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Abstract. An ontology matching method (or a matcher) aims at match-
ing every entity (or concept) in one ontology to the most suitable entity
(or entities) in another ontology. Usually it is almost impossible to find
a perfect match in the second ontology for every entity in the first ontol-
ogy, so a matcher generally returns a set of possible matches with some
weights (uncertainty) attached to each pair of match. In order to improve
a matching result, several matchers can be used and the matched results
from these matchers are combined with suitable approaches. In this pa-
per, we first propose two new matchers among three matchers we use.
We then address the need of dealing with uncertainties in mapping by
investigating how some uncertainty reasoning frameworks can be used to
combine matching results. We apply both the Dempster Shafer theory of
evidence (DS theory) and Possibility Theory to merge the results com-
puted by different matchers. Our experimental results and comparisons
with related work indicate that integrating these theories to deal with
uncertain ontology matching is a promising way to improve the overall
matching results.

1 Introduction

Ontology mapping (or matching) is a very important task in the Semantic Web
and it has attracted a large amount of effort (e.g., [1,2,3,4,5,6]). Good surveys
on recent developments of ontology mapping can be found in [7,8]. Most of
the earlier work in this area did not consider uncertainty or imprecision in a
mapping, however, in most cases, the mappings produced are imprecise and
uncertain. For instance, most automatic ontology mapping tools use heuristics
or machine-learning techniques, which are imprecise by their very nature. Even
experts are sometimes unsure about the exact matches between concepts and
typically assign some certainty rating to a match [9], so a matching result is
often associated with a weight which can express how close the two entities are
as a match. The need to consider the uncertainty in a mapping began to emerge
in a number of papers (e.g., [10,11,12,13,14]) in which Dempster Shafer theory,
Bayesian Networks, and rough sets theory are used to deal with different aspects
of mapping or ontology descriptions (e.g., concept subsumptions).

In this paper, we further investigate how to combine the weights associated
with matchers. We first propose two new matchers, a linguistic-based matcher
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which extends Lin’s approach [15] by considering the path length of two words
in the WordNet as a punishment coefficient to adjust a similarity measure from
Lin’s approach, and a structure-based matcher which utilizes the similarity mea-
sures between two words (w1 and w2), a father node of w1 with w2 and all the
child nodes of w1 with w2. This matcher takes both the semantics and the struc-
ture of an ontology into account. We then discuss how the mapping results from
different matchers can be combined. We consider both the Dempster Shafer the-
ory of evidence (DS theory) and Possibility Theory and apply them to combine
the outcomes obtained by three different and independent matchers (the above
two plus the standard edit distance-based matcher).

Each matcher returns a match with a weight. We interpret these weights in
terms of both DS theory and Possibility Theory and then use their corresponding
merging operators to merge the matched results. Our study shows that these two
theories are suitable for different situations and using both theories significantly
improves the matching results in terms of precision and recall, as illustrated
in our experiments. Therefore, integrating uncertainty merging methods into
ontology mapping is promising to improve the quality of mapping.

The rest of the paper is organized as follows. Section 2 introduces the basic
concepts. Section 3 describes the main ideas in our approach and the mapping
matchers used. Section 4 gives the background information about the experi-
ments and the results. Section 5 discusses related work. Section 6 concludes the
paper with discussions on future research.

2 Background

2.1 Ontologies and Ontology Mapping

There are many definitions about ontologies and a commonly used one is “An
ontology is a formal, explicit specification of a shared conceptualization.” [16].
We use the following notation to formally define an ontology. An ontology O is
defined as a tuple: O = (C, R, F, A, I) where C is a set of concepts, such as cars
or persons; R is a set of relations, such as mother−of(x, y) denotes that y is x’s
mother; F is a set of functions; A is a set of axioms and I is a set of instances,
namely objects appearing in concepts in C, such as Alan. In this paper an entity
of an ontology is defined as follows: eij are entities of Oi with eij ∈ {Ci, Ri, Ii},
and entity index j ∈ N [1].

