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Abstract

In this paper, we propose a revision-based
approach for conflict resolution by generaliz-
ing the Disjunctive Maxi-Adjustment (DMA)
approach (Benferhat et al. 2004). Revision
operators can be classified into two differ-
ent families: the model-based ones and the
formula-based ones. So the revision-based
approach has two different versions according
to which family of revision operators is cho-
sen. Two particular revision operators are
considered, one is the Dalal’s revision oper-
ator, which is a model-based revision opera-
tor, and the other is the cardinality-maximal
based revision operator, which is a formula-
based revision operator. When the Dalal’s re-
vision operator is chosen, the revision-based
approach is independent of the syntactic form
in each stratum and it captures some notion
of minimal change. When the cardinality-
maximal based revision operator is chosen,
the revision-based approach is equivalent to
the DMA approach. We also show that both
approaches are computationally easier than
the DMA approach.

1 Introduction

Inconsistency handling is a fundamental problem in ar-
tificial intelligence. This problem has been addressed
in several important areas, such as knowledge integra-
tion, iterated belief revision and exception handling.
Many approaches to handling inconsistency have been
proposed (Amgoud and Cayrol 2002, Benferhat et al.
1993, Benferhat et al. 2004, Coste-Marquis and Mar-
quis 2000, Nitta 04, Williams 94, Williams 96). Among
them, an important class of approaches is coherence-
based, which selects one (several) consistent subbase(s)
and then applies the classical inference on this (these)

subbase(s). In most of the coherence-based approaches,
pieces of information are represented by propositional
stratified knowledge1 bases, i.e finite sets of proposi-
tional formulae equipped with a total pre-order which
represents the available preferences over the given be-
liefs.

Recently, several approaches based on some kinds of
Adjustment procedures are discussed, which compute
a consistent knowledge base by removing part of con-
flicting information or weakening conflicting informa-
tion. Williams firstly proposed to deal with conflicts
in knowledge bases by so-called Adjustment system
(Williams 94). Later, she introduced another strat-
egy called Maxi-Adjustment to improve Adjustment.
In (Benferhat et al. 2004), an approach, called Dis-
junctive Maxi-Adjustment (DMA for short), was pro-
posed. Both Maxi-Adjustment and DMA solve con-
flicts at each level of priority in the knowledge base.
Starting from the information with the lowest stratum
where formulae have highest level of priority, when
inconsistency is encountered in the knowledge base,
Maxi-Adjustment removes all formulae in the higher
strata responsible for the conflicts, whilst DMA weak-
ens the conflicting information in those strata. A very
important property of DMA is that it is a compilation
of the lexicographical system (Benferhat et al. 1993).
DMA needs to compute all the conflicts in a stratum,
which is a hard task. Therefore two alternative imple-
mentations of DMA are given to reduce the computa-
tional complexity. One is called whole-DMA and the
other is called iterative-DMA. Whole-DMA is compu-
tationally much more tractable than both DMA and
iterative-DMA because it does not need to compute
conflicts. However, the size of the knowledge base ob-
tained by whole-DMA is larger than the original one
exponentially in the worst case.

In this paper, we propose a revision-based approach for
conflict resolution by generalizing the DMA approach.

1We use the terms belief and knowledge interchangeably
in this paper.



Similar to the DMA approach, we assume that a new
sure formula φ is added to some stratified knowledge
base (this knowledge base may be inconsistent). We
start by revising the set of formulae in the second stra-
tum using φ, then we revise the set of formulae in the
third stratum using φ and the formulae kept in the
second stratum after revision, and so on.

Revision operators can be classified into two differ-
ent families: the model-based ones and the formula-
based ones. So the revision-based approach has two
different versions according to which family of revi-
sion operators is chosen. Two particular revision op-
erators are considered, one is the Dalal’s revision oper-
ator, which is a model-based revision operator, and the
other is the cardinality-maximal based revision opera-
tor, which is a formula-based revision operator. When
the Dalal’s revision operator is chosen, the revision-
based approach is independent of the syntactic form
in each stratum and it captures some notion of mini-
mal change. When the cardinality-maximal based re-
vision operator is chosen, the revision-based approach
is equivalent to the DMA approach. We also show that
both approaches are computationally easier than the
DMA approach.

This paper is organized as follows. Section 2 gives a
brief review of stratified knowledge bases. We then
give a glimpse at two important propositional knowl-
edge base revision operators in Section 3. Section 4
reviews the DMA approach and two of its alterna-
tive implementations. In Section 5, we present our
revision-based approach to handling inconsistency. In
Section 6, two particular revision-based approaches are
given. Finally, we conclude the paper in Section 7.

