the contention states at these two
time points are Si and Sj. The distribution of these costs
can be illustrated using one of the figures below. Figure

1a shows that during time interval (slide) [ti, tj], the cost
increases and Figure 1b shows the cost decreases. If some
of the costs within the interval are above the maximum
cost or below the minimum cost in Si and Sj (Figure 1c), it
indicates that there is at least another system contention
state occurring within the time interval. Therefore this
time slide should be split. This topic is beyond the scope
of this paper.

a b

c
Figure 1. The possible cases from one state to another.
(t and T stand for time point and the cost of the sample query
respectively.)
 In this section, we assume that all the additional
observed costs within the time slide [ti, tj] are falling into
interval [min(min(Si), min(Sj)), max(max(Si) max(Sj))].
The best mathematical simulation of the observed data as
shown in Figure 1a and Figure 1b is a function as defined
below.

y= a * e
x/b−

, (b>0) … (7)
where a and b are two parameters. x is the time point
when a query is submitted. When x is given, this function
is used to estimate the cost y of the query at this time
point. Parameters a and b are determined using the
observed data (costs yi) at certain time points (xi). It is
easy to see that this function is exponential. To reduce the
computational complexity, we adopt the method proved in
[7] and transform this function into a linear regression
formula by changing the variables. Formula (7) is thus in
the form
 y′= β0 +β1 * x′ …(8)
where y′ = loge y and x′= 1/x. The relationship between
these two pairs of variables is β0= logea and β1 = -b. β0
and β1 are calculated using equations below, known as the
least squares method, a method of determining the
parameters that best describe the relationship between
expected and observed sets of data minimizing the sums
of the squares of deviation between observed and
expected values.

 β0 =
_
y ′ - β1

_
x ′, … (9)

β1 = (ii 'y* x'
n

1i
∑

=

 - n *
_
x ′*

_
y ′)/ (∑

=

n

1i

2'
ix - n *

_
x 2'

)…(10)

where
_
x ′=

n
1 ∑

=

n

1i

'
ix ,

_
y ′=

n
1 ∑

=

n

1i

'
iy . Here yi (yi′= loge

yi) are the observed costs at time points xi (xi′=1/xi).
Finally, the parameters (a and b) in the function are
calculated using Equation (11).

 a= e 0β
, b= - β1. … (11)

 Once the values of a and b are known, we can use
Equation (7) to estimate the cost of a sample query,
denoted as yQ, at time point x in time slide [ti, tj]. Based
on the value of yQ, we will be able to decide which
contention state the system is in and then to choose the
right cost formula as discussed above to estimate the cost
of query Q. For example, if the progression curve is as
shown in Figure 1a from state Si=[min(Ci), max(Ci)] to
Sj=[min(Cj), max(Cj)], and if the query is submitted at
time point 3.5, then the estimated sample query cost
indicates that the system contention state is in Sj and the
cost formula is Y’ = B0 + B1 * NU + B2* Nresult +B3* LNresult + σ(Y,
Cj) with σ(Y, Cj)= {(max(Cj)- mean(Cj))/mean(Cj)}*Y.

However, the time slide approach would have
indicated that the current system contention state was Si
(because |ti-t|>|tj-t|) which was not correct.

5 Experimental Results

We carried out the following steps in our experiments
when a query was submittted.
1. Decide the current system contention state using either

the time slide or the statistical methods.
2. Choose the right formula for the contention state
3. Estimate the parameters in the formula (Nu, Nresult,

LNresult).
4. Calculate the cost of the query.
5. Compare the estimated and observed costs.
 We carried out experiments to evaluate the accuracy of
our cost formulae. Our experiments were conducted
between a remote server and a user. A server has been
established at the University of Ulster using Windows
2000 as the operating system and Oracle 9.0 as database
management system with 56 tables installed with tuple
numbers ranging from 200 ~ 800,000. A sample query
was sent from a user in China to this server a number of
times at fixed time points and the corresponding query
costs were collected. In our experiment, there are four
contentions states. Figure 3~6 shows the relationship
between the estimated costs and the observed costs in
each contention states (In these figures, estimated verse
observed costs of test queries for both unary and join

