
Approaches to inconsistency handling in
description-logic based ontologies

David Bell1, Guilin Qi2, Weiru Liu1

1School of Electronics, Electrical Engineering and Computer Science
Queen’s University Belfast

Belfast, BT7 1NN, UK
{w.liu, da.bell}@qub.ac.uk

2Institute AIFB
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Abstract. The problem of inconsistency handling in ontologies has recently been
attracting a lot of attention. When inconsistency occurs in an ontology, thereare
mainly two ways to deal with it - we either resolve it or reason with the inconsis-
tent ontology.
In this paper, we give a survey of the existing approaches for handlinginconsis-
tency in ontologies and analyze their usability. We focus on Description Logics.
We give clear examples to illustrate how to use these approaches to deal with
practical problems.

1 Introduction

Knowledge representation for the Semantic Web (SW) requiresanalysis of the universe
of discourse for concepts, definitions, objects, roles, properties,etc, and then selecting
a computer-usable version of the results. The sharing of heterogeneous information re-
quires agreed carefully-specified terms to describe the dispersed resources. Ontologies
play a core role for the success of the Semantic Web as they provide shared vocabularies
for different domains, such as Medicine and Bioinformatics. More generic high-level
ontologies are also required for general-purpose SW use (see below). There are many
representation languages for ontologies, such as Description Logics (DLs) [1], which
have clear semantics and formal properties. The quality of ontologies is important for
SW technology. However, in practice, it is often difficult toconstruct an ontology which
is error-free. Inconsistency can occur due to several reasons, such as modeling errors,
migration or merging ontologies, and ontology evolution. For example, if ontologies
such as such as DOLCE, SUMO and CYC are used in a single document, hundreds of
mis-alignments of concepts can be detected, and contradictory statements (’unsatisfi-
able concepts’) might be introduced in particular applications. This will cause logical
inconsistency. For example, an unusual individual which does not satisfy some of initial
assumptions might be encountered in a running application (see Example 2 below). Do
we simply flag that individual as an exception, or do we removesome of the clauses
that encode our assumptions?



Current DL reasoners, such as RACER [5] and FaCT [7], can detect logical in-
consistency. However, they only provide lists of unsatisfiable classes. The process of
resolvinginconsistency is left to the user or ontology engineers. Theneed to improve
DL reasoners to reason with inconsistency is becoming urgent to make them more ap-
plicable.

There are mainly two ways to deal with inconsistent ontologies [8]. One way is to
simply avoid the inconsistency and to apply a non-standard reasoning method to obtain
meaningful answers. A general framework for reasoning withinconsistent ontologies
based onconcept relevancewas proposed in [8]. The idea is to select from an incon-
sistent ontology some consistent sub-theories based on aselection function, which is
defined on the syntactic or semantic relevance. Then standard reasoning on the selected
sub-theories is applied to findmeaningfulanswers. In [18, 25, 14, 13], four-valued log-
ics have been applied to reason with inconsistent ontologies.

The second way to deal with logical contradictions is to resolve logical modeling
errors whenever a logical problem is encountered. For example, several methods have
been proposed to debug erroneous terminologies and have them repaired when incon-
sistencies are detected [23, 22, 17, 4].

In this paper, we give a survey of the existing approaches forhandling inconsistency
in ontologies and analyze their usability. We focus on Description Logics. We give clear
examples to illustrate how to use these approaches to deal with practical problems.

The paper is organized as follows. Section 2 provides some basic notions of termi-
nology debugging. We then give an overview of approaches forhandling inconsistency
in Section 3. Finally, we conclude and discuss the paper in Section 4.

2 Preliminaries

2.1 Description Logics

We now give a brief introduction of Description Logics (DLs)and refer the reader to
the DL handbook [1] for more details.