2 Stratified Knowledge Bases

In this paper, we consider a propositional language
L over a finite alphabet P. An interpretation is a
truth assignment to the atoms in P, i.e. a mapping
from P to {true, false}. We denote the set of clas-
sical interpretations by Ω, propositional variables by
a, b,..., and classical formulae by φ, ψ, γ,... Capital let-
ters A,B,C,... represent sets of classical formulae. De-
duction in classical propositional logic is denoted by
the symbol ` and a deductive closure by Cn such that
Cn(A) = {φ|A`φ}. An interpretation ω is a model of
a formula φ if φ evaluates to true in ω. We use Mod(φ)
to denote the set of models of φ. Conversely, let M be
a set of interpretations, form(M) denotes the logical
formula (unique up to logical equivalence) whose mod-
els are M. A (flat) knowledge base (KB for short) K is
a finite set of propositional formulae which can be seen
as a formula φ which is the conjunction of the formulae
of K. If S = {K1, ...,Km} is a finite family of finite

knowledge bases, then
∨
S = {φ1 ∨ ... ∨ φm : φi∈Ki}

and
⋂

S = ∩{A : A∈S}. As usual, we set
∨
∅ = ⊥.

A stratified knowledge base is a set of formulae with the
form K = (S1, ..., Sn), where Si (i = 1, ..., n) is a stra-
tum containing propositional formulae of K having the
same rank or level of priority such that each formula
in Si is more reliable than formulae of the stratum Sj

for j > i. Namely, the lower the stratum, the higher
the rank. The importance of the stratified knowledge
bases has been addressed in many AI areas (Amgoud
and Cayrol 2002, Benferhat et al. 1993, Benferhat et
al. 2004, Williams 1994, Williams 1996). The pri-
ority relation of a stratified knowledge base makes it
easier to deal with inconsistency. Given a stratified
knowledge base K = (S1, ..., Sn). A conflict in K, de-
noted by C, is a subbase of K such that C ` ⊥ and
∀C ′⊂C,C ′ 6` ⊥. The kernel of K is the union of all its
conflicts, that is, it is the set of formulae of K which
are involved in at least one conflict.

3 Propositional Knowledge Base
Revision

In their pioneer work, Gädenfors and his colleagues
proposed a set of rational postulates, known as AGM
postulates, to characterize a belief revision operator
(Gärdenfors 1988). Instead of a finite KB, they con-
sider a knowledge set, which is a set of formulae closed
under deduction. However, it is representationally in-
feasible to model belief states by a knowledge set in
a computer-based application because logically closed
sets are always infinite. Many propositional knowl-
edge base revision operators have been proposed (see
(Eiter and Gottlob 1992, Katsuna and Mendelzon
1991, Nebel 1998) for a full list of them). There are
two different families of revision operators: the model-
based and the formula-based. In this section, we first
review two important revision operators. The first one
is Dalal’s revision operator ◦D (Dalal 1988), which is
a model-based revision operator, and the other is the
cardinality-maximizing base (CMB) revision operator
◦C , which is a formula-based revision operator (Nebel
1998). We then propose a revision operator by revising
the CMB revision operator.

Dalal (Dalal 1988) first defines a measure of “distance”
dist(ω1,ω2) between two interpretations ω1 and ω2 as
the number of propositional letters on which they dif-
fer. The distance between a knowledge base K and an
interpretation ω is defined as

dist(K,ω) = minωi∈Mod(K)dist(ω, ωi).

He then defines a total pre-order ≤K as ω1≤Kω2 if and
only if

dist(Mod(K), ω1)≤dist(Mod(K), ω2).



As usual, we define ω1<ω2 as ω1≤ω2 but ω2 6≤ω1.

Finally, Dalal’s revision operator ◦D can be defined as:
given a KB K and a formula µ, the revision of K by
µ is

Mod(K◦D µ) = min(Mod(µ),≤K).

So the result of revision of K by µ by Dalal’s revision
operator consists of the “minimal” models of µ with
regard to the total pre-order ≤K .

Now let us introduce CMB-revision operator.

Let (K⊥φ) be the cardinality-maximal subsets of K

that are consistent with ¬φ, i.e.,

K⊥φ = {A⊆K|A6|=φ,∀B⊆K, if |A| < |B|, then B|=φ},

where |A| denotes the cardinality of the set A.

The cardinality-maximizing base revision is defined as
follows (Nebel 1991):

K◦CMBφ = Cn(
∨

((K⊥¬φ))∪{φ}).

The result of CMB-revision is a knowledge set, so it
has the same problem as before, i.e it is representation-
ally infeasible in computer-based application. So we
propose another revision operator, called cardinality-
maximizing based revision operator ◦CM , which is de-
fined as follows:

K◦CMφ =
∨

((K⊥¬φ))∪{φ}.

