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Abstract. The problem of inconsistency handling in ontologies has recently been
attracting a lot of attention. When inconsistency occurs in an ontology, énere
mainly two ways to deal with it - we either resolve it or reason with the inconsis-
tent ontology.

In this paper, we give a survey of the existing approaches for hanidiammsis-
tency in ontologies and analyze their usability. We focus on Description kogic
We give clear examples to illustrate how to use these approaches to deal with
practical problems.

1 Introduction

Knowledge representation for the Semantic Web (SW) reqainaysis of the universe
of discourse for concepts, definitions, objects, rolesperties,etc, and then selecting
a computer-usable version of the results. The sharing efbgéneous information re-
quires agreed carefully-specified terms to describe theedied resources. Ontologies
play a core role for the success of the Semantic Web as theidprshared vocabularies
for different domains, such as Medicine and Bioinformatidere generic high-level
ontologies are also required for general-purpose SW useb@ew). There are many
representation languages for ontologies, such as Deseripbgics (DLs) [1], which
have clear semantics and formal properties. The qualityhtiflogies is important for
SW technology. However, in practice, it is often difficultdonstruct an ontology which
is error-free. Inconsistency can occur due to several resasuch as modeling errors,
migration or merging ontologies, and ontology evolutioor Example, if ontologies
such as such as DOLCE, SUMO and CYC are used in a single do¢umenireds of
mis-alignments of concepts can be detected, and contoaglistatements (‘'unsatisfi-
able concepts’) might be introduced in particular appiaa. This will cause logical
inconsistency. For example, an unusual individual whichsdwot satisfy some of initial
assumptions might be encountered in a running applicasiea Example 2 below). Do
we simply flag that individual as an exception, or do we remswe of the clauses
that encode our assumptions?



Current DL reasoners, such as RACER [5] and FaCT [7], cancté&tgical in-
consistency. However, they only provide lists of unsatidéaclasses. The process of
resolvinginconsistency is left to the user or ontology engineers. fidwed to improve
DL reasoners to reason with inconsistency is becoming titgemake them more ap-
plicable.

There are mainly two ways to deal with inconsistent ontaedB]. One way is to
simply avoid the inconsistency and to apply a non-standsadaning method to obtain
meaningful answers. A general framework for reasoning witlonsistent ontologies
based orconcept relevanceas proposed in [8]. The idea is to select from an incon-
sistent ontology some consistent sub-theories basedseteation functionwhich is
defined on the syntactic or semantic relevance. Then stanelasoning on the selected
sub-theories is applied to fimdeaningfulanswers. In [18, 25, 14, 13], four-valued log-
ics have been applied to reason with inconsistent ontadogie

The second way to deal with logical contradictions is to keséogical modeling
errors whenever a logical problem is encountered. For elgmapveral methods have
been proposed to debug erroneous terminologies and haverdpaired when incon-
sistencies are detected [23, 22,17, 4].

In this paper, we give a survey of the existing approachelsdndling inconsistency
in ontologies and analyze their usability. We focus on Dipsion Logics. We give clear
examples to illustrate how to use these approaches to ddapveictical problems.

The paper is organized as follows. Section 2 provides sorsie bations of termi-
nology debugging. We then give an overview of approachebdadling inconsistency
in Section 3. Finally, we conclude and discuss the paper @ti@e4.

2 Preliminaries

2.1 Description Logics

We now give a brief introduction of Description Logics (DLam)d refer the reader to
the DL handbook [1] for more details.

A DL-based ontology (or ontologyp) = (7,.A) consists of a sef” of concept
axioms (TBox) and role axioms, and a sétof assertional axioms (ABox). Concept
axioms have the form@’ C D whereC and D are (possibly complex) concept descrip-
tions, and role axioms are expressions of the f&msS, whereR and.S are (possibly
complex) role descriptions. We call both concept axiomsratel axioms as terminol-
ogy axioms. The ABox containsoncept assertionsf the form C(a) whereC' is a
concept and: is an individual name, anle assertionf the formR(a, b), whereR
is a role and: andb are individual names.