A DL-based ontology (or ontology)O = (T ,A) consists of a setT of concept
axioms (TBox) and role axioms, and a setA of assertional axioms (ABox). Concept
axioms have the formC ⊑ D whereC andD are (possibly complex) concept descrip-
tions, and role axioms are expressions of the formR⊑S, whereR andS are (possibly
complex) role descriptions. We call both concept axioms androle axioms as terminol-
ogy axioms. The ABox containsconcept assertionsof the formC(a) whereC is a
concept anda is an individual name, androle assertionsof the formR(a, b), whereR

is a role anda andb are individual names.
The semantics of DLs is defined via a model-theoretic semantics, which explicates

the relationship between the language syntax and the model of a domain: An inter-
pretationI = (△I , ·I) consists of a non-empty domain set△I and an interpretation
function·I , which maps from individuals, concepts and roles to elements of the domain,
subsets of the domain and binary relations on the domain, respectively.

Given an interpretationI, we say thatI satisfies a concept axiomC ⊑ D (resp., a
role inclusion axiomR ⊑ S) if CI⊆DI (resp.,RI ⊆ SI). Furthermore,I satisfies a



concept assertionC(a) (resp., a role assertionR(a, b)) if aI∈CI (resp.,(aI , bI)∈RI).
An interpretationI is called amodelof an ontology ontology, iff it satisfies each axiom
in the ontology.

2.2 Incoherence in DL-based ontologies

We introduce the notion of incoherence in DL-based ontologies defined in [3].

Definition 1 (Unsatisfiable Concept).A concept nameC in an ontologyO, is unsat-
isfiable iff, for each interpretationI of O, CI = ∅.

That is, a concept name is unsatisfiable in an ontology iff it is interpreted as an empty
set by all models ofO.

Definition 2 (Incoherent Ontology). An ontologyO is incoherent iff there exists an
unsatisfiable concept name inO.

For example, an ontologyO = {A⊑B,A⊑¬B} is incoherent becauseA is unsat-
isfiable inO. As pointed out in [3], incoherence does not provide the classical sense
of the inconsistency because there might exist a model for anincoherent ontology. We
first introduce the definition of an inconsistent ontology.

Definition 3 (Inconsistent Ontology).An ontologyO is inconsistent iff it has no model.

However, incoherence and inconsistency are related with each other. According to the
discussion in [3], incoherence is a potential cause of inconsistency. That is, supposeC
is an unsatisfiable concept inO, by adding an instancea to C will result in an incon-
sistent ontology. For example, the ontologyO = {A⊑B,A⊑¬B} is incoherent but
consistent (any interpretation which interpretsA as an empty set andB as an nonempty
set is a model ofO). However,O′ = {A(a), A⊑B,A⊑¬B} is both incoherent and
inconsistent.

In most current work on debugging ontologies, the incoherence problem is dis-
cussed at the terminology level. That is, ABoxes are usuallyconsidered as irrelevant for
incoherence. Therefore, when we talk about an axiom in an ontology, we mean only the
terminology axiom.

In the following, we introduce some definitions which are useful to explain logical
incoherence.

Definition 4. [23] Let A be a concept name which is unsatisfiable in a TBoxT . A set
T ′⊆T is a minimal unsatisfiability-preserving sub-TBox (MUPS)of T if A is unsatis-
fiable inT ′, andA is satisfiable in every sub-TBoxT ′′ ⊂ T ′.

A MUPS of T andA is the minimal sub-TBox ofT in which A is unsatisfiable. For
example, given TBoxT = {C ⊑ A,A⊑B,A⊑¬B}. C is an unsatisfiable concept and
it has one MUPS, i.e.,T . Based on MUPS, we can classify unsatisfiable concepts into
derived unsatisfiable concepts and root unsatisfiable concepts as follows:



Definition 5. [23] Let T be an incoherent TBox. A TBoxT ′⊆T is aminimal incoherence-
preserving sub-TBox (MIPS)of T if T ′ is incoherent, and every sub-TBoxT ′′⊂T ′ is
coherent.

A MIPS of T is the minimal sub-TBox ofT which is incoherent. Let us consider the
example used to illustrate Definition 4, there is only one MIPS ofT : {A⊑B,A⊑¬B}.
We say a terminology axiom isin conflict in T if there exists a MIPS ofT containing
it.