The operator ◦CM will be used to define a particular
revision-based approach in Section 6.

Let us look at the computational complexity of CM-
revision.

Proposition 1 Generating a revised base under CM-
revision is in F∆p

2, where ∆p
2 denotes the set of deci-

sion problems decidable by a polynomial-time Turing
machine with an NP oracle, and “F” in F∆p

2 stands
for function and is intended to turn a complexity class
for decision problem into one for search problem.

Proposition 1 can be proved by considering the proof
of Theorem 5.14 in (Nebel 1998).

K◦CMφ defined above may contain some redundant
information.

Example 1 Let K = {a, b, c, d} and φ = ¬a∨¬b∨¬c.
Then K⊥¬φ = {{a, b, d}, {a, c, d}, {b, c, d}}}. So
K◦CMφ =

∨
(K⊥¬φ)∪{φ} = {a∨b, a∨c, b∨c, a∨b∨c,

d, a∨d, b∨d, c∨d, a∨b∨d, a∨c∨d, b∨c∨d, φ}, which is
equivalent to {a∨b, a∨c, b∨c, d, φ}.

Definition 1 A disjunction φ = φ1∨... ∨ φn is sub-
sumed by disjunction ψ = ψ1∨... ∨ ψm, denoted as
ψ v φ iff {ψ1, ..., ψm} ⊆ {φ1, ..., φn}

We compute K◦CMφ in the following way.

First, suppose C =
⋂

(K⊥¬φ), then we can define

K ′ =
∨

{A\C : A∈K⊥¬φ}∪C∪{φ}.

Let D =
∨
{A\C : A∈K⊥¬φ}. Some disjunctions in

D can be subsumed by other elements in it. Let us
define

KCM = {φi ∈ D :6 ∃ψ∈D,ψ v φi}∪C∪{φ}.

It is easy to check that KCM≡K◦CMφ. Moreover,
since we can decide whether a disjunction is subsumed
by another one in polynomial time, the complexity of
computing KCM is in the same level of the polynomial
hierarchy as that of computing K◦CMφ.

4 Disjunctive Maxi-Adjustment
(DMA)

In this section, we will describe the Disjunctive Maxi-
Adjustment (DMA) and its two alternative implemen-
tations whole DMA and iterative DMA from (Benfer-
hat et al. 2004). In the following, we use Kφ to denote
a stratified knowledge base {φ} ∪ K, that is, we add
to K (K is assumed to be consistent) a stratum with
the highest rank which consists of a single formula φ.
Let dk(C) be the set of all possible disjunctions of size
k between formulae of C. If k > |C| then dk(C) = ∅.

Algorithm 1: DMA (K, φ)

Data: a stratified knowledge base K = {S1, ..., Sn}; a
new sure formula φ;

Result: a consistent subbase δDMA(Kφ)

begin

KB←{φ};

for i = 1 to n do

if KB∪Si is consistent then KB←KB∪Si

else

Let C be the subset of Si in kernel of KB∪Si;

KB←KB∪{φ : φ∈Si and φ 6∈C};

k←2;

while k≤|C| and KB∪dk(C) is inconsistent

do

k←k + 1;

if k≤|C| then KB←KB∪dk(C);

return KB

end



The idea of DMA is that we start from the first stra-
tum and take the formulae of S1 which do not belong
to any conflict in {φ}∪S1. For those formulae involved
in the conflicts at this stratum we weaken them by re-
placing them with their pairwise disjunctions. If the
result is consistent at this stratum we move to the
next stratum, else we replace these formulae by their
possible disjunctions of size 3, and so on.

Example 2 Let φ = c and K = {S1, S2, S3} be
such that S1 = {a∨b}, S2 = {¬a,¬b,¬c∨b, d, e} and
S3 = {¬c ∨ ¬d}. First we have KB = {c}. There
is no conflict in KB∪S1 then KB←{a∨b, c}. Now,
S2 contradicts KB due to the conflicts {a∨b,¬a,¬b}
and {c,¬b,¬c∨b}. Since d, e are not involved in
any conflict, so KB←KB∪{d, e}. Now we cre-
ate all the possible disjunctions of size 2 with C =
{¬a,¬b,¬c∨b} : d2(C) = {¬a ∨ ¬b,¬a ∨ ¬c∨b}. Since
KB∪d2(C) is consistent, we add d2(C) to KB, i.e
KB←KB∪d2(C). Finally, since KB∪S3 is inconsis-
tent, and we cannot create larger disjunctions because
S3 contains only a single formula, we do not add any-
thing from S3 to KB and the algorithm stops. Then
δDMA(Kφ) = {a∨b, c,¬a ∨ ¬b,¬a ∨ ¬c∨b, d, e}, which
is equivalent to

δDMA(Kφ) = {¬a, b, c, d, e}.

