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Abstract. In probabilistic logic programming, given a query, either a probability
interval or a precise probability obtained by using the maximum entropy prin-
ciple is returned for the query. The former can be noninformative (e.g., interval
[0, 1]) and the reliability of the latter is questionable when the priori knowledge
is imprecise. To address this problem, in this paper, we propose some methods to
quantitatively measure if a probability interval or a single probability is sufficient
for answering a query. We first propose an approach to measuring the ignorance
of a probabilistic logic program with respect to a query. The measure of igno-
rance (w.r.t. a query) reflects how reliable a precise probability for the query can
be and a high value of ignorance suggests that a single probability is not suitable
for the query. We then propose a method to measure the probability that the exact
probability of a query falls in a given interval, e.g., a second order probability. We
call it the degree of satisfaction. If the degree of satisfaction is high enough w.r.t.
the query, then the given interval can be accepted as the answer to the query. We
also provide properties of the two measures and use an example to demonstrate
the significance of the measures.

1 INTRODUCTION

Probabilistic logic programming is a framework to represent and reason with imprecise
(conditional) probabilistic knowledge. An agent’s knowledge is represented by a proba-
bilistic logic program (PLP) which is a set of (conditional) logical formulae with prob-
ability intervals. The impreciseness of the agent’s knowledge is explicitly represented
by assigning a probability interval to every logical formula (representing a conditional
event) indicating that the probability of a formula shall be in the given interval.

Given a PLP and a query against the PLP, traditionally, a probability interval is re-
turned as the answer. This interval implies that the true probability of the query shall be
within the given interval. However, when this interval is too wide, it provides no useful
information. For instance, if a PLP contains knowledge {(fly(X)|bird(X)[0.98, 1],
(bird(X)|magpie(X))[1, 1]}, then the answer to the query Can a magpie fly? (i.e.,
?(fly(t)|magpie(t))) is a trivial bound [0, 1].



One way to enhance the reasoning power of a PLP is to apply the maximum entropy
principle [1]. Based on this principle, a single probability distribution is selected and
it is assumed to be the most acceptable one for the query among all possible proba-
bility distributions. As a consequence, a precise probability is given for a query even
when the agent’s original knowledge is imprecise. In the above example, by applying
the maximum entropy principle, 0.98 is returned as the answer for the query. Intuitively,
accepting a precise probability from (a prior) imprecise knowledge can be risky. When
an agent’s knowledge is rich enough then a single probability could be reliable, how-
ever, when an agent’s knowledge is (very) imprecise, an interval is more appropriate
than a single probability.

Therefore, in probabilistic logic programming as well as other conditional proba-
bilistic logics, there is a question that has not been fully investigated, that is, how useful
is a probabilistic logic program (PLP) to answering a given query? This question is
important in two ways: first, it helps to analyze if a PLP is adequate to answer a query
and second, if a PLP is sufficiently relevant to a query, then shall a single probability
be obtained or shall a probability interval be more suitable? If it is an interval that is
more suitable, then how can we get a more meaningful interval (which is satisfactory to
certain extent), rather then a loose bound?

To answer the above questions, in this paper, we propose two concepts, the measure
of ignorance and the measure of the degree of satisfaction, w.r.t. a PLP and a query. The
former analyzes the impreciseness of the PLP w.r.t. the query, and the latter measures
which (tighter) interval is sufficiently reliable to answer the query.

The main contributions of this paper are as follows. First, we propose a general
framework which formally defines the measure of ignorance and the measure of the de-
gree of satisfaction, and the postulates for these two measures. We also provide several
consequence relations based on the degree of satisfaction. Second, by using the di-
vergence of probabilistic distribution, we instantiate our framework, and show that the
measure of ignorance and the measure of the degree of satisfaction have many desirable
properties and provide much useful information about a PLP w.r.t. a query. Third, we
prove that our framework is an extension of both reasoning on probabilistic logic pro-
gram and reasoning under the maximum entropy principle. Fourth, we prove that these
measures can be viewed as a second-order probability. More specifically, a high level
of ignorance means a high probability about the given PLP (the agent’s knowledge)
is towards total absence of knowledge. The degree of satisfaction is the second-order
probability about the actual probability for a conditional event given in the query falls
in the given interval (provided in the query).

This paper is organized as follows. A brief review of probabilistic logic program-
ming is given in Section 2. In Section 3, we formally analyze probabilistic logic pro-
gramming and the maximum entropy principle, and provide our general framework. In
Section 4, we give instantiations of the framework. We then use an example to demon-
strate the significance of the measures in Section 5. Finally, we compare our approach
with related work and conclude the paper in Section 6.

2 PROBABILISTIC LOGIC PROGRAMMING
We briefly review conditional probabilistic logic programming here [2, 3].



We use Φ to denote the finite set of predicate symbols and constants symbols, V to
denote the set of object variables, and B to denote the set of bound constants which
describe the bound of probabilities and bound constants are in [0,1]. We use a, b, . . . to
denote constants from Φ and X,Y . . . to denote object variables from V . An object term
t is a constant from Φ or an object variable from V . An atom is of the form p(t1, . . . , tk),
where p is a predicate symbol and t1, . . . , tk are object terms. We use Greek letters
φ, ϕ, ψ, . . . to denote events (or formulae) which are obtained from atoms by logic
connectives ∧,∨,¬ as usual. A conditional event is of the form (ψ|φ) where ψ and φ
are events, and φ is called the antecedent and ψ is called the consequent. A probabilistic
formula, denoted as (ψ|ϕ)[l, u], means that the probability of conditional event ψ|ϕ is
between l and u, where l, u are bound constants. A set of probabilistic formulae is called
a conditional probabilistic logic program (PLP), a PLP is denoted as P in the rest of
the paper.