The semantics of DLs is defined via a model-theoretic sergniihich explicates
the relationship between the language syntax and the mddeldomain: An inter-
pretationZ = (AZ,.T) consists of a non-empty domain s&f and an interpretation
function-Z, which maps from individuals, concepts and roles to elemefthe domain,
subsets of the domain and binary relations on the domaipectisely.

Given an interpretatioff, we say thaf satisfies a concept axioti C D (resp., a
role inclusion axiomi C S) if CTCD? (resp.,R% C S7). FurthermoreZ satisfies a



concept assertiofi(a) (resp., a role assertiaR(a, b)) if aZ€C? (resp.,(a”, b?)cRT).
An interpretatior? is called amodelof an ontology ontology, iff it satisfies each axiom
in the ontology.

2.2 Incoherence in DL-based ontologies
We introduce the notion of incoherence in DL-based onta@sgiefined in [3].

Definition 1 (Unsatisfiable Concept) A concept namé€' in an ontologyO, is unsat-
isfiable iff, for each interpretatiof of O, C* = (.

That is, a concept name is unsatisfiable in an ontology i ibterpreted as an empty
set by all models o).

Definition 2 (Incoherent Ontology). An ontologyO is incoherent iff there exists an
unsatisfiable concept namedn

For example, an ontology = {ACB, AC—-B} is incoherent becaus# is unsat-
isfiable inO. As pointed out in [3], incoherence does not provide thesitas$ sense
of the inconsistency because there might exist a model fimaherent ontology. We
first introduce the definition of an inconsistent ontology.

Definition 3 (Inconsistent Ontology).An ontologyO is inconsistent iff it has no model.

However, incoherence and inconsistency are related with ether. According to the
discussion in [3], incoherence is a potential cause of isid@ncy. That is, suppoge
is an unsatisfiable concept @, by adding an instance to C will result in an incon-
sistent ontology. For example, the ontolo@y= {ACB, AC—-B} is incoherent but
consistent (any interpretation which interprdtas an empty set an as an nonempty
set is a model oD). However,O0' = {A(a), ALB, AC-B} is both incoherent and
inconsistent.

In most current work on debugging ontologies, the incohegeproblem is dis-
cussed at the terminology level. That is, ABoxes are usugalhgsidered as irrelevant for
incoherence. Therefore, when we talk about an axiom in asi@yy, we mean only the
terminology axiom.

In the following, we introduce some definitions which arefukt explain logical
incoherence.

Definition 4. [23] Let A be a concept name which is unsatisfiable in a TBoA set
T'CT is aminimal unsatisfiability-preserving sub-TBox (MUP&)T if A is unsatis-
fiable in7’, and A is satisfiable in every sub-TBAX’ C 7".

A MUPS of 7 and A is the minimal sub-TBox off in which A is unsatisfiable. For
example, given TBo¥ = {C C A, ACB, AL—-B}. C'is an unsatisfiable concept and

it has one MUPS, i.e7. Based on MUPS, we can classify unsatisfiable concepts into
derived unsatisfiable concepts and root unsatisfiable pt&es follows:



Definition 5. [23] Let 7 be an incoherent TBox. A TBGXC7 is aminimal incoherence-
preserving sub-TBox (MIPS)f 7 if 7" is incoherent, and every sub-TB@X' c7’ is
coherent.

A MIPS of 7 is the minimal sub-TBox of” which is incoherent. Let us consider the
example used to illustrate Definition 4, there is only one BItR7: { ACB, AC—-B}.
We say a terminology axiom ig conflictin 7 if there exists a MIPS of containing

it.

3 Overview of Approaches for Inconsistency Handling

3.1 Resolving inconsistency

Debug and Repair DL-based OntologiesThe first approach for debugging of ter-
minologies is originally proposed in [23]. Their debuggiagproach is restricted to
unfoldable ALC TBoxesi.e., the left-hand sides of the concept axioms (the defined
concepts) are atomic and if the right-hand sides (the diefivs} contain no direct or
indirect reference to the defined concept. Supgbse an incoherent unfoldable TBox
and A is an unsatisfiable in it. To calculate a MUPSDfw.r.t A, we can construct a
tableaux from a branch initially containing onlylabelled formula(a : A)? (for a
new individual name) by applying the tableaux rules as long as possible.