A disadvantage of DMA is that it needs to compute
the kernel, which is in general a hard problem (Bessant
et al. 2001). So two modified versions of the DMA al-
gorithm are proposed in (Benferhat et al. 2004) to
reduce its computational complexity. One is called
whole-DMA, which does not compute the kernel when
KB∪Si is inconsistent, instead, all possible disjunc-
tions of size j of Si are considered. Therefore, it is
computationally much more easier than DMA. How-
ever, it produces a large number of disjunctions, that
is, the size of the resulting knowledge base may be ex-
ponentially larger than the original one. The other one
is called iterative-DMA, which still needs to compute
the kernel. Suppose KB∪Si is inconsistent, we then
compute d2(C), where C is the kernel of Si. When
KB∪(Si \ C) ∪ d2(C) is still inconsistent, then rather
than weakening C again by considering disjunctions of
size 3, we only weaken those formulae in d2(C) which
are still responsible for conflict. It has been shown that
the knowledge base obtained by DMA is equivalent to
those of both whole-DMA and iterative-DMA.

5 Revision-based Approach to
Handling Inconsistency

In this section, we will propose an approach to han-
dling inconsistency which is based on a revision oper-
ator. The idea is that we start by revising the set of

formulae in the second stratum using the set of for-
mulae in the first stratum, then we revise the third
stratum using the set of formulae in the first stratum
and formulae kept in the second stratum after revi-
sion, and so on. since there are two families of re-
vision operators, our revision-based approach has two
different versions according to which family of revision
operators is chosen. In this section and the following
sections, the knowledge base K = {S1, ..., Sn} may be
inconsistent but each Si must be consistent.

Revision-based Algorithm I: model-based revi-
sion operator

Input: a stratified knowledge base K = {S1, ..., Sn}; a
new sure formula φ; a model-based revision operator
◦;

Result: a set of models of δRev(Kφ)

begin

KB←{φ};

for i = 1 to n do

if Mod(KB)∩Mod(Si)6=∅ then Mod(KB)←
Mod(KB)∩Mod(Si)

else

Let ψ = Form(Mod(KB))

Mod(KB)←Mod(Si◦ψ);

return Mod(KB)

end

Since the revision-based Algorithm I uses a model-
based revision operator to resolve the conflicting in-
formation in each stratum, it is irrelevant of the syn-
tactical form of the set of formulae in each stratum.
That is, given two stratified knowledge bases K =
{S1, ..., Sn} and K ′ = {S′

1, ..., S
′
n}, and two formulae

φ and φ′, if Si≡S′
i and φ≡φ′, then Mod(δRev(Kφ)) =

Mod(δRev(K ′
φ′)).

Next we define another revision based algorithm where
a formula-based revision operator is applied.

Revision-based Algorithm II: formula-based re-
vision operator

Input: a stratified knowledge base K = {S1, ..., Sn}; a
new sure formula φ; a formula-based revision operator
◦;

Result: a consistent subbase δRev(Kφ)

begin

KB←{φ};

for i = 1 to n do



if KB∪Si is consistent then KB←KB∪Si

else

Let ψ = ∧{φi : φi∈KB}

KB←Si◦ψ;

return KB

end

The revision-based Algorithm II returns a knowledge
base. Since it resolves inconsistency in each stratum
using a formula-based revision operator, the syntacti-
cal form of each stratum will influence the output of
the algorithm.

Definition 2 Let K be a classical knowledge base and
φ be a new formula. Let C be the subset of K in kernel
of K∪{φ}. Then the DMA revision operator, denoted
as ◦DMA, is defined as:

K◦DMAφ = dk(C)∪F ∪ {φ},

where k is the minimal natural number i such that
di(C)∪{φ} is consistent and F = K \ C.

Clearly, when the DMA revision operator is chosen,
the revision-based Algorithm II is reduced to Algo-
rithm 1. So our revision-based Algorithm II general-
izes Algorithm 1.

Our revision-based algorithms can be used to deal with
belief revision and knowledge integration where the
original knowledge base(s) is (are) stratified and incon-
sistent. In belief revision, the original knowledge base
is usually assumed to be consistent. This assumption
is criticized by some researchers (Priest 2001, Tanaka
2005). Until now, little work has been done in be-
lief revision where the original knowledge base is both
stratified and inconsistent. The revision methods de-
rived by the revision-based algorithm can partially fill
this gap.