A ground term, (resp. event, conditional event, probabilistic formula, or PLP) is
a term, (resp. event, conditional event, probabilistic formula, or PLP) that does not
contain any object variables in V .

All the constants in Φ form the Herbrand universe, denoted as HUΦ, and the Her-
brand base, denoted as HBΦ, is the finite nonempty set of all atoms constructed from
the predicate symbols in Φ and constants in HUΦ. A subset I of HBΦ is called a pos-
sible world and IΦ is used to denote the set of all possible worlds over Φ. A function
σ that maps each object variable to a constant is called an assignment. It is extended to
object terms by σ(c) = c for all constant symbols from Φ. An event ϕ satisfied by I
under σ, denoted by I |=σ ϕ, is defined inductively as:
• I |=σ p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ I;
• I |=σ φ1 ∧ φ2 iff I |=σ φ1 and I |=σ φ2;
• I |=σ φ1 ∨ φ2 iff I |=σ φ1 or I |=σ φ2;
• I |=σ ¬φ iff I 6|=σ φ

An event ϕ is satisfied by a possible world I , denoted by I |=cl ϕ, iff I |=σ ϕ for
all assignments σ. An event ϕ is a logical consequence of event φ, denoted as φ |=cl ϕ,
iff all possible worlds that satisfy φ also satisfy ϕ.

In this paper, we use > to represent (ground) tautology, and we have that I |=cl >
for all I and all assignments σ. And we use ⊥ to denote ¬>.

If Pr is a function (or distribution) on IΦ (i.e., as IΦ is finite, Pr is a mapping
from IΦ to the unit interval [0,1] such that

∑
I∈IΦ

Pr(I) = 1), then Pr is called a
probabilistic interpretation. For an assignment σ, the probability assigned to an event ϕ
by Pr, is denoted as Prσ(ϕ) where Prσ(ϕ) =

∑
I∈IΦ,I|=σϕ Pr(I). When ϕ is ground,

we simply write it as Pr(ϕ). When Prσ(φ) > 0, the conditional probability, Prσ(ψ|φ),
is defined as Prσ(ψ|φ) = Prσ(ψ ∧ φ)/Prσ(φ). When Prσ(φ) = 0, Prσ(ψ|φ) is
undefined. Also, when (ψ|φ) is ground, we simply written as Pr(ψ|φ).

A probabilistic interpretation Pr satisfies or is a probabilistic model of a prob-
abilistic formula (ψ|φ)[l, u] under assignment σ, denoted as Pr |=σ (ψ|φ)[l, u], iff
u ≥ Prσ(ψ|φ) ≥ l or Prσ(φ) = 0. A probabilistic interpretation Pr satisfies or is a
probabilistic model of a probabilistic formula (ψ|φ)[l, u] iff Pr satisfies (ψ|φ)[l, u] un-
der all assignments. A probabilistic interpretation Pr satisfies or is a probabilistic model
of a PLP P iff for all assignment σ, ∀(ψ|φ)[l, u] ∈ P, Pr |=σ (ψ|φ)[l, u]. A probabilis-
tic formula (ψ|ϕ)[l, u] is a consequence of the PLP P , denoted by P |= (ψ|ϕ)[l, u],



iff all probabilistic models of P satisfy (ψ|ϕ)[l, u]. A probabilistic formula (ψ|ϕ)[l, u]
is a tight consequence of P , denoted by P |=tight (ψ|ϕ)[l, u], iff P |= (ψ|ϕ)[l, u],
P 6|= (ψ|ϕ)[l, u′], P 6|= (ψ|ϕ)[l′, u] for all l′ > l and u′ < u (l′, u′ ∈ [0, 1]). It is worth
noting that if P |= (φ|>)[0, 0] then P |= (ψ|φ)[1, 0] where [1, 0] stand for the empty
set.

A query is of the form ?(ψ|φ) or ?(ψ|φ)[l, u], where ψ and φ are ground events and
l, u ∈ [0, 1]. For query ?(ψ|φ), by the tight consequence relation, a bound [l, u] is given
as the answer, such that P |=tight (ψ|φ)[l, u]. For query ?(ψ|φ)[l, u], a bound [l, u] is
given by the user. A PLP returns True (or Yes) if P |= (ψ|φ)[l, u] and False (or No) if
P 6|= (ψ|φ)[l, u] [3].

The principle of maximum entropy is a well known techniques to represent prob-
abilistic knowledge. Entropy quantifies the indeterminateness inherent to a distribu-
tion Pr by H(Pr) = −ΣI∈IΦ

Pr(I) log Pr(I). Given a logic program P , the prin-
ciple of maximum entropy model (or me-model), denoted by me[P ], is defined as:
H(me[P ]) = max H(Pr) = maxPr|=P −ΣI∈IΦPr(I) log Pr(I)

me[P ] is the unique probabilistic interpretation Pr that is a probabilistic model of
P and that has the greatest entropy among all the probabilistic models of P .

Let P be a ground PLP, we say that (ψ|ϕ)[l, u] is a me-consequent of P , denoted
by P |=me (ψ|ϕ)[l, u], iff P is unsatisfiable, or me[P ] |= (ψ|ϕ)[l, u].

We say that (ψ|ϕ)[l, u] is a tight me-consequent of P , denoted by P |=me
tight (ψ|ϕ)[l, u],

iff either P is unsatisfiable, l = 1, u = 0, or P |= ⊥ ← ϕ, l = 1, u = 0, or
me[P ](ϕ) > 0 and me[P ](ψ|ϕ) = l = u.