Terminological diagnosis, as defined in [22], is an instaRe#er’s diagnosis from
first principles. Therefore, we can use Reiter's algoritimsalculate terminological
diagnoses. An important notion in diagnosis is calledaflict sefwhich is an incoher-
ent subset of a TBox. Given a TB@x, a subsef’ of 7 is a diagnosis for an incoherent
7 if 7’ is a minimal set such th&t \ 7" is not a conflict set fof .

A drawback of the debugging approach in [23] is that it isniet#d to unfoldable
ALC TBoxes. Furthermore, itis based on the tableaux algorifoni3Ls. Therefore, it
is dependent on the tableaux reasoner. In [17, 9], two odthalgdebugging approaches
are proposed to detect the clash/sets of support axiomsnsifye for unsatisfiable
classes, and to identify root/derived unsatisfiable ckasBhe first one is a glass box
approach which is based on description logic tableaux reas®ellet. This approach is
closely related to the top-down approach to explanatio24f. [However, the approach
proposed in [17] is not limited to DLALC and is designed for OWL DL. The second
one is a black box approach [9] which is better suitable tatifie dependencies in
a large number of unsatisfiable classes. The approach ismeamdependent, in the
sense that the DL reasoner is solely used as an oracle tonileéeroncept satisfiability
with respect to a TBox. It consists of two main steps. In th&t Btep, it computes a
single MUPS of the concept and then it utilizes the Hitting Set alhon to retrieve
the remaining ones. This approach is closely related to ¢i#®im up approach to ex-
planation. Based on the debugging approach, in [10], theoasitgive a tool to repair
unsatisfiable concepts in OWL ontologies. The basic ideaiarik erroneous axioms
and then to generate a plan to resolve the errors in a givest sesatisfiable concepts
by taking into account the axiom ranks. In [19], a score dndpon terminology axioms
is defined to help the user to select axioms to delete.



Example 1.Suppose that we have an ontology C E* which contains the following
terminologies:

ax1 = Brain C Central NervousSystemMNBodyPartrVregion. Head AndN eck

axe = Central NervousSystem = NervousSystem

ax3 = Disjoint(NervousSystem, BodyPart).

ax; says that Brain is part of Central Nervous System and partaafyBand it
is in the region of Head and Neckz, says that Central Nervous System is part of
Nervous System anglxs tells us that Nervous System and Body Part are disjoint. The
ontology is incoherent becaug#rain is claimed to be a part of Nervous System and
Body (according tazz; andaxs), whilst Nervous System and Body Part are claimed
to be disjoint (according taxs). To resolve the incoherence, we can delete any of the
axiomsaz; (i = 1,2, 3).

Maximal Satisfiable Terminologies Another way to resolve incoherence in an ontol-
ogy is to find some subsets of the TBox which are consistentaa@danaximal w.r.t.
set-inclusion. In [16], a tableau-like procedure was pemubto these subsets and some
optimization techniques were given to improve the runtirebdvior of the procedure.
A drawback of the approach in [16] is that it removes an axionemvit is involved in
conflict, even if only part of the axiom is responsible for twnflict. So a fine-grained
approach was proposed in [12] to generalize the approadi6]nThis approach can not
only pinpoint the axioms which are involved in conflict, big@atrace which parts of the
axioms are responsible for the conflict. Based on the alguorita tool was developed
for debugging and repairing an incoherent ontology.

In Example 1, there are three maximal satisfiable sub$ets:, axs}, {axs, axs}
and{az1, ax3}. Howeveraz; can be splitinto three parts:

Brain C Central NervousSystem

Brain C BodyPart and

Brain C Vregion.HeadAndNeck.