1 2 3 4 5 6 7 8 9 10

 Time point t

C
os

t

 T

1 2 3 4 5 6 7 8 9 10

 Time point t

C
os

t

T

1 2 3 4 5 6 7 8 9 10

 Time point t

 C
os

t

 T

queries in each contention state. Dashed lines with � are
for estimated costs of unary queries and solid lines with
solid squares are for the observed costs of the same unary
queries. Similarly, a dashed line with solid • and a solid
line with × are estimated and observed costs for join
queries respectively). Table 1 and 2 are the parameters of
cost estimation formulae for unary and join query in each
contention state. Table 3 and 4 are the average estimated
costs, observed costs and error rates for unary query and
join query respectively. We drew following observations
fro our experiments:
(1) Both the cardinality and the length of the result table

are significant in both query classes.
(2) The maximum error rate is 26%. Most of error rates

are around 10%. The error rate is acceptable when
estimating the cost of a query in wide area
environment.

(3) From table 4, we know that the error rate of join
queries is higher than that of unary queries. The
reason could be caused by the way to estimate the
parameters in the formula (e.g., Nu, Nresult, LNresult…).
We will continue to work on the problem.

Cont.
States

B0 B1 B2 B3

State
1:

1.8416865
7223

-8.018
32057
E-5

0.241996
54066

–4.83872
528E-6

State
2:

-5.165
334945

6.062131E
-5

0.258267
878

–2.86060
61E-4

State
3:

2.0967692
8248E1

–1.876698
1E-4

0.272761
212

3.9059394
E-4

State
4

8.3451255
319E1

– 7.1109
199E-4

0.153626
666

9.8346666
7E-4

Single
state:

2.4497292
496E1

–2.295809
239E-4

0.231650
8

2.7078894
37E-4

Table 1. The parameters of cost estimation formulae
for unary queries in each contention state

Cont
States

B0 B1 B2 B3 B4

State
1:

0.953
8376

0.1393
6762E-
3

0.1707
536E-3

2.1415
252E-4

6.014167
3E-6

State
2:

1.336
124

0.2215
472E-3

0.2161
11E-3

3.5072
36E-4

1.117942
6E-5

State
3:

1.916
2154
4

0.5764
138E-3

0.7265
162E-3

9.0576
512E-4

2.172937
E-5

State
4:

7.425
1590
6E1

1.1109
199E-3

2.2762
0745
E-3

2.5565
5532
E-3

7.717473
E-5

Single
state

6.977
7018
91E1

5.0727
8115
E-3

0.9168
3423
E-3

1.1938
2323
E-4

3.559458
65E-5

Table 2. The parameters of cost estimation formulae for join
queries in each contention state

 Figure 3. Query cost in contention state 1

Figure 4. Query cost in contention state 2

Figure 5. Query cost in contention state 3

Figure 6. Query cost in contention state 4

System
Contention
State

Yestimated Yobserved Error
Rate (%)

Cont state 1 64.4687 70.7 7.399
Cont state 2 87.3663 80.580 9.421
Cont state 3 102.5289 118.735 13.648
Cont state 4 123.724 142.480 15.1627

Table 3. The average estimated cost, observed cost and Error
rate for unary queries

X 104

X 104

X 104

X 104

0

500

1000

1500

2000

2500

0 0.5 1 1.5 2 2.5 3 3.5

No.of Result Tuples

Q
u
e
r
y

C
o
s
t
(
S
e
c

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

4 5 0 0

5 0 0 0

0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2

N o . o f R e s u l t T u p l e s

Q
u
e
r
y

C
o
s
t
(
S
e
c

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.5 1 1.5 2 2.5 3

No.of Result Tuples

Q
u
e
r
y

C
o
s
t
(
S
e
c

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5

No.of Result Tuples

Q
u
e
r
y

C
o
s
t
(
S
e
c

System
Contention State

Yestimated Yobserved Error
Rate (%)

Cont state 1 44.4813 40.67 9.371
Cont state 2 54.613 65.512 16.636
Cont state 3 72.5824 98.1359 26.038
Cont state 4 112.357 132.289 18.0627