3 GENERAL FRAMEWORK

Example 1. Let P be a PLP:

P =
{

(fly(X)|bird(X))[0.9, 1], (bird(X)|magpie(X))[1, 1]
(sickMagpie(X)|magpie(X))[0, 0.1], (magpie(X)|sickMagpie(X))[1, 1]

}

From P , we can infer that P |=tight (fly(t)|magpie(t))[0, 1],
P |=tight (fly(t)|sickmagpie(t))[0, 1], P |=me

tight (fly(t)|magpie(t))[0.9, 0.9], and
P |=me

tight (fly(t)|sickMagpie(t))[0.9, 0.9].

In the above example, we get the same answers for queries on the proportions that
magpies and sick magpies can fly. Since the proportion of sick magpies in birds is
smaller than the proportion of magpies in birds, the knowledge about birds can fly
should be more cautiously applied to sick magpies than magpies. In other words, the
statement that more than 90% birds can fly is more about magpies than sick magpies.
Therefore, to accept that 90% magpies can fly is more rational than to accept 90% sick
magpies can fly. However, this analysis can not be obtained directly from comparing
the bounds inferred from P .

In this section, we provide a framework to measure the ignorance of a PLP w.r.t. a
conditional event and the degree of satisfaction for a conditional event with a user-given
bound under a PLP.



Definition 1 (Ignorance). Let PL be the set of all PLPs and E be a set of conditional
events. Function IG : PL × E 7→ [0, 1] is called a measure 3 of ignorance, iff for any
PLP P and conditional event (ψ|φ) it satisfies the following postulates
[Bounded] IG(P, ψ|φ) ∈ [0, 1].
[Preciseness] IG(P, ψ|φ) = 0 iff P |=tight (ψ|φ)[u, u] for some u ∈ [0, 1] or P |= ⊥ ← φ.
[Totally Ignorance] IG(∅, ψ|φ) = 1, if 6|=cl φ → ψ and 6|=cl φ → ¬ψ.
[Sound] If IG(P, ψ|φ) = 1 then P |= (ψ|φ)[l, u] iff ∅ |= (ψ|φ)[l, u].
[Irrelevance] If P and another PLP P ′ do not contain common syntaxes, i.e.Φ ∩ Φ′ = ∅,

then IG(P, ψ|φ) = IG(P ∪ P ′, ψ|φ), where P and P ′ are defined over Φ and Φ′ respectively.

For simplicity, we use IGP (ψ|φ) to denote IG(P, ψ|φ) for a given PLP P and (ψ|φ).
Value IGP (ψ|φ) defines the level of ignorance about (ψ|φ) from P .

If P = ∅, only tautologies can be inferred from P . Therefore, from any PLP P ,
IGP (ψ|φ) ≤ IG∅(ψ|φ), which means that an empty PLP has the biggest ignorance value
for any conditional event. When IGP (ψ|φ) = 0, event (ψ|φ) can be inferred precisely
from P , since a single precise probability for (ψ|φ) can be obtained from P .

Definition 2 (Degree of Satisfaction). Let PL be the set of all PLPs and F be a set of
probabilistic formulae. Function SAT : PL×F 7→ [0, 1] is called a measure of degree
of satisfaction iff for any PLP P and ground probabilistic formula µ = (ψ|φ)[l, u], it
satisfies the following postulates:
[Reflexive] SAT(P, µ) = 1, iff P |= µ.
[Rational] SAT(P, µ) = 0 if P ∪ {µ} is unsatisfiable.
[Monotonicity] SAT(P, µ) ≥ SAT(P, (ψ|φ)[l′, u′]), if [l′, u′] ⊆ [l, u].

SAT(P, µ) > SAT(P, (ψ|φ)[l′, u′]), if [l′, u′] ⊂ [l, u] and SAT(P, (ψ|φ)[l′, u′]) < 1.
[Cautious Monotonicity] Let P ′ = P ∪ {(ψ|φ)[l′, u′]}, where P |=me (ψ|φ)[l′, u′]

Then SAT(P ′, µ) ≥ SAT(P, µ).

For simplicity, we use SATP (µ) to denote SAT(P, µ).
The reflexive property says that every consequence is totally satisfied. Rational says

that 0 is given as the degree of satisfaction of an unsatisfiable probabilistic formula.
Monotonicity says that if we expect a more precise interval for a query, then the chance
that the exact probability of the query is not in the interval is getting bigger. Cautious
monotonicity says that, if P and P ′ are equivalent except for the bound of (ψ|φ), and
P ′ contains more knowledge about (ψ|φ), then the degree of satisfaction of (ψ|φ)[l, u]
under P ′ should be bigger than that of (ψ|φ)[l, u] under P .

Proposition 1. Function SAT is consistent with the maximum entropy principle, that
is, it satisfies the following conditions for any PLP P and any conditional event (ψ|φ)
with P 6|= ⊥ ← φ and l, u ∈ [0, 1].

SATP ((ψ|φ)[l, u])

{
= 0 if P |=me (ψ|φ)[l′, l′], l′ /∈ [l, u]
> 0 if P |=me (ψ|φ)[l′, l′], l′ ∈ [l, u]

3 In mathematical analysis, a measure m : 2S 7→ [0,∞] is a function, such that
1) m(E1) ≥ 0 for any E ⊆ S
2) m(∅) = 0
3) If E1, E2, E3, . . . is a countable sequence of pairwise disjoint subsets of S, the measure of
the union of all the Ei’s is equal to the sum of the measures of each Ei, that is,

m(
⋃∞

i=1 Ei) =
∑∞

i=1 m(Ei)



For a query ?(ψ|φ)[l, u], when SATP ((ψ|φ)[l, u]) < 1 it means that the exact probabil-
ity of (ψ|φ) in [l, u] could be wrong based on the knowledge in P .