Only Brain C Central NervousSystem and Brain C BodyPart are involved
in the conflict. Therefore, by applying the approach in [1423,can repair the ontology
to give the following one{Brain C Vregion.HeadAndNeck, axq, axs}.

Consistent Ontology Evolution The work in [6] describes a process to support the
consistent evolution of OWL DL based ontologies, which easuhat the consistency
of an ontology is preserved when changes are applied to tiéogy. The process con-
sists of two main phases: (Inconsistency Detectionvhich is responsible for check-
ing the consistency of an ontology with the respect to thelogy consistency defini-
tion and identifying parts in the ontology that do not meatsistency conditions; (2)
Change Generatigrwhich is responsible for ensuring the consistency of thtelogy
by generating additional changes that resolve detecteshéigtencies. The authors de-
fine methods for detecting and resolving inconsistenciesi®@WL ontology after the
application of a change. As for some changes there may beaseli#erent consistent
states of the ontologyesolution strategieallow the user to control the evolution.

! The ontologyDIC E is under development at the Academic Medical Center in Amsterdam.



The methods for detecting inconsistencies rely on the iflaselection function are
to identify therelevantaxioms that contribute to the inconsistency. In the mospkm
case, syntactic relevance — considering how the axiomseadntology are structurally
connected with the change — is used. Based on the selectiotidn, algorithms to
find minimal inconsistent subontologiaadmaximal consistent subontologiase pre-
sented.

The approach only supports repairs by removing completenasifrom the ontol-
ogy, a weakening based on a finer granularity is mentionechaaxgension, but no
algorithms are proposed. The approach does not make actistiletween ABox and
TBox axioms, as such both ABox and TBox inconsistencies ravialty supported.
Further, the approach does not provide any explicit sugpodealing with networked
ontologies.

Let us consider an example given in [6].

Example 2.Given a University ontology which contains the followingrteénology ax-
ioms and assertional axioms:

Researcher C Person (researchers are persons)

PhDStudent C Student (PhD students are students)

Student T —~Researcher (students are not researchers)

Article © Publication (articles are publications)

Researcher(Johanna) (Johanna is a researcher).

Suppose we now receive a new assertion which says that Jolmm@nPhD stu-
dent, i.e., PhDStudent(Johanna). This assertion is iniconfith the existing ontology
because students cannot be researchers whilst Johanagrisdto be both a PhD stu-
dent thus a student and a researcher. According to the tigomn [6], we can delete
Student C —Researcher to restore consistency.

Knowledge base revision in description logicsln [20], the revised AGM postulates
for belief revision in [11] were generalized and two revisioperators which satisfy
the generalized postulates were given. One operator is #akeming-based revision
operator which is defined by weakening of statements in a Diwkedge base. The
idea of weakening a terminology axiom is similar to weakgram uncertain rule in
[2]. That is, when a term is involved in conflict, instead obplping it completely,
we remove those individuals which cause the conflict. Thekeriag-based revision
operator may result in counterintuitive results in someesaso another operator was
proposed to refine it. It was shown that both operators cainme notions of minimal
change.

Let us go back to Example 2. To resolve inconsistency, we canweaken the
terminology axiomStudent M —{Johanna} C —Researcher, where{Johanna} is
anominal That is, all students except Johanna are not researchetss way, we can
add PhDStudent(Johanna) to the ontology consistently.

The weakening-based approach is more fine-grained thapgheach in [6]. How-
ever, it is computationally harder because we need to findntheiduals which are
responsible for the conflict.



Knowledge integration for description logics In [15], an algorithm, calledefined
conjunctive maxi-adjustme(RCMA for short) was proposed to weaken conflicting in-
formation in astratifiedDL knowledge base and obtain some consistent DL knowledge
bases. To weaken a terminological axiom, they introducet eXpression, calledar-
dinality restrictionson concepts. However, to weaken an assertional axiom, thmphs
delete it. In [21], the authors first define two revision oparsin description logics, one
is called a weakening-based revision operator and the litsrrefinement. The revi-
sion operators are defined by introducing a DL constructbed¢aominals The idea

is that when a terminology axiom or a value restriction isamftict, they simply add
explicit exceptions to weaken it and assume that the nunfbexaeptions is minimal.
Based on the revision operators, they then propose an tigoto handle inconsistency
in astratifieddescription logic knowledge base. It was shown that whemvirekening-
based revision operator is chosen, the resulting knowlbdge of their algorithm is se-
mantically equivalent to that of the RCMA algorithm. Howewbeir syntactical forms
are different.