6 Two Particular Cases

6.1 Case 1: Dalal’s revision operator

Dalal’s revision operator is one of the most important
model-based revision operators in the literature. It
satisfies the so-called AGM postulates which constrain
the revision process so that minimal changes occur in
the knowledge base. In this section, we will consider
the revision-based algorithm I where the Dalal’s re-
vision operator is chosen, we call it Dalal’s revision-
based algorithm (DR). We use δDR to denote the re-
sulting knowledge base of the DR approach.

Let us look at an example to illustrate DR.

Example 3 (Continue Example 2) First we have
KB = {c}. There is no conflict in KB∪S1, so
Mod(KB)←{{a, c}, {b, c}, {a, b, c}}. KB∪S2 is in-
consistent. Since Form(Mod(KB)) = (a∨b) ∧ c,
we set ψ = (a∨b) ∧ c. The revision of S2 by ψ is
Mod(S2◦Dψ) = {{a, c, d, e}, {b, c, d, e}}. So KB =
{(a∧¬b∧c∧d∧e) ∨ (¬a∧b∧c∧d∧e)}. KB∪S3 is incon-
sistent. Since Form(KB) = (a∨b)∧(¬a∨¬b)∧c∧d∧e,
we set ψ = (a∨b)∧(¬a ∨ ¬b)∧c∧d∧e. The revision of
S3 by ψ is Mod(S3◦Dψ) = {{a, c, d, e}, {b, c, d, e}}. So
Mod(δDR(Kφ)) = {{a, c, d, e}, {b, c, d, e}}.

In Example 1, the result of DMA is δDMA(Kφ) =
{¬a, b, c, d, e}, so δDMA(Kφ) ` δDR(Kφ). However,
the result of DMA does not always infer more infor-
mation than that of DR, which can be seen from the
following example.

Example 4 Let K = {S1, S2} be such that S1 =
{a, c, d} and S2 = {¬a ∨ b,¬b, d→r, r→¬a} and φ =
c. Let us first apply DR to handle inconsistency.
First we have KB = {c}. There is no conflict in
KB∪S1, then Mod(KB)←{{a, b, c, d}, {a,¬b, c, d}}.
KB∪S2 is inconsistent. Since Form(Mod(KB)) =
a∧c∧d, we set ψ = a∧c∧d. The revision of S2 by
ψ is Mod(S2◦Dψ) = {{a, c, d, r}}. So δDR(Kφ) =
{{a, c, d, r}}. Now let us look at DMA. First we
have KB = {c}. There is no conflict in KB∪S1,
then KB←{a, c, d}. KB∪S2 is inconsistent. We
now create all the possible disjunctions of size 2
with C = {¬a ∨ b,¬b, d→r, r→¬a}: d2(C) =
{¬a∨b∨¬d∨r,¬a∨b∨¬r, ¬b∨¬d ∨ r,¬a ∨ ¬b ∨ ¬r}.
Since KB∪d2(C) is inconsistent, we create d3(C) =
{>}. It is clear KB∪d3(C) is consistent, so the al-
gorithm stops and δDMA(Kφ) = {a, c, d}. Clearly
we have δDR(Kφ) ` δDMA(Kφ) but δDMA(Kφ) 6`
δDR(Kφ).

Let us define a revision operator ◦DR by K◦DRφ =
δDR(Kφ), then we have the following properties for
◦DR.

Proposition 2 The revision operator ◦DR satisfies
the following properties.

(D1) K◦DRφ is satisfiable.

(D2) K◦DRφ ` φ.

(D3) If K∪{{φ}} is consistent, then
K◦DRφ≡K∪{{φ}}.

(D4) Given two stratified knowledge bases K =
{S1, ..., Sn} and K ′ = {S′

1, ..., S
′
n}, and two

formulae φ and φ′, if Si≡S′
i and φ≡φ′, then

Mod(K◦DRφ) = Mod(K ′◦DRφ′).

(D5) (K◦PIRφ) ∧ ψ implies K◦PIR(φ ∧ ψ).



(D6) If (K◦PIRφ)∧ψ is satisfiable, then K◦PIR(φ∧ψ)
implies (K◦PIRφ) ∧ ψ.

(D1)-(D3) correspond to Conditions (R1)-(R3) for a
revision operator proposed in (Katsuno and Mendel-
zon 1991). (D4) is a generalization of Dalal’s Princi-
ple of Irrelevance of Syntax (it is the condition (R4) in
(Katsuno and Mendelzon 1991) to the stratified knowl-
edge base. (D5) and (D6) are generalization of (R5)
and (R6) in (Katsuna and Mendelzon 1991) which are
important to ensure minimal change.

Another important property of ◦DR is that it captures
some notion of minimal change.

Let K = {S1, ..., Sn} be a stratified knowledge base.
Let us define a pre-order ≤K as ω1≤K,Lexω2 iff ∃i

ω1<Si
ω2 and ∀j < i: ω1=Sj

ω2, where ω1=Sj
ω2 iff

ω1≤Sj
ω2 and ω2≤Sj

ω1.