In our framework, given a PLP P , a conditional event (ψ|φ), and a probabilistic for-
mula (ψ|φ)[l, u], the ignorance value IGP (ψ|φ) and the degree of satisfaction SATP (µ)
reveal different aspects of the impreciseness of the knowledge in P w.r.t. (ψ|φ) and
(ψ|φ)[l, u]. The former says how much this P can tell about (ψ|φ) and the latter says
to what degree a user can be satisfied with the bound [l, u] with (ψ|φ).

Proposition 2. Let P be a PLP and (ψ|φ) be a conditional event. If IGP (ψ|φ) = 0
then SATP ((ψ|φ)[l, l]) = 1 for some l ∈ [0, 1].

Definition 3. Let SATP (µ) be the degree of satisfaction for a PLP P and µ = (ψ|φ)[l, u]
be a probabilistic formula. We define two consequence relations as

P |=SAT≥w µ iff SATP (µ) ≥ w,
P |=SAT≥w

tight µ iff P |=SAT≥w µ and P 6|=SAT≥w (ψ|φ)[l′, u′] for every [l′, u′] ⊂ [l, u].

Proposition 3. Let SATP (µ) be the degree of satisfaction for a PLP P and a proba-
bilistic formula µ = (ψ|φ)[l, u], then

P |= µ iff P |=SAT=1 µ
P |=tight µ iff P |=SAT=1

tight µ

If SAT is also consistent with the maximum entropy principle, then
P |=me

tight µ iff limε→0+ P |=SAT≥ε
tight µ

In this proposition, we use SATP (µ) = 1 instead of SATP (µ) ≥ 1, since the degree of
satisfaction cannot be bigger than 1.

The above proposition says that our framework is a generalization of PLP under its
original semantics as well as under the maximum entropy principle. That is, the classical
consequence relations |= and |=tight are too cautious - they are equivalent to requiring
the degree of satisfaction of µ w.r.t P to be 1, which means that the true probability of
(ϕ|φ) must fall in the bound [l, u]. On the other hand, the reasoning under the maximum
entropy principle (|=me

tight) is credulous – it excludes all the other possible probability
distributions except for the most possible one.

Given a query ?(ϕ|φ)[l, u] against a PLP P , the degree of satisfaction SATP (µ)
tells the probability that p(ϕ|φ) ∈ [l, u]. For a query ?(ϕ|φ), the bound [l, u] re-
turned by P |=tight (ψ|φ)[l, u] may be noninformative as discussed above. In our
framework, we provide three ways to generate a more informative interval [l′, u′] with
SATP ((ϕ|φ)[l′, u′]) ≥ a, where a is threshold given by the user. First, a user may want
to know the highest acceptable lower bound, so the lower bound is increased from 0
to l′ until SATP ((ϕ|φ)[l′, u]) ≥ a holds. Second, a user may want to know the lowest
upper bound, so u is decreased to be u′ until SATP ((ϕ|φ)[l, u′]) ≥ a is true. Third, a
user may want to create an interval [l′, u′] around me[P ], the precise probability given
by the maximum entropy principle, where SATP ((ϕ|φ)[l′, u′]) ≥ a holds. To formalize
these three scenarios, we define three consequence relations |=SAT≥a

maxLow, |=SAT≥a
minUp and

|=SAT≥a
aroundMe for them respectively as

– P |=SAT≥a
maxLow (ψ|φ)[l′, u] iff P |=SAT≥a (ψ|φ)[l′, u] where P |=tight [l, u], and l′ > l



– P |=SAT≥a
minUp (ψ|φ)[l, u′] iff P |=SAT≥a

tight (ψ|φ)[l, u′], where P |=tight [l, u] and u > u′

– P |=SAT≥a
aroundMe (ψ|φ)[l′, u′] iff P |=SAT≥a

tight (ψ|φ)[l′, u′] where P |=tight (ψ|φ)[l, u], and
∃b ≥ 0, P |=me

tight [m, m], l′ = max{l, m− b}, u′ = min{u, m + b}

Example 2. Let P = {(fly(t)|bird(t))[0.90, 1], (bird(t)|magpie(t))[1, 1]} be a PLP.
From P , we can only infer that P |=tight (fly(t)|magpie(t))[0, 1], and P |=me

tight

(fly(t)|magpie(t))[0.9, 0.9]. As discussed above, the bound [0, 1] is meaningless and
there is not enough knowledge to infer that exactly 90% magpies can fly. In reality,
taking [0.9, 0.9] as the answer for this query is too risky, and there is no need to get
a precise probability for the query. A more informative interval [l, u] then [0, 1] would
be useful. Assume that a user is happy when there is a 80% (i.e. a = 0.8) chance that
the actual probability of the query is in [l, u], then we are able to use the above three
consequence relations to get the following

P |=SAT≥0.8
maxLow (fly(t)|magpie(t))[0.7, 1]

P |=SAT≥0.8
minUp (fly(t)|magpie(t))[0, 0.96]

P |=SAT≥0.8
aroundMe (fly(t)|magpie(t))[0.7, 1]

From the highest lower bound 0.7, the user can assume that a magpie very likely can
fly. The user should not think that all magpies can fly either, since the lowest upper
bound 0.96 is less than 1. The bound [0.7, 1] gives an estimate for the probability of a
magpie can fly.

In our framework, the user can calculate the degree of satisfaction for a query with
a user-given bound, and the user can also calculate the tightest bound for a query s.t.
the degree of satisfaction w.r.t. this bound is greater than a user-given threshold.