The overall objective of ontology mapping can be described as in [6]: given
two ontologyies O1 and O2, for each entity e (or element, concept) in ontology
O1 finding the corresponding element(s) in ontology O2, which has/have the
same or similar semantics with e, and vice versa. Ontology mapping functions
and some relative functions that will be used are:

– map Oi1 → Oi2 : representing the mapping function between the two ontolo-
gies

– map(ei1j1) = ei2j2 : representing the mapping of two entities
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– sim(ei1j1 , ei2j2): representing the degree of similarity between two entities
computed by a matcher

– sim(ef
i1j1

, ei2j2): representing the degree of similarity between father node
(ef

i1j1
) of ei1j1 and ei2j2 computed by a matcher

– sim(ec
i1j1

, ei2j2): representing the degree of similarity between a child node
(ec

i1j1
) of ei1j1 and ei2j2 computed by a matcher

2.2 Uncertainty Theories

Uncertainty is pervasive in information. Uncertain information is usually mod-
eled numerically using Probability Theory, Possibility Theory, or DS theory.

The Dempster-Shafer theory of evidence: DS theory defines mass func-
tions on frame of discernment denoted Θ = {θ1, θ2, . . . , θn} which contains mu-
tually exclusive and exhaustive possible answers to a question. A mass function
assigns some positive values in [0, 1] to some subsets of Θ. If a mass function
gives a positive value to a subset A, then this value represents the probability
mass of an agent’s belief that the true value of the answer is exactly in A ex-
cluding any of its subsets. Since A can be a subset with more than one element,
DS theory can be regarded as a generalization of probability theory in which
a probability value has to be assigned to individual elements. When multiple
mass functions are provided from independent sources on the same frame of
discernment, the combined impact of these mass functions is obtained using a
mathematical formula called Dempster’s combination rule. DS theory provides
a flexible way to model uncertain information and a convenient mechanism to
combine two or more distinct pieces of evidence [17,18].

Possibility Theory: Possibility Theory was developed out of Zadeh’s fuzzy
set theory [19], it is a simple yet powerful theory for modeling and reasoning
with uncertain and imprecise knowledge or information. At the semantic level, a
basic function in Possibility Theory [20] is a possibility distribution denoted as π
which assigns each possible word in the frame of discernment Ω - a value in [0, 1]
(or a set of graded values). From a possibility distribution, two measures are
derived, a possibility measure (demoted as Π) and a necessity measure (denoted
as N). The former estimates to what extent the true event is believed to be
in the subset and the latter evaluates the degree of necessity that the subset is
true. In terms of merging, there are two main families of merging operators for
merging possibility distributions, namely, conjunctive and disjunctive. A typical
conjunctive merging operation is the minimum (min) and a typical disjunctive
one is the maximum (max).

3 Ontology Matching

Many mapping approaches make use of different aspects of information to dis-
cover mappings between ontologies. In this paper, we design our mapping method
by utilizing three different matchers, two of which are name-based matchers and
one is a structure-based matcher.
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3.1 Name-Based Matchers

They are often used to match names and name descriptions of ontology enti-
ties. The names of ontology entities are composed of several words, so first we
adopt two different matchers based on name-based method: Edit distance-based
matcher and Linguistic-based matcher to compute similarity of two words, then
we exploit a method to compute a similarity of the names of ontology entities
based on this.

Edit distance-based matcher: Edit distance is a simply implemented method
to compare the degree of similarity of two words. It takes two strings and com-
putes the edit distance between these two strings. That is, the number of in-
sertions, deletions, and substitutions of characters required to transform one
string into another. For example, the edit distance between test and tent is
1. In this paper, we develop an edit distance-based matcher which uses edit
distance method to compute the similarity between two words. The similarity
measurement between words w1 and w2 is defined as:

simed(w1, w2) =
1

1 + ed(w1, w2)
(1)

where ed(w1, w2) denotes the edit distance of two words. We choose the form
stated above because it returns a similarity value in [0,1].