Proposition 3 Let K = {S1, ..., Sn} be a stratified
knowledge base and φ be a new sure formula. Suppose
K◦DRφ is the result of revising K by φ using ◦DR,
then

Mod(K◦DRφ) = min(Mod(φ),≤K,Lex).

Proposition 3 shows that the revision operator ◦DR

generalizes the Dalal’s revision operator by generaliz-
ing the total pre-order ≤K to ≤K,Lex.

By the proof of Theorem 6.9 in (Eiter and Gottlob
1992), generating a revised base under Dalal’s revi-
sion operator is FPNP [O(logn)], i.e it needs at most
[O(logn)] calls to a NP oracle to generate a revised
base. In contrast, in each weakening step of DMA, it
needs to compute kernel, which is a very hard problem
because determining if a given formula φ is in the ker-
nel of a knowledge base K is Σp

2-compelete (Bessant et
al. 2001). Therefore, the DMA approach is computa-
tionally harder than the DR approach (under the usual
assumptions of complexity theory (Johnson 1990)).

6.2 Case 2: Cardinality-maximizing based
revision (CM-revision) operator

In this section, we will consider the cardinality-
maximizing based revision (CM-revision for short) op-
erator in revision-based algorithm II. We will prove
that CM-revision-based algorithm (CMR) is equiv-
alent to DMA and it is computationally easier than
DMA.

Definition 3 A formula ψ is said to be a CMR con-
sequence of K and φ, denoted by Kφ `CMR ψ iff
δCMR(Kφ) ` ψ, where δCMR(Kφ) is the resulting
knowledge base of the CMR approach.

To prove that CM-revision-based algorithm is equiv-
alent to DMA, we first prove that it is equivalent to
the lexicographical system, which has been shown to
be equivalent to DMA in (Benferhat et al. 2004).

Definition 4 (Benferhat et al. 2004) Let K =
{S1, ..., Sn} be a stratified knowledge base. Let A =
{A1, ..., An} and B = {B1, ..., Bn} be two consistent
subbases of K. A is said to be lexicographically pre-
ferred to B, denoted to A >Lex B, iff

∃k s.t. |Ak| > |Bk| and ∀1≤j < k, |Aj | = |Bj |.

Let δLex(K) denote the set of all subbases of K which
are maximal with regard to >Lex. Then, the lexico-
graphical consequence is defined as follows.

Definition 5 (Benferhat et al. 2004) A formula ψ is
said to be a lexicographical consequence of Kφ, denoted
by Kφ `Lex ψ, if it is a classical consequence of all the
elements of δLex(Kφ), namely

∀A∈δLex(Kφ), A`ψ.

We now give a theorem to show that CMR is equivalent
to the lexicographical system.

Lemma 1 Let K = {S1, ..., Sn} be a stratified knowl-
edge base, φ be a new formula, and δLex(Kφ) =
{A1, ..., Am}, where Ai = {{φ}, Ai1, ..., Ain}. Then
{φ} ∪

∨
({Bi}i=1,...,m) ≡ {φ} ∪

∨
({Ai1}i=1,...,m) ∪ .. ∪∨

({Ain}i=1,...,m), where Bi = Ai1∪...∪Ain.

Lemma 2 Let K = {S1, ..., Sn} be a stratified knowl-
edge base, φ be a new formula, and δLex(K) =
{A1, ..., Am}, where Ai = {{φ}, Ai1, ..., Ain}. Let
δCMR(Kφ) be the knowledge base obtained by CMR.
Then δCMR(Kφ) = {φ} ∪

∨
({Ai1}i=1,...,m) ∪ .. ∪∨

({Ain}i=1,...,m).

Proof: We prove Lemma 2 by induction over rank i

of K.

When i = 1, we know that A11, ..., Am1 are the set
of cardinality-maximal subset of {φ} ∪ S1. Suppose
KB is the knowledge base obtained by applying CMR
algorithm in the first rank of K, we have δCMR(Kφ) =
{φ} ∪

∨
({Ai1}i=1,...,m).