4 INSTANTIATING THE FRAMEWORK
In this section, we provide an instantiation of our framework by defining a specific igno-
rance function and a satisfaction function. But first, we define a quasi-distance between
probability distributions based on Kullback-Leibler divergence (KL-divergence) [4].

One of the most common measures of distance between probability distributions is
the KL-divergence.

Definition 4. Let Pr and Pr′ be two probability distributions over the same set of
interpretations IΦ. The KL-divergence between Pr and Pr′ is defined as:

KL(Pr‖Pr′) = −ΣI∈IΦPr(I) log
Pr′(I)
Pr(I)

KL-divergence is asymmetric and is also called relative entropy. It is worth noting that
KL(Pr, Pr′) is undefined if Pr′(I) = 0 and Pr(I) 6= 0. This means that Pr has to be
absolutely continuous w.r.t. Pr′ for KL(Pr‖Pr′) to be defined.

4.1 MEASURABLE SPACE

In this subsection, we first define a measurable space, in which we can measure how
wide a set of probability distributions is.



Let PrΦ be the set of all probability distributions on the set of interpretations IΦ. Let
Pr1 and Pr2 be two subsets of PrΦ, Pr1 and Pr2 are separated if each is disjoint from
the other’s closure 4. A subset Pr of PrΦ is called inseparable if it cannot be partitioned
into two separated subsets. Empty set ∅ is defined as inseparable. For example, the
intervals [0, 0.3], [0.4, 1] are separated and each of them is inseparable in the set of real
numbers R. Obviously, any subset Pr can be partitioned into a set of inseparable sets.
Formally, there exists Pr1,Pr2, . . ., such that every Pri is inseparable, Pri ∩ Prj =
∅ (i 6= j), and Pr =

⋃
i Pri.

It is worth noting that, the set of all probabilistic models for a PLP is a convex set,
which is an inseparable set. So, we only need to define a measurable space over all
inseparable sets.

Definition 5. Let (ψ|φ) be a conditional event and Pr be a subset of PrΦ. Suppose
that Pr is inseparable, l = infPr∈Pr Pr(ψ|φ), and u = supPr∈Pr Pr(ψ|φ). We define
δub : 2PrΦ ×F → [0, 1] and δlb : 2PrΦ ×F → [0, 1] as

δub(Pr, (ψ|φ)) = min
Pr ∈ Pr Pr |= (ψ|φ)[u, u]

KL(Pr||Prunif )

δlb(Pr, (ψ|φ)) = min
Pr ∈ Pr Pr |= (ψ|φ)[l, l]

KL(Pr||Prunif )

where Prunif is the uniform distribution on IΦ.
If Pr(φ) = 0 for all Pr ∈ Pr, we define δub(Pr, (ψ|φ)) = δlb(Pr, (ψ|φ)) = 0.

For simplicity, we use δub
Pr(ψ|φ) to denote δub(Pr, (ψ|φ)) and use δlb

Pr(ψ|φ) to
denote δlb(Pr, (ψ|φ)).

Value δub
Pr(ψ|φ) (resp. δlb

Pr(ψ|φ)) measures how much additional information needs
to be added to the uniform distribution in order to infer the upper (resp. lower) bound
of the conditional event (ψ|φ) given subset Pr.

Definition 6. Let Pr be an inseparable subset of PrΦ and (ψ|φ) be a conditional event
defined on Φ. Let PrIS contains all the inseparable subsets of PrΦ. We define ϑψ|φ :
PrIS 7→ [0, 1] as ϑψ|φ(Pr) = sign(p − u) ∗ δub

Pr(ψ|φ) − sign(p − l) ∗ δlb
Pr(ψ|φ),

where p = Prunif (ψ|φ), l = minPr∈Pr Pr(ψ|φ) and u = maxPr∈Pr Pr(ψ|φ). Here,
sign : R 7→ R is defined as sign(x) = 1 if x ≥ 0 and sign(x) = −1 otherwise.

In the above definition, if Pr(φ) = 0 for all Pr ∈ Pr, then we canonically define
ϑψ|φ(Pr) = 0 since δub

Pr(ψ|φ) = δlb
Pr(ψ|φ) = 0.

Let σΦ denote the smallest collection such that σΦ contains all the inseparable sub-
sets of PrΦ and it is closed under complement and countable unions of its members.
Then, 〈PrΦ, σΦ〉 is a measurable space over the set PrΦ. Obviously, PrΦ ∈ σΦ, and if
Pr = {Pr | Pr |= P} for any PLP P , then Pr ∈ σΦ.

We extend function ϑψ|φ to the members of σΦ.

Definition 7. Let Pr be a member of σΦ and (ψ|φ) be a conditional event. Define
ϑψ|φ : σΦ 7→ [0, 1] as ϑψ|φ(Pr) =

∑
Pri∈P ϑ(ψ|φ)Pri where P is a partition of Pr

such that each element of P is inseparable.
4 The closure of a set S is the smallest closed set containing S.



Informally, value ϑ(ψ|φ)(Pr) measures how wide the probability distributions in Pr
is when inferring ψ given φ. For example, when all the distributions in Pr assign the
same probability for the conditional event (ψ|φ), then the set Pr is acting like a single
distribution when inferring ψ given φ, and Pr has width 0 for inferring ψ given φ.

From the definition, we know that function ϑ(ψ|φ) is a measure. Since it is a mea-
sure, we can define a probability distribution based on it, and we show that this proba-
bility distribution can be used as an instantiation of ignorance in the next subsection.