Linguistic-based matcher: Linguistic-based matcher uses common knowledge
or domain specific thesauri to match words and this kind of matchers has been
used in many papers [21,22]. In this paper, we use an electronic lexicon Word-
Net for calculating the similarity values between words. WordNet is a lexical
database developed by Princeton University which is now commonly viewed as
an ontology for natural language concepts. It is organized into taxonomic hi-
erarchies. Nouns, verbs, adjectives and adverbs are grouped into synonym sets
(synsets), and the synsets are organized into senses (i.e., corresponding to dif-
ferent meanings of the same concept). The synsets are related to other synsets
at the higher or lower levels in the hierarchy by different types of relationships.
The most common relationships are the Hyponym/Hypernym (i.e., Is-A rela-
tionships) and the Meronym/Holonym (i.e., Part-Of relationships) [23]. In this
paper, we only use the Hyponym/Hypernym relationships from WordNet.

Lin in [15] proposed a probabilistic model which depends on corpus statis-
tics to calculate the similarity values between words using the WordNet. This
method is based on statistical analysis of corpora, so it considers the probability
of word1 (sense1) and word2 (sense2) and their most specific common subsumer
lso(w1, w2) appearing in the general corpus. However, since the words in given
ontologies are usually application specific, this general corpus statistics obtained
using the WordNet can not reflect the real possibility of domain-specific words.
To improve Lin’s method, we propose to calculate a punishment coefficient ac-
cording to the ideas in the path length method [24]. The path length method
regards WordNet as a graph and measures the similarity between two concepts
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(words) by identifying the minimum number of edges linking the concepts. It
provides a simple approach to calculating similarity values and does not suffer
from the disadvantage that Lin’s method does, so we integrate Lin’s method and
a punishment coefficient to calculate the similarity values between words. First,
we outline Lin’s approach. The main formulas in this method are as follows:

simLin(s1, s2) =
2 · log(p(s1, s2))

log(p(s1)) + log(p(s2))
(2)

p(s) =
freq(s)

N
(3)

freq(s) =
∑

n∈words(s)

count(n) (4)

where: p(s1, s2) is the probability that the same hypernym of sense s1 and sense
s2 occurs, freq(s) denotes the word counts in sense s, p(s) expresses the proba-
bility that sense s occurs in some synset and N is the total number of words in
WordNet.

The punishment coefficient which is based on the theory of path length of
WordNet is denoted as: 1

2αl. Its meaning is explained as follows: α is a constant
between 0 and 1 and is used to adjust the decrease of the degree of similarity
between two senses when the path length between them is deepened and l ex-
presses the longest distance either sense s1 or sense s2 passes by in a hierarchical
hypernym structure. Because sense s1 and sense s2 occupy one of the common
branches, this value has to be halved.

Therefore in our method, the similarity value calculated by Lin’s method is
adjusted with this coefficient to reflect more accurate degree between two senses
s1 and s2. The revised calculation is:

simnew(s1, s2) =
2 · log(p(s1, s2))

log(p(s1)) + log(p(s2))
• 1

2
αl (5)

Word w1 and word w2 may have many senses, we use s(w1) and s(w2) to
denote the sets of senses for word w1 and word w2 respectively as s(w1) =
{s1i | i = 1, 2, ..., m}, s(w2) = {s1j | j = 1, 2, ..., n}. where the numbers of senses
that word w1 and word w2 contain are m and n. We decide to choose the max-
imum similarity value between two words w1 and w2, so the similarity between
words is:

sim(w1, w2) = max(simnew(s1i, s2j)), 1 ≤ i ≤ m, 1 ≤ j ≤ n (6)

Calculating similarities of names of ontology entities: We can compute
similarities between pairs of words according to two matchers stated above,
next we calculate similarities of names of ontology entities based on the re-
sults obtained from the two matchers separately. The names of ontology entities
are composed of several words, for instance, PersonList, actually is Person
and List. We preprocess these kinds of names before we start to calculate the
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similarities of these names. We split a phrase (name of entity) and put the
individual words into a set like set = {Person, List} and then we deal with
these words as follows:

1. Calculate similarities of every pair of words within both sets by using one of
the matchers (Edit distance-based matcher or Linguistic-based matcher).

2. For each word in one set, compute similarity values between this word and
every word from the other set and then pick out the largest similarity value.
Finally attach this value to the word. Repeat this step until all of the words
in the two sets have their own values.