Table 4. The average estimated cost, observed cost and Error
rate for join queries

6 Conclusion and future work

 A major challenge for performing global query
optimization in a wide area application is that some local
cost information may not be available at the global level.
Most techniques proposed so far in the literature
considered only static system environments. However, the
cost of a query changes dramatically in a realistic dynamic
environment. In this paper, we have investigated the
relationship between the system contention states and the
response time of a query using different techniques and
made the following contributions.
• A clustering technique has been used to determine

system’s contention states.
• A set of regression cost formulae is given in each

system state, and an adequate adjustment of the cost
formula is defined to minimize the estimation error.

• A system’s current contention state can be determined
by two alternative approaches. One is the time slide
approach where contention states at discrete time
points are extended to any time points, and the
system’s current contention state is solely decided
based on the time point when the query is submitted.
Another is a statistical approach that is more suitable
for slow (or fast) progression from one contention
state to another, so that a more accurate prediction of
the current contention state of the system can be
determined.

Experimental results had shown that our method has
high accuracy in estimating the cost of a query in wide
area environment. Our immediate future work is to study
the refinement of clusters when either two sets of clusters
generated by two sample queries disagree with each other
or query feedback suggest the existence of another
contention state within a time slide. Our next step future
work is to investigate the behavior of the Internet and the
estimation of parameters involved in a query.

Acknowledgements

 Many thanks to Zhiyong Luo and Zhifang Liao for acting
as users during the experiment.

References

[1] Adali, S., K.S. Candan, Y. Papakonstantinou, and V.S.
Subrahmanian, Query caching and optimization in distributed
mediator systems. In Proc. of ACM SIGMOD, 1996, pp. 137–
48.

[2] Chatterjee, S. and B. Price, Regression Analysis by Example,
2nd Ed. John Wiley & Sons, Inc., 1991.

[3] Du, W., R. Krishnamurthy, and M..C. Shan, Query
optimization in heterogeneous DBMS. In Proc. of VLDB-
1992, pp. 277–291.

[4] Gardarin, G., F. Sha, and Z.H.Tang, Calibrating the query
optimizer cost model of IRO-DB, an object-oriented federated
database system. In Proc. of VLDB-1996, pp. 378–389.

[5] Gruser, J. R., L. Raschid, V. Zadorozhny, and T. Zhan,
Learning response time for web-sources using query feedback
and application in query optimization. VLDB Journal, 9(1),
2000, pp.18-37.

[6] Guha, S., R. Rastogi, and K. Shim, CURE: An Efficient
Clustering Algorithm for Large Databases. In Proc. of
SIGMOD, 1998, pp. 73–84.

[7] Hald, A.Statistical theory with engineering application. Jon
Wiley & Sons, Inc. 1952.

[8] Naacke.H., G. Gardarin, and A. Tomasicl, Leveraging
mediator cost models with heterogeneous data sources. In
Proc. of ICDE’1998, pp.351–360.

[9] Roth, M.T., F. Ozcan, and L. M. Haas, Cost models DO
matter: providing cost information for diverse data sources in
a federated system. In Proc. of VLDB-1999, pp.599–610.

 [10] Zadorozhny, V., L. Raschid, T. Zhan, and L. Bright,
Validating an Access Cost Model for Wide Area Applications,
Coop. Inf. Sys. 2001, pp.371-385.

[11] Zhu, Q. and P.A. Larson, A Query Sampling Method of
Estimating Local Cost Parameters in a Multidatabase System.
Proc. of ICDE-1994, pp.144-153.

[12] Zhu, Q. and P.A. Larson, Building Regression Cost Models
for Multidatabase Systems. PDIS’96, pp.220-231.

[13] Zhu, Q., and P.A. Larson, Solving local cost estimation
problem for global query optimization in multidatabase
system. Dist. and parallel databases, 1998, pp.373-421.

[14] Zhu, Q., S. Motheramgari, Y. Sun, Cost estimation
for large queries via fractional analysis and probabilistic
approach in dynamic multidatabase environments, Proc.
of DEXA’ 2000, pp.509-525.

	Abstract