Now suppose Lemma 2 holds when i < k, we prove
that it holds when i = k. Let KB be the knowledge
base obtained by CMR algorithm until stratum i-1. By
assumption, we have KB = {φ} ∪

∨
({Ai1}i=1,...,m) ∪

.. ∪
∨

({Ai,k−1}i=1,...,m). We now need to prove that
the set of cardinality-maximal consistent subsets of
KB∪Sk is {KB∪Aik}i=1,...,m. First, suppose A⊆Sk

such that KB∪A is a cardinality-maximal subset
of KB∪Sk, then there must exist Ai1,1, ..., Aik−1,k−1



such that {φ}∪Ai1,1 ∪ ...∪Aik−1,k−1∪A is a consistent
subset of {φ}∪S1...∪Sk, where Aij ,j∈{Aij}i=1,...,m.
Moreover, {φ}∪Ai1,1 ∪ ...∪Aik−1,k−1∪A must be a
cardinality-maximal subset of {φ}∪S1...∪Sk. Other-
wise, suppose there exists a B such that A⊂B and
{φ}∪Ai1,1 ∪ ...∪Aik−1,k−1∪B is a consistent subset of
{φ}∪S1...∪Sk, then KB∪B is consistent, which is a
contradiction. Therefore, A∈{Aik}i=1,...,m. Next, we
prove that for every Aik, KB∪Aik is a cardinality-
maximal consistent subset of KB∪Sk. It is clear that
KB∪Aik is consistent. Suppose there exists a sub-
set B of Sk such that Aik⊂B and KB∪B is a con-
sistent subset of KB∪Sk, then by the proof in the
“first” part, there must exist Ai1,1, ..., Aik−1,k−1 such
that {φ}∪Ai1,1 ∪ ...∪Aik−1,k−1∪B is a consistent sub-
set of {φ}∪S1...∪Sk, where Aij ,j∈{Aij}i=1,...,m. This
is contradictory to the fact that Aik ∈ {Aik}i=1,...,m.
So we have proved that the set of cardinality-maximal
consistent subsets of KB∪Sk is {KB∪Aik}i=1,...,m.
Therefore, the resulting knowledge base by applying
CMR algorithm until the rank k is KB = {φ} ∪∨

({Ai1}i=1,...,m)∪ ..∪
∨

({Ai,k}i=1,...,m). This finishes
the induction.

By Lemma 1 and Lemma 2, we have the following
theorem.

Theorem 1 Let K = {S1, ..., Sn} be a stratified
knowledge base and φ a new formula. We then have
the following equivalence:

Kφ `Lex ψ iff Kφ `CMR ψ.

In (Benferhat et al. 2004), it has been shown that
Kφ `Lex ψ iff Kφ `DMA ψ. So we have the following
corollary.

Corollary 1 Let K be a stratified knowledge base and
φ a formula. We then have the following equivalence:

Kφ `DMA ψ iff Kφ `CMR ψ.

Now we will look at the complexity issues of CMR.

By Proposition 1, to resolve conflict information in
each stratum, CMR needs in the worst case polyno-
mial numbers of calls to SAT. So the DMA approach
is computational harder than the CMR approach (un-
der the usual assumption of complexity theory that
∆p

2⊂Σ2
p (Johnson 1990)).

However, the CMR approach can finish with a knowl-
edge base with fewer formulae than the DMA ap-
proach.

Lemma 3 Let S be a classical knowledge base and φ

be a formula. Let D be a conflict of S∪{φ} and S′ =
D∩S. Then d2(S

′) is consistent.

Lemma 4 Let S be a consistent classical knowl-
edge base and φ be a formula. Let C = {S′⊆S :
∃ a conflict C of S∪{φ} such that S′ = C∩S}. Sup-
pose S′∩S′′ = ∅, for all S′, S′′⊆S, then |S◦CMφ| <

|S◦DMAφ|.

By Lemma 3 and Lemma 4 we have the following
proposition.

Proposition 4 Let K be a stratified knowledge base
and φ be a new formula. Let ψi be the formula obtained
by the CMR algorithm in step i. Let Ci = {S′

i⊆Si :
∃ a conflict Ci of Si∪{ψi−1} such that S′

i = Ci∩Si}.
Suppose for each i, if Ci 6= ∅, then S′

i∩S′′
i = ∅, for all

S′
i, S

′′
i ⊆Si, then |δCMR(Kφ)| < |δDMA(Kφ)|.

Example 5 Let K = {S1, S2} be such that
S1 = {c∨d∨e} and S2 = {¬a,¬b,¬c,¬d,¬e}
and φ = a∨b. Let us apply the revision algorithm
where ◦ = ◦CM . First we have KB = {a∨b}.
There is no conflict in KB∪S1, so KB←KB∪S1.
Let ψ = (a∨b)∧(c∨d∨e), then S2⊥¬ψ =
{{¬a,¬c,¬d}, {¬a,¬c,¬e}, {¬a,¬d,¬e}, {¬b,¬c,¬d},
{¬b,¬c,¬e}, {¬b,¬d,¬e}}. So δCMR(Kφ) =
S2◦CMψ = {¬a∨¬b, a∨b, c∨d∨e,¬c ∨ ¬d,¬d ∨
¬e,¬c ∨ ¬e}. In contrast, suppose we apply the DMA
algorithm. First we have KB = {>}. There is
no conflict in KB∪S1, so KB←KB∪S1. Now, S2