3. Compute the final degree of similarity of names using the sum of similarity
values of all words from two sets divided by the total counts of all words.

For example, we calculate similarity of two phrases: PersonName and Person-
Sex. First, we split these two phrases into two sets: set1 = {Person, Name},
set2 = {Person, Sex}. Second, we calculate similarity values of each pair from
two sets, such as the similarity value between Person in set1 and Person in
set2, the similarity value between Person in set1 and Sex in set2, then choose
the largest value from these two values and attach this value to Person in set1.
Repeat this step until Name, Person (in set2) and Sex have their own largest
value. Finally, the sum of these four similarity values is divided by the total
cardinality (i.e. four) of these words.

3.2 Structure-Based Matcher

We regard each ontology as a model of tree, and in terms of tree structure
we propose a Structure-based Matcher which determines the similarity between
two nodes (entities) based on the similarities of their father nodes and children
nodes. Such similarity values are obtained using a path length method based on
WordNet, so we first introduce the method. We take WordNet as a hierarchical
structure and the idea of the path length method is to find the sum of the
shortest path passing from two concepts (words) to their common hypernym.
We measure the similarity between two words by using the inverse of the sum
length of the shortest paths:

simpath(w1, w2) =
1

llength + rlength
(7)

where: llength is the shortest path from word node w1 to its common hypernym
with word node w2 and rlength denotes the shortest path from w2 to its common
hypernym with w1. After calculating similarities between words, we can obtain
similarities between names of entities.

Given twonames of entitieswhichbelong to different ontologies,we can calculate
the values of simpath(ei1j1 , ei2j2), simpath(ef

i1j1
, ei2j2) and simpath(ec

i1j1
, ei2j2).

Then our Structure-based matcher is defined to calculate similarities between two
entities utilizing these values with suitable weights: α1, α2 and α3
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simstr(ei1j1 , ei2j2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 ∗ simpath(ei1j1 , ei2j2) + α2 ∗ simpath(ef
i1j1

, ei2j2)+
α3 ∗

∑
simpath(ec

i1j1
, ei2j2)

∃father node and children nodes;
α1 ∗ simpath(ei1j1 , ei2j2) + α2 ∗ simpath(ef

i1j1
, ei2j2)

∃father node and � ∃children nodes;
α1 ∗ simpath(ei1j1 , ei2j2) + α3 ∗

∑
simpath(ec

i1j1 , ei2j2)
∃children nodes and � ∃father nodes;
α1 ∗ simpath(ei1j1 , ei2j2)
� ∃father node and children nodes.

(8)
where α1,α2,α3 separately denotes different weights distributed to similarities
between ei1j1 and ei2j2 , the father node of ei1j1 and ei2j2 , a child node of ei1j1

and ei2j2 . In formula (8),
∑

αi = 1. We assign different values to these three
weights as follows

⎧
⎪⎪⎨

⎪⎪⎩

α1 = 0.5, α2 = 0.3, α3 = 0.2 ∃father node and children nodes;
α1 = 0.5, α2 = 0.5 ∃father node and � ∃children nodes;
α1 = 0.5, α3 = 0.5 ∃children nodes and � ∃father node;
α1 = 1, � ∃father node and children nodes.

3.3 Combining Mapping Results from Three Matchers

Using Dempster Shafer Theory of Evidence to combine the three
matchers: We deploy DS theory to model and combine the outputs from the
three ontology matchers described above in Sections 3.1 and 3.2.

Definition 1 (Frame of Discernment). A set is called a frame of discern-
ment (or simply a frame) if it contains mutually exclusive and exhaustive possible
answers to a question. The set is usually denoted as Θ.

Definition 2 (Mass Function). A function m: is called a mass function on
frame Θ if it satisfies the following two conditions:

1. m(∅) = 0
2.

∑
A m(A) = 1

where ∅ is the empty set and A is a subset of Θ.

Definition 3 (Dempster’s Combination Rule). If m1 and m2 are two mass
functions on frame Θ from distinct sources, then m = m1 ⊕ m2 is the resulting
mass function after combing m1 and m2.