4.2 INSTANTIATION OF IGNORANCE

Definition 8. Let P be a PLP and (ψ|φ) be a conditional event. Then a KL-divergence
based ignorance, denoted IGKL

P (ψ|φ), is defined as IGKL
P (ψ|φ) = ϑ(ψ|φ)(Pr)

ϑ(ψ|φ)(PrΦ) , when

ϑ(ψ|φ)(PrΦ) > 0, where Pr = {Pr | Pr |= P}. And we define IGKL
P (ψ|φ) = 0 when

ϑ(ψ|φ)(PrΦ) = 0.

Since ϑψ|φ is a measure, IGKL
P is an uniform probability distribution. Therefore,

IGKL
P (ψ|φ) is the probability that a randomly selected probability distribution from

set PrΦ assigns ψ|φ a probability value that is in the interval [l, u], where P |=tight

(ψ|φ)[l, u]. If this probability is close to 1, then reasoning on P is similar to reasoning
on an empty PLP; when it is close to 0, it indicates that a tighter bound for (ψ|φ) can
be inferred from P .

Proposition 4. Let P be a PLP and (ψ|φ) be a conditional event. Suppose that P |=tight

(ψ|φ)[l, u] and pm = me[P ](ψ|φ). Then IGKL
P (ψ|φ) = IGKL

P1
(ψ|φ) + IGKL

P2
(ψ|φ),

where P1 = P ∪ {(ψ|φ)[pm, u]}, P2 = P ∪ {(ψ|φ)[l, pm]}.

This proposition says that the ignorance of a PLP about a conditional event is the
sum of the ignorance of lacking knowledge supporting probability distributions above
and below the maximum entropy probability. The ignorance can also be calculated ac-
cording to maximum entropy as below.

Proposition 5. Let P be a PLP and (ψ|φ) be a conditional event. Suppose that P |=tight

(ψ|φ)[l, u], ∅ |=me
tight (ψ|φ)[pme, pme], and Pr = {Pr | Pr |= P}, then ϑ(ψ|φ)(Pr) =

sign(u−pme)∗maxPr|=P u H(Pr)− sign(l−pme)∗maxPr|=P l H(Pr) where Pu =
P ∪ {(ψ|φ)[u, u]} and P l = P ∪ {(ψ|φ)[l, l]}.

4.3 INSTANTIATION OF SATISFACTION FUNCTION

Given a PLP P , a set of probability distributions can be induced such that Pr = {Pr |
Pr |= P} and a unique probability distribution me[P ] in the set that has maximum
entropy can be determined. In Pr, some distribution is likely to be the actual proba-
bility distribution. Based on the maximum entropy principle, me[P ] is the most likely
one, and the probability me[P ](ψ|φ) is the most likely probability for the event (ψ|φ).
Intuitively, the probability value that is closer to me[P ](ψ|φ) is more likely to be the
actual probability of (ψ|φ). Based on this, an interval that contains values closer to
me[P ](ψ|φ) are more likely to contain the actual probability of (ψ|φ). Of course, a



loose interval is always more likely to contain the actual probability of (ψ|φ) than a
tight interval.

From the KL-divergence, we can define how close a value is to me[P ] as:

νpos
P,(ψ|φ)(v) = min

Pr|=P,Pr(ψ|φ)=v
KL(Pr||me), where v ≥ me[P ]

νneg
P,(ψ|φ)(v) = min

Pr|=P,Pr(ψ|φ)=v
KL(Pr||me), where v ≤ me[P ]

dispos
P,(ψ|φ)(u, v) = |νpos

P,(ψ|φ)(u)− νpos
P,(ψ|φ)(v)|

disneg
P,(ψ|φ)(u, v) = |νneg

P,(ψ|φ)(u)− νneg
P,(ψ|φ)(v)|

Let dis be dispos
P,(ψ|φ) (resp. disneg

P,(ψ|φ)). It is easy to see that dis is a distance func-
tion onR[pme,u] (resp.R[l,pme]), where P |=tight (ψ|φ)[l, u], pme = me[P ](ψ|φ) and
R[a,b] = {x | x ∈ [a, b], x ∈ R}, i.e. dis satisfies the following:

• dis(u, v) ≥ 0
• dis(u, v) = 0 iff u = v
• dis(u, v) = dis(v, u)
• dis(u, v) ≤ dis(u, x) + dis(x, v)

Again, from the distance functions dispos
P,(ψ|φ) and disneg

P,(ψ|φ), a probability dis-
tribution can be defined. So, by KL-divergence, the possible probabilities of a con-
ditional event (ψ|φ) are measurable. Consider every probability is equally possible,
then the (second order) probability that the actual (first order) probability of (ψ|φ)
falls in an interval [a, b] is the length of [a, b] divided by the length of [l, u], where
P |=tight (ψ|φ)[l, u], according to the distance function dispos

P,(ψ|φ) and disneg
P,(ψ|φ). For-

mally, we define the degree of satisfaction as this second order probability:

Definition 9. Let P be a PLP and (ψ|φ) be a conditional event. Suppose that P |=tight

(ψ|φ)[l, u] and P |=me
tight (ψ|φ)[pme, pme], then we have that:

SATKL
P ((ψ|φ)[a, b]) ={

0.5(
dispos

P,(ψ|φ)(pme,min(u,b))

dispos
P,(ψ|φ)(pme,u)

+
disneg

P,(ψ|φ)(pme,max(a,l))

disneg
P,(ψ|φ)(pme,l)

), if pme ∈ [a, b]

0, otherwise

Proposition 6. Let P be a PLP, then the function SATKL
P defined in Definition 9 sat-

isfies all the postulates in Definition 2, and it is consistent with the maximum entropy
principle, that is, it satisfies the conditions in Proposition 1.