3 Overview of Approaches for Inconsistency Handling

3.1 Resolving inconsistency

Debug and Repair DL-based OntologiesThe first approach for debugging of ter-
minologies is originally proposed in [23]. Their debuggingapproach is restricted to
unfoldableALC TBoxes, i.e., the left-hand sides of the concept axioms (the defined
concepts) are atomic and if the right-hand sides (the definitions) contain no direct or
indirect reference to the defined concept. SupposeT is an incoherent unfoldable TBox
andA is an unsatisfiable in it. To calculate a MUPS ofT w.r.t A, we can construct a
tableaux from a branchB initially containing onlylabelled formula(a : A)∅ (for a
new individual namea) by applying the tableaux rules as long as possible.

Terminological diagnosis, as defined in [22], is an instanceReiter’s diagnosis from
first principles. Therefore, we can use Reiter’s algorithmsto calculate terminological
diagnoses. An important notion in diagnosis is called aconflict set, which is an incoher-
ent subset of a TBox. Given a TBoxT , a subsetT ′ of T is a diagnosis for an incoherent
T if T ′ is a minimal set such thatT \ T ′ is not a conflict set forT .

A drawback of the debugging approach in [23] is that it is restricted to unfoldable
ALC TBoxes. Furthermore, it is based on the tableaux algorithmsfor DLs. Therefore, it
is dependent on the tableaux reasoner. In [17, 9], two orthogonal debugging approaches
are proposed to detect the clash/sets of support axioms responsible for unsatisfiable
classes, and to identify root/derived unsatisfiable classes. The first one is a glass box
approach which is based on description logic tableaux reasoner-Pellet. This approach is
closely related to the top-down approach to explanation in [24]. However, the approach
proposed in [17] is not limited to DLALC and is designed for OWL DL. The second
one is a black box approach [9] which is better suitable to identify dependencies in
a large number of unsatisfiable classes. The approach is reasoner-independent, in the
sense that the DL reasoner is solely used as an oracle to determine concept satisfiability
with respect to a TBox. It consists of two main steps. In the first step, it computes a
singleMUPS of the concept and then it utilizes the Hitting Set algorithm to retrieve
the remaining ones. This approach is closely related to the bottom up approach to ex-
planation. Based on the debugging approach, in [10], the authors give a tool to repair
unsatisfiable concepts in OWL ontologies. The basic idea is torank erroneous axioms
and then to generate a plan to resolve the errors in a given setof unsatisfiable concepts
by taking into account the axiom ranks. In [19], a score ordering on terminology axioms
is defined to help the user to select axioms to delete.



Example 1.Suppose that we have an ontologyDICE1 which contains the following
terminologies:

ax1 = Brain ⊑ CentralNervousSystem⊓BodyPart⊓∀region.HeadAndNeck

ax2 = CentralNervousSystem ⊑ NervousSystem

ax3 = Disjoint(NervousSystem,BodyPart).
ax1 says that Brain is part of Central Nervous System and part of Body and it

is in the region of Head and Neck.ax2 says that Central Nervous System is part of
Nervous System andax3 tells us that Nervous System and Body Part are disjoint. The
ontology is incoherent becauseBrain is claimed to be a part of Nervous System and
Body (according toax1 andax2), whilst Nervous System and Body Part are claimed
to be disjoint (according toax3). To resolve the incoherence, we can delete any of the
axiomsaxi (i = 1, 2, 3).

Maximal Satisfiable Terminologies Another way to resolve incoherence in an ontol-
ogy is to find some subsets of the TBox which are consistent andare maximal w.r.t.
set-inclusion. In [16], a tableau-like procedure was proposed to these subsets and some
optimization techniques were given to improve the runtime behavior of the procedure.
A drawback of the approach in [16] is that it removes an axiom when it is involved in
conflict, even if only part of the axiom is responsible for theconflict. So a fine-grained
approach was proposed in [12] to generalize the approach in [16]. This approach can not
only pinpoint the axioms which are involved in conflict, but also trace which parts of the
axioms are responsible for the conflict. Based on the algorithm, a tool was developed
for debugging and repairing an incoherent ontology.