In terms of ontology mapping, let O1 and O2 be two ontologies. For an entity
ei1j1 in O1, we get its mappings with all the names in O2, and the frame of
discernment is Θ = ei1j1 × O2.

Based on this frame, we have three mass functions m1, m2 and m3 representing
the normalized similarity values which are in [0,1] of all the possible mappings
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between ei1j1 and all the entities in O2 form the three matchers respectively.
In this situation, we interpret the similarity value between a pair of names as
the mass value assigned to this pair, an element of the frame. After combining
these three mass functions using Dempster’s combination rule, a unified mapping
result is obtained taking into account the result from each matcher.

Using Possibility Theory to combine the three matchers: Possibility
theory and the body of aggregation operations from fuzzy set theory provide
some tools to address the problem of merging information coming from several
sources. In possibility theory, a possibility distribution π1(u) : Θ → [0, 1] assigns
each element in Θ a value in [0, 1] representing the possibility that this element
is the true world, where Θ is a frame of discernment. There are two families
of merging operators to combine two possibility distributions: the conjunctive
operators (e.g., minimum operator) and the disjunctive operators (e.g., the max-
imum operator) [25]. We use the normalized minimum operator to combine two
sets of matching data.

Definition 4. Let π1 and π2 be two possibility distributions and π be the com-
bined distribution with minimum operator, then

∀ω, π(ω) = min(π1(ω), π2(ω)) (9)

Definition 5. Let the degree of consistency of π1 and π2 be defined as

h(π1, π2) = supω∈Ωπ1(ω) ∗ π2(ω) = max(min(π1(ω), π2(ω))) (10)

When using this theory, we interpret the similarity values as degrees of possibility
of element in a frame - a frame of the form ei1j1 × O2, where ei1j1 is an entity
in O1. From the three matchers, we get three possibility distributions π1, π2
and π3 and we combine them using the minimum operator as showed above. An
advantage of using this theory is that we do not have the restriction that the two
pieces of information must come from distinct sources as required by Dempster’s
combination rule.

4 Experiments

4.1 Dataset

We have proposed two different ways to combine mapping results from three
matchers. We now present the experimental results that demonstrate the perfor-
mance of our matchers and combination methods on the OAEI 2006 Benchmark
Tests. In our experiments, we only focus on classes and properties in ontologies.

Generally, almost all the benchmark tests in OAEI 2006 describe Bibliographic
references except Test 102 which is about wine and they can be divided into five
groups [26] in terms of their characteristics: Test 101-104, Test 201-210, Test
221-247, Test 248-266 and Test 301-304. A brief description is given below.
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– Test 101-104: These tests contain classes and properties with either exactly
the same or totally different names.

– Test 201-210: The tests in this group change some linguistic features com-
pared to Test 101-104. For example, some of the ontologies in this group
have no comments or names, names of some ontology have been replaced
with synonyms.

– Test 221-247: The structures of the ontologies have been changed but the
linguistic features have been maintained.

– Test 248-266: Both the structures and names of ontologies have been
changed and the tests in this group are the most difficult cases in all the
benchmark tests.

– Test 301-304: Four real-life ontologies about BibTeX.

In our evaluation, we choose Test 101, Test 103, Test 104, Test 205, Test
223 and Test 302 of OAEI 2006 Benchmark Tests and take Test 101 as the
reference ontology. All the other ontologies are compared with Test 101. The
reason for selecting them as test cases are:

1. They are well known in the field of ontology mapping.
2. They have normal classes, object properties and datatype properties hierar-

chy, so we can obtain regular results by using these three matchers.
3. Test 101-104 have similar structures and names of entities, while the struc-

tures and names of Test 205, 223, 302 are different from the reference on-
tology, i.e. Test 101, so we can use these datasets to test performance of
matchers and combination methods.

For Test 101, Test 103, Test 104 and Test 205 each test contains 33 classes and
64 properties; Test 223 has 66 classes and 65 properties; Test 302 has 13 classes
and 30 properties.