5 EXAMPLES

We illustrate the usefulness of our framework with two examples.
Example 3. Let P be a PLP as given in Example 1. In our framework, we calculate the
KL-ignorance and KL-satisfaction for our queries. We have IGKL

(fly(t)|magpie(t)(P ) =
0.11 and IGKL

(fly(t)|sickMagpie(t))(P ) = 0.0283. This indicates that P is more useful
to infer the proportion of magpies that can fly than to infer the proportion of sick



magpies that can fly. We also have that SATKL
P ((fly(t)|magpie(t))[0.8, 1]) = 0.58,

SATKL
P ((fly(t)|sickMagpie(t))[0.8, 1]) = 0.53. By comparing these KL degrees of

satisfaction, we know that magpies are more likely to fly than sick magpies.

Example 4 (Route planning). [1]. Assume that John wants to pick up Mary after she
stopped working. To do so, he must drive from his home to her office. Now, John has
the following knowledge at hand: Given a road (ro) from R to S, the probability that he
can reach (re) S from R without running into a traffic jam is greater than 0.7. Given a
road in the south (so) of the town, this probability is even greater than 0.9. A friend just
called him and gave him advice (ad) about some roads without any significant traffic.
Clearly, if he can reach S from T and T from R, both without running into a traffic
jam, then he can also reach S from R without running into a traffic jam. Furthermore,
John has some concrete knowledge about the roads, the roads in the south of the town,
and the roads that his friend was talking about. For example, he knows that there is a
road from his home (h) to the university (u), from the university to the airport (a), and
from the airport to Mary’s office (o). Moreover, John believes that his friend was talking
about the road from the university to the airport with a probability between 0.8 and 0.9
(he is not completely sure about it, though). The above and some other probabilistic
knowledge is expressed by the following PLP P:

P =





ro(h, u)[1, 1], ro(u, a)[1, 1], ro(a, o)[1, 1],
ad(h, u)[1, 1], ad(u, a)[0.8, 0.9], so(a, o)[1, 1],
(re(R, S)|ro(R, S))[0.7, 1], (re(R, S)|ro(R, S) ∧ so(R, S))[0.9, 1],
(re(R, S)|ro(R, S) ∧ ad(R, S))[1, 1],
(re(R, S)|re(R, T ) ∧ re(T, S))[1, 1]





John wants to know the probability of him running into a traffic jam, which can be
expressed by the query: Q0 =?(re(h, o)|>).

In [1], Q0 can be answered by P |=tight (re(h, o)|>)[0.7, 1], and by P |=me
tight

(re(h, o)|>)[0.93, 0.93]. The user can either accept a noninformative bound [0.7, 1] or
accept a unreliable precise probability 0.93, and no further reasoning can be done.

Using our method, we can get that IGKL
P (re(h, o)|>) = 0.066. The ignorance

value IGKL
P (re(h, o)|>) indicates that the knowledge is reliable about (re(h, o)|>).

However, the actual probability of (re(h, o)|>) may be still different from 0.93, since
IGKL

P (re(h, o)|>) > 0.
John is wondering whether he can reach Mary’s office from his home, such that the

probability of him running into a traffic jam is smaller than 0.10. This can be expressed
by the following probabilistic query: Q1 =?(re(h, o)|>)[0.90, 1]. John is also wonder-
ing whether the probability of him running into a traffic jam is smaller than 0.10, if his
friend was really talking about the road from the university to the airport. This can be
expressed as a probabilistic query: Q2 =?(re(h, o)|ad(u, a))[0.90, 1].

In [1], in the traditional probabilistic logic programming both Q1 and Q2 are given
the answer “No”; by applying the maximum entropy principle Q1 is given the answer
“No” and Q2 is given the answer “Yes”. For Q1 John will accept the answer “No”,
however, for Q2, John may be confused and does not know which answer he should
trust.

Using our method, we can calculate the degree of satisfaction of these two queries.
For Q1, SATKL

P (Q1) = 0, which means the bound [0.9, 1] does not contain the prob-



ability given by applying the maximum entropy principle, and thus John has no con-
fidence that he can reach Mary’s office on time. For Q2, SATKL

P (Q2) = 0.724, the
relative high value “0.724” can help John to decide whether he should set off to pick up
Mary.

Using our method, John can get an estimation of the probability that he can reach
Mary’s office from his home without running into a traffic jam. If it is a special day for
him and Mary, he hopes that his estimation be more accurate, otherwise, he can tolerate
a less accurate estimation. Formally, he needs to decide the threshold a for |=SAT≥a

maxLow.
For example, for Q2, he may set aN = 0.6 for a normal day, and aI = 0.75 for an
important day. Therefore, he can infer that P |=SAT≥0.6

maxLow (re(h, o)|ad(u, a))[0.922, 1]
and P |=SAT≥0.75

maxLow (re(h, o)|ad(u, a))[0.897, 1]. If it is an ordinary day and the lowest
probability is bigger than 0.90, then he can set off. On an important day, he will need to
investigate more about the traffic (to decrease the ignorance of (re(h, o)|ad(u, a))) or
he has to revise his plan, since 0.897 < 0.9.

On the another hand, we can also analyze the usefulness of the advice from his
friend. By analyzing his friend’s knowledge, we have IGKL

P (re(h, o)|ad(u, a)) = 0.0184.
This means that his friend’s advice is indeed useful, since this ignorance value is signif-
icantly smaller than IGKL

P (re(h, o)|>). So, John needs to call his friend to make sure
that his friend is really talking about the road from the university to the airport.

The degrees of satisfaction for various intervals are given in Table 1. From the table,
we can see that, the degree of satisfaction decreases as the interval becomes tighter. This
means that the second order probability that the actual probability of (ψ|φ) falls in [l, u]
is getting smaller.