In Example 1, there are three maximal satisfiable subsets:{ax1, ax2}, {ax2, ax3}
and{ax1, ax3}. However,ax1 can be split into three parts:

Brain ⊑ CentralNervousSystem

Brain ⊑ BodyPart and
Brain ⊑ ∀region.HeadAndNeck.
Only Brain ⊑ CentralNervousSystem andBrain ⊑ BodyPart are involved

in the conflict. Therefore, by applying the approach in [12],we can repair the ontology
to give the following one:{Brain ⊑ ∀region.HeadAndNeck, ax2, ax3}.

Consistent Ontology Evolution The work in [6] describes a process to support the
consistent evolution of OWL DL based ontologies, which ensures that the consistency
of an ontology is preserved when changes are applied to the ontology. The process con-
sists of two main phases: (1)Inconsistency Detection, which is responsible for check-
ing the consistency of an ontology with the respect to the ontology consistency defini-
tion and identifying parts in the ontology that do not meet consistency conditions; (2)
Change Generation, which is responsible for ensuring the consistency of the ontology
by generating additional changes that resolve detected inconsistencies. The authors de-
fine methods for detecting and resolving inconsistencies inan OWL ontology after the
application of a change. As for some changes there may be several different consistent
states of the ontology,resolution strategiesallow the user to control the evolution.

1 The ontologyDICE is under development at the Academic Medical Center in Amsterdam.



The methods for detecting inconsistencies rely on the idea of a selection function are
to identify therelevantaxioms that contribute to the inconsistency. In the most simple
case, syntactic relevance – considering how the axioms of the ontology are structurally
connected with the change – is used. Based on the selection function, algorithms to
find minimal inconsistent subontologiesandmaximal consistent subontologiesare pre-
sented.

The approach only supports repairs by removing complete axioms from the ontol-
ogy, a weakening based on a finer granularity is mentioned as an extension, but no
algorithms are proposed. The approach does not make a distinction between ABox and
TBox axioms, as such both ABox and TBox inconsistencies are trivially supported.
Further, the approach does not provide any explicit supportfor dealing with networked
ontologies.

Let us consider an example given in [6].

Example 2.Given a University ontology which contains the following terminology ax-
ioms and assertional axioms:

Researcher ⊑ Person (researchers are persons)
PhDStudent ⊑ Student (PhD students are students)
Student ⊑ ¬Researcher (students are not researchers)
Article ⊑ Publication (articles are publications)
Researcher(Johanna) (Johanna is a researcher).
Suppose we now receive a new assertion which says that Johanna is a PhD stu-

dent, i.e., PhDStudent(Johanna). This assertion is in conflict with the existing ontology
because students cannot be researchers whilst Johanna is claimed to be both a PhD stu-
dent thus a student and a researcher. According to the algorithm in [6], we can delete
Student ⊑ ¬Researcher to restore consistency.

Knowledge base revision in description logicsIn [20], the revised AGM postulates
for belief revision in [11] were generalized and two revision operators which satisfy
the generalized postulates were given. One operator is the weakening-based revision
operator which is defined by weakening of statements in a DL knowledge base. The
idea of weakening a terminology axiom is similar to weakening an uncertain rule in
[2]. That is, when a term is involved in conflict, instead of dropping it completely,
we remove those individuals which cause the conflict. The weakening-based revision
operator may result in counterintuitive results in some cases, so another operator was
proposed to refine it. It was shown that both operators capture some notions of minimal
change.

Let us go back to Example 2. To resolve inconsistency, we can now weaken the
terminology axiomStudent ⊓ ¬{Johanna} ⊑ ¬Researcher, where{Johanna} is
a nominal. That is, all students except Johanna are not researchers. In this way, we can
add PhDStudent(Johanna) to the ontology consistently.

The weakening-based approach is more fine-grained than the approach in [6]. How-
ever, it is computationally harder because we need to find theindividuals which are
responsible for the conflict.