4.2 Experimental Evaluation Metrics

To evaluate the performance of mapping, like many other papers that use re-
trieval metrics, Precision, Recall and f-measure to measure a mapping method,
we use these measures to evaluate our methods as well. Precision describes
the number of correctly identified mappings versus the number of all mappings
discovered by the three approaches. Recall measures the number of correctly
identified mappings versus the number of possible existing mappings discovered
by hand. f-measure is defined as a combination of the Precision and Recall. Its
score is in the range [0, 1].

precision =
|mm ∩ ma|

|ma| (11)

recall =
|mm ∩ ma|

|mm| (12)

f − measure =
2 ∗ precision ∗ recall

precision + recall
(13)
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where mm and ma represent the mappings discovered by hand and by a method
proposed in our paper respectively.

4.3 Single Matchers vs. Combination of Matchers

Figure 1 shows the f-measure of the three single matchers and combination
methods on the five datasets, which includes Test 101 vs Test 103, Test 101
vs Test 104, Test 101 vs Test 205, Test 101 vs Test 223, Test 101 vs Test 302.
Each single matcher is marked as follows: Ed for Edit distance-based matcher; L
for Linguistic-base matcher; S for Structure-based matcher ; DS for Dempster’s
combination rule; PT for the minimum merging operator in Possibility Theory.

Fig. 1. Single matchers vs. combination methods

From Figure 1, we can see that almost for every group of tests, the f-measures
of results using Dempster’s combination rule is better than or equivalent to that
of a single matcher, the minimum operator of Possibility Theory performs well
except for Test101 vs Test 205, which has the results lower than other single
matchers results. For Test 101 vs Test 103, Test 101 vs Test 104 and Test 101
vs Test 223, Edit distance-based matcher obtains better results than the other
two single matchers because these three groups of tests have almost the same
names of entities. For Test 101 vs Test 205 and Test 101 vs Test 302, Linguistic-
based matcher gets better results than the other two single matchers because
Linguistic-based matcher can obtain good results for those different names which
have the same meaning.

4.4 Comparison of Systems Utilizing Different Matchers

We use the combination mechanisms in both DS theory and Possibility The-
ory to combine the matching results from our three matchers. We now compare
the outputs from the two combination rules to the results obtained from falcon,
ola and ctxMatch2-1 algorithms which were used in the EON 2005 Ontology
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Table 1. Comparison of Experiment Results

Datasets DS PT falcon ola ctxMatch2-1
p r f p r f p r f p r f p r f

101-103 100 98.97 99.48 100 98.97 99.48 100 100 100 100 100 100 87 34 48
101-104 100 98.97 99.48 100 98.97 99.48 100 100 100 100 100 100 87 34 48.89
101-205 46.88 46.39 46.63 30.29 29.90 30.09 88 87 87.5 43 42 42.5 36 4 7.2
101-223 100 98.97 99.48 100 98.97 99.48 100 100 100 100 100 100 83 31 45.14
101-302 45.83 45.83 45.83 43.75 43.75 43.75 97 67 79.26 37 33 34.89 0 0 0

Alignment Contest 1, and the details are given in Table 1. In Table 1, p for
precision, r for recall, f for f-measure, DS for Dempster’s combination rule, and
PT for the minimum merging operator in Possibility Theory. Overall, we believe
that the two combination rules we use are very satisfactory, with Dempster’s
combination rule outperforming the minimum rule in Possibility Theory slightly
for pair 101 vs 205. Although on every pair of ontologies, our results of two
combination rules are less ideal than the falcon system, however, our results are
better than ola system on two out of five pairs of matching, and the results
are much better than the ctxMatch2-1 system. The performances of these five
different approaches are all very good for Test 101 vs 103 and vs 104 and Test
101 vs Test 223, but none of the systems performed exceptionally well for Test
205 and Test 302. Below we analyze the reasons for this.

For Test 101 vs 103 and vs 104, the two ontologies to be matched contain
classes and properties with exactly the same names and structures, so every
system that deploys the computation of similarities of names of entities can get
good results. Test 223 has more classes than Test 101 to 104 and the structure of
its ontology is changed although the linguistic features remains the same and its
class names are generally the same as the reference ontology. These similarities in
the linguistic features and class names enable these matching systems to perform
well.