3.2 Reasoning with inconsistent ontologies

Coherence-based approacheghis kind of approach is based on the idea of removing
contradictory information before applying classical m@ag algorithms-especially for
question-answering. This can be realized e.g. by startitigam empty (thus consistent)
ontology and incrementally selecting and adding axiombab ¢ntology, which do not
result in inconsistency. A general framework for reasonititt) inconsistent ontologies
based orconcept relevanceas proposed in [8]. The idea is to select from an incon-
sistent ontology some consistent sub-theories basedsaeteation functionwhich is
defined on the syntactic or semantic relevance. Then stdmelasoning on the selected
sub-theories is applied to fimdeaningfulanswers.

Example 3.Given our updated University ontology which contains thikofeing ter-
minology axioms and assertional axioms:

Researcher C Person (researchers are persons)

PhDStudent C Student (PhD students are students)

Student C —~Researcher (Students are not researchers)

Article C Publication (articles are publications)

Researcher(Johanna) (Johanna is a researcher)

PhDStudent(Johanna) (Johanna is a PhD student).

As we have seen, this ontology is inconsistent. Suppose wetaguery if Johanna
is a person, i.ePerson(Johanna). We first select the axioms which are directly rele-
vant to the queryerson(Johanna), i.e., axioms where the conceperson and/or in-
dividual Johanna appear(s). They atResearcher C Person, Researcher(Johanna)
andPhD Student(Johanna). From these axioms, we apply a DL reasoner and we can
infer that Person(Johanna). So the answer is "yes” for the query.

Paraconsistent reasoning on inconsistent ontologieshe second approach does not
modify the knowledge base but changes the semantics undeh wis reasoned with,



employing a so-callegaraconsistent semantiddnlike the semantics of classical two-
valued semantics, the semantics employed in this case osgetridith values, namely
for true (t), false(f), undeterminedu) andoverdeterminedo). The fourth truth value,
overdeterminegdstands for contradictory information. That is, if an atisaerC(a) gets
assigned the truth valeverdeterminedhen this assertion is considered tathes and
falseat the same time.

Let us consider Example 3 again. By applying the four-vakedantics in [13], we
can infer thatStudent(Johanna), i.e. Johanna is a student. At the same time, we can
infer that bothResearcher(Johanna) (Johanna is a researcher) an®esearcher
(Johanna) (Johanna is not a researcher). Therefore, by applying trecpasistent
semantics, we may infer contradictory conclusions.

4 Discussion and Conclusion

In this paper we give a brief survey of existing work on indstency handling in DL-
based ontologies. We divide the existing approaches inbdfawwilies: the approaches
that resolve inconsistency and the approaches that reagtomuaonsistent ontologies.

When resolving inconsistency, we differentiate logicabinsistency from incoher-
ence. The former is in the sense of inconsistency in claddsigia and the latter is more
DL-specific. The debugging and repair approaches are ysallied to resolve inco-
herence. When resolving inconsistency, we can either dafesxiom in the ontology
or weaken it. The weakening-based approaches are usualyfimne-grained than the
deletion-based ones. However, the computational contplekithe former approaches
are usually greater.

When reasoning with inconsistent ontologies, we eithercssleme consistent sub-
ontologies and apply a DL-reasoner to answer the query orgehthe semantics of the
ontology languages. The first kind of approaches do not hawd gemantical explana-
tion and are usually syntax-dependent. However, they aneeprto be very efficient for
reasoning with some real life ontologies. The second kingppiroaches have semanti-
cal definitions. However, we may draw contradictory conidas using paraconsistent
semantics.
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