Table 1. Degrees of satisfaction for queries Q1 and Q2

Bound (re(h, o)|>) Bound (re(h, o)|ad(u, a))

[0, 1] 1 [0, 1] 1
...

...
...

...
[0.70, 1] 1 [0.88, 1] 1
[0.75, 1] 0.785 [0.897, 1] 0.75
[0.80, 1] 0.658 [0.922, 1] 0.60
[0.86, 1] 0.500 [0.94, 1] 0.50
[0.90, 1] 0.000

6 RELATED WORK AND CONCLUSION

Related work. In recent years there have been a lot of research on integrating logi-
cal programming with probability theory. These probabilistic logic programs have been
studied from different views and have different syntactic forms and semantics, including
conditional probabilistic logic programming [5, 3], causal probabilistic logic program-
ming [6–8], success probabilistic logic programming [9, 10], and some others [11].

In causal probabilistic logic programming [6, 7], a rule pr(a|φ) = v is intuitively
interpreted as a is caused by factors determined by φ with probability v. A causal prob-
ability statement implicitly represents a set of conditional independence assumptions:



given its cause C, an effect E is probabilistically independent of all factors except the
(direct or indirect) effects of E (see [6] for detail). Formally, if pr(ψ|φ1) = y1 ∈ P and
pr(ψ|φ2) = y2 ∈ P where y1 6= y2, then no possible world of P satisfies φ1 ∧ φ2.

In [9, 10], the real number attached to a rule represents the probability that this
rule is alliable (or satisfiable). In another word, a PLP in this view represents a set
of (classical) logic programs, and the probability of each logic program is decided by
all probabilities of all the rules. Then for any query, the answer is the probability of
choosing a classical logic program from the set that can successfully infer the query. In
this formalization, we can only query about the probability of ψ and cannot query about
the probability of (ψ|φ), since (ψ|φ) is meaningless in classical logic programs.

In [11], the probabilities are attached to atoms, such as: b[0.6, 0.7] ← a[0.2, 0.3],
which means that if the probability of a is in between 0.2 and 0.3 then the probability
of b is in between 0.6 and 0.7. Intuitively, the interpretation of rules is more close to
casuality than conditioning. As a consequence, if we have another rule: b[0.2, 0.3] ←
c[0.5, 0.6], then Pr(a) ∈ [0.2, 0.3] and Pr(c) ∈ [0.5, 0.6] cannot be both true,

In this paper, we focus on the framework of conditional probabilistic logic program-
ming for representing conditional events.

Because of its weakness in reasoning, subclasses cannot inherit the properties of
its superclass in the basic semantics of PLP. For instance, subclass magpie can not
inherit the attribute “can fly” from its superclass bird in Example 1, since P |=tight

(fly(t)|magpie(t))[0, 1]. In [12–14], Lukasiewicz provided another method to enhance
the reasoning power mainly on the issue of inheritance. In this setting, logic entail-
ment strength λ is introduced. With strength 1, subclasses can completely inherit the
attributes of its superclass; with strength 0 subclasses cannot inherit the attributes of
its superclass; with a strength between 0 and 1, subclasses can partially inherit the
attributes of its superclass. Value strength appears to be similar to the degree of satis-
faction in our framework, but they are totally different. First, λ is not a measurement
for a query, but is given by a user to control the reasoning procedure, in other words,
we cannot know beforehand the strength in order to infer a conclusion. Second, even if
we can use a strength as a measurement, i.e. even if we can obtain the required strength
to infer an expected conclusion, it is not an instance of degree of satisfaction, because
the cautious monotonicity postulate in Definition 2 is not satisfied. Given a PLP P, as-
sume that we can infer both (ψ|φ)[l1, u1] by strength λ = λ1 and (ψ|φ)[l2, u2] by
strength λ = λ2. Now assume that (ψ|φ)[l1, u1] is added to P, however, in order to
infer (ψ|φ)[l2, u2], we still need to have the strength λ = λ2 given. That is, adding
additional information to P does not avoid requiring the strength λ2 if (ψ|φ)[l2, u2] is
to be inferred. In contrast, if we have (ψ|φ)[l1, u1] added in the PLP, then the degree of
satisfaction of (ψ|φ)[l2, u2] will increase.

In [15, 16], the authors provided a second order uncertainty to measure the reliability
of accepting the precise probability obtained by applying maximum entropy principle
as the answer to a query in propositional probabilistic logic. The second order uncer-
tainty for (ψ|φ) and PLP P is defined as (− log l − log u) where P |=tight (ψ|φ)[l, u].
Similarly, we provided ignorance function to measure the usefulness of a PLP to an-
swering a query. If a precise probability for a query is inferred from a PLP P then P
contains full information about the query, and therefore accepting the probability is to-



tally reliable. More precisely, their second order uncertainty is directly computed from
the probability interval of the query inferred from P . In contrast, our ignorance is com-
puted from the PLP, which provides more information than an interval. Therefore, our
measure of ignorance is more accurate in reflecting the knowledge in a PLP.

Conclusion. In this paper, we investigated the issues surrounding how much we
can trust a result for a query given a PLP with imprecise knowledge. We proposed a
framework to measure both ignorance and the degree of satisfaction of an answer to a
query under a given PLP. Using the consequence relations provided in this paper, we
can get an informative and reliable interval as the answer for a query or alternatively we
know how much we can trust a single probability. The proofs that our framework is an
extension of both traditional probabilistic logic programming and the maximum entropy
principle (in terms of consequence relations) show that our framework is theoretically
sound.
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