Knowledge integration for description logics In [15], an algorithm, calledrefined
conjunctive maxi-adjustment(RCMA for short) was proposed to weaken conflicting in-
formation in astratifiedDL knowledge base and obtain some consistent DL knowledge
bases. To weaken a terminological axiom, they introduced a DL expression, calledcar-
dinality restrictionson concepts. However, to weaken an assertional axiom, they simply
delete it. In [21], the authors first define two revision operators in description logics, one
is called a weakening-based revision operator and the otheris its refinement. The revi-
sion operators are defined by introducing a DL constructor called nominals. The idea
is that when a terminology axiom or a value restriction is in conflict, they simply add
explicit exceptions to weaken it and assume that the number of exceptions is minimal.
Based on the revision operators, they then propose an algorithm to handle inconsistency
in astratifieddescription logic knowledge base. It was shown that when theweakening-
based revision operator is chosen, the resulting knowledgebase of their algorithm is se-
mantically equivalent to that of the RCMA algorithm. However, their syntactical forms
are different.

3.2 Reasoning with inconsistent ontologies

Coherence-based approachesThis kind of approach is based on the idea of removing
contradictory information before applying classical reasoning algorithms-especially for
question-answering. This can be realized e.g. by starting with an empty (thus consistent)
ontology and incrementally selecting and adding axioms to that ontology, which do not
result in inconsistency. A general framework for reasoningwith inconsistent ontologies
based onconcept relevancewas proposed in [8]. The idea is to select from an incon-
sistent ontology some consistent sub-theories based on aselection function, which is
defined on the syntactic or semantic relevance. Then standard reasoning on the selected
sub-theories is applied to findmeaningfulanswers.

Example 3.Given our updated University ontology which contains the following ter-
minology axioms and assertional axioms:

Researcher ⊑ Person (researchers are persons)
PhDStudent ⊑ Student (PhD students are students)
Student ⊑ ¬Researcher (students are not researchers)
Article ⊑ Publication (articles are publications)
Researcher(Johanna) (Johanna is a researcher)
PhDStudent(Johanna) (Johanna is a PhD student).
As we have seen, this ontology is inconsistent. Suppose we want to query if Johanna

is a person, i.e.Person(Johanna). We first select the axioms which are directly rele-
vant to the queryPerson(Johanna), i.e., axioms where the conceptPerson and/or in-
dividualJohanna appear(s). They areResearcher ⊑ Person, Researcher(Johanna)
andPhDStudent(Johanna). From these axioms, we apply a DL reasoner and we can
infer thatPerson(Johanna). So the answer is ”yes” for the query.

Paraconsistent reasoning on inconsistent ontologiesThe second approach does not
modify the knowledge base but changes the semantics under which it is reasoned with,



employing a so-calledparaconsistent semantics. Unlike the semantics of classical two-
valued semantics, the semantics employed in this case uses four truth values, namely
for true (t), false(f), undetermined(u) andoverdetermined(o). The fourth truth value,
overdetermined, stands for contradictory information. That is, if an assertion C(a) gets
assigned the truth valueoverdetermined, then this assertion is considered to betrueand
falseat the same time.

Let us consider Example 3 again. By applying the four-valuedsemantics in [13], we
can infer thatStudent(Johanna), i.e. Johanna is a student. At the same time, we can
infer that bothResearcher(Johanna) (Johanna is a researcher) and¬Researcher

(Johanna) (Johanna is not a researcher). Therefore, by applying the paraconsistent
semantics, we may infer contradictory conclusions.

4 Discussion and Conclusion

In this paper we give a brief survey of existing work on inconsistency handling in DL-
based ontologies. We divide the existing approaches into two families: the approaches
that resolve inconsistency and the approaches that reason with inconsistent ontologies.

When resolving inconsistency, we differentiate logical inconsistency from incoher-
ence. The former is in the sense of inconsistency in classical logic and the latter is more
DL-specific. The debugging and repair approaches are usually applied to resolve inco-
herence. When resolving inconsistency, we can either deletean axiom in the ontology
or weaken it. The weakening-based approaches are usually more fine-grained than the
deletion-based ones. However, the computational complexity of the former approaches
are usually greater.

When reasoning with inconsistent ontologies, we either select some consistent sub-
ontologies and apply a DL-reasoner to answer the query or change the semantics of the
ontology languages. The first kind of approaches do not have good semantical explana-
tion and are usually syntax-dependent. However, they are proven to be very efficient for
reasoning with some real life ontologies. The second kind ofapproaches have semanti-
cal definitions. However, we may draw contradictory conclusions using paraconsistent
semantics.
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