contradicts KB due to the conflicts {a∨b,¬a,¬b} and
{c∨d∨e,¬c,¬d,¬e}. We now create all the possible
pairwise disjunctions with C = {¬a,¬b,¬c,¬d,¬e}:
d2(C) = {¬a ∨ ¬b,¬a ∨ ¬c,¬a ∨ ¬d,¬a ∨ ¬e,¬b ∨
¬c,¬b ∨ ¬d,¬b ∨ ¬e,¬c ∨ ¬d,¬c ∨ ¬e,¬d ∨ ¬e}.
Since KB∪d2(C) is inconsistent, we create
d3(C) = {¬a∨¬b∨¬c,¬a∨¬b∨¬d,¬a∨¬b∨¬e,¬a∨
¬c∨¬d,¬a∨¬c∨¬e,¬a∨¬d∨¬e,¬b∨¬c∨¬d,¬b∨¬c∨
¬e,¬b∨¬d∨¬e,¬c∨¬d∨¬e}. Since KB∪d3(C) is con-
sistent, we add d3(C) to KB and the algorithm stops.
Then δDMA(Kφ) = {a∨b, c∨d∨e,¬a∨¬b∨¬c,¬a∨¬b∨
¬d,¬a∨¬b∨¬e,¬a∨¬c∨¬d,¬a∨¬c∨¬e,¬a∨¬d∨
¬e,¬b∨¬c∨¬d,¬b∨¬c∨¬e,¬b∨¬d∨¬e,¬c∨¬d∨¬e}.
δDMA(Kφ) contains more formulas than δCMR(Kφ).

We also have the following lemma and proposition.

Lemma 5 Let S be a consistent classical knowl-
edge base and φ be a formula. Let C = {S′⊆S :
∃ a conflict C of S∪{φ} such that S′ = C∩S}. Sup-
pose ∩(C) 6= ∅, then |S◦CMφ|≤|S◦DMAφ|.

Proposition 5 Let K be a stratified knowledge base
and φ be a new formula. Let ψi be the formula obtained
by the CMR algorithm in step i. Let Ci = {S′

i⊆Si :
∃ a conflict Ci of Si∪{ψi−1} such that S′

i = Ci∩Si}.
Suppose for each i, if Ci 6= ∅, then ∩(Ci) 6= ∅, then
|δCMR(Kφ)|≤|δDMA(Kφ)|, but not vice verse.



Example 6 Let K = {a∨b} ∪ {¬a,¬b,¬c∨b, d} and
φ = c. Let us apply the revision algorithm where
◦ = ◦CM . First we have KB = {c}. There
is no conflict in KB∪S1, so KB←KB∪S1. Let
ψ = c∧(a∨b), then S2⊥¬ψ = {{¬a,¬c ∨ b, d}}. So
δCMR(Kφ) = S2◦CMψ = {c,¬a,¬c ∨ b, d}. In con-
trast, suppose we apply the DMA algorithm. First we
have KB = {c}. There is no conflict in KB∪S1, so
KB←KB∪S1. Now, S2 contradicts KB due to the
conflicts {{a∨b,¬a,¬b}, {c,¬b,¬c ∨ b}}. We now cre-
ate all the pairwise disjunctions with C = {¬a,¬b,¬c∨
b}: d2(C) = {¬a∨¬b,¬a∨¬c∨ b}. Since KB∪d2(C)
is consistent, we add d2(C) to KB and the algorithm
stops. Then δDMA(Kφ) = {c,¬a ∨ ¬b,¬a ∨ ¬c ∨ b, d}.
So |δCMR(Kφ)| = |δDMA(Kφ)|.

7 Conclusions

In this paper, we proposed a revision-based approach
for conflict resolution. This approach has two different
versions according to which class of revision operators
are chosen. The first version is based on a model-
based revision operator and the other is based on a
formula-based revision operator. Our revision-based
approach can be applied to deal with problems of belief
revision and knowledge integration where the original
knowledge base(s) is (are) stratified and inconsistent.

In this paper, we only considered two important re-
vision operators, one is the Dalal’s revision operator
and the other is the cardinality-maximizing based re-
vision operator. Since there are many other revision
operators, an interesting problem is how to choose an
appropriate revision operator. A suggestion is to com-
pare the complexity of different revision methods and
the sizes of the revised knowledge bases.

We have shown that the CMR approach can gener-
ate a knowledge base with fewer formulae than the
DMA approach in some cases. An interesting ques-
tion is, whether this conclusion still holds in general
cases. This will be investigated in future work.
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