Test 205 describes the same kind of information as other ontologies, i.e. pub-
lications, however, the class names in it are very different from those in the
reference ontology Test 101. Even though we employed three matchers to calcu-
late similarities between names, the results are still not very satisfactory. Test
302 is a real-life BibTeX ontology which also includes different words compared
to Test 101 describing publications so the results are similar to Test 205, so we
do not get good results from these two datasets.

Our linguistic-based matcher does not consider the structures between words
and assumes that all the words are equally important. However, different words
in a name have different degrees of importance, therefore, this is one aspect that
we will need to improve further. In our structure-based matcher, we adopt the
idea of assigning different weights to different aspects when matching two words.
The weights are predefined but we think these could be learned in our next step
of research.
1 http://oaei.ontologymatching.org/2005/results/
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5 Related Work

In a mapping process, if only syntactic or element-level matching is performed,
as in the case for name matching without the use of a thesaurus, inaccura-
cies can occur [27]. This affects the results of mapping, but so far only a few
ontology mapping methods have considered dealing with the uncertainty
issue.

Nagy et al [10] and Besana [11] both recognized the importance of uncertainty
in ontology mapping, and both of them used DS theory to assist mapping. They
believed that different matchers have uncertainties associated with them, so they
combine the results obtained from different matchers using DS theory and it is
possible to give a uniform interpretation, consistent with the uncertainty inher-
ited in the problem. Although Nagy et al utilized Dempster’s combination rule
into ontology mapping, it is not clear how they applied the theory. For example,
they did not explicitly define a Frame of Discernment. Besana [11] exploited
DS theory into a more complicated process. He considers not only combining
ontology matching results using DS theory, but also uncertain mappings using
DS theory.

In [12] a Bayesian Networks based approach was designed and a system called
BayesOWL was proposed. In this approach, the source and target ontologies are
first translated into Bayesian networks (BN); the concept mapping between the
two ontologies are treated as evidential reasoning between the two translated
BNs. Probabilities, which are required for constructing conditional probability
tables (CPT) during translation and for measuring semantic similarity during
mapping, are learned using text classification techniques, where each concept
in an ontology is associated with a set of semantically relevant text documents,
which are obtained by ontology guided web mining. This approach used Bayesian
Networks, but the networks are sophisticated and it is not easy to construct them
from an ontology expressed by OWL.

Holi and Hyvönen [13] observed that in the real world, concepts are not al-
ways subsumed by each other, and cannot always be organized in a crisp sub-
sumption hierarchies. Many concepts only partly overlap each other, so they
present a new probabilistic method to model conceptual overlap in taxonomies,
and an algorithm to compute the overlap between a selected concept and other
concepts of a taxonomy by using Bayesian networks. This method focused on
the uncertainty of description languages of ontologies. Although it is not re-
lated to the mapping, it can be used as a measure of semantic distance between
concepts.

Zhao et al [14] proposed a novel similarity measure method based on rough
set theory and formal concept analysis (RFCA) to realize ontology mapping
tasks. The authors combined rough set theory into the similarity computation
formula of formal concept analysis (FCA). Although the authors did not consider
uncertainty in the process of mapping explicitly, they applied the rough set
theory to measure the similarities of concepts of ontologies. So, in some case,
they did consider the uncertainty problem.
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6 Conclusion

In this paper, we utilize three independent matchers to deal with ontology map-
ping and they are: Edit distance-based matcher, Linguistic-based matcher and
Structure-based matcher. In the Linguistic-based matcher, we improved Lin’s
method which computes similarity value between words. In the Structure-based
matcher, we adopt the structure of ontology to calculate similarity values be-
tween two entities and it considers the impact of the direct relative nodes (father
and/or children) to one entity.

Following this, we investigated how the problem of uncertainty in ontology
mapping can be dealt with. We considered both the Dempster-Shafer theory
and Possibility Theory to combine the uncertain mapping results from different
matchers stated above. We applied our ontology mapping systems (two combina-
tion rules with three matchers) to a set of ontologies used for ontology mapping
competitions. The experimental results show that it is efficient and feasible to
exploit these uncertainty theories to deal with uncertainty factors in the process
of ontology mapping.

As future work, on the one hand, we will design new matchers to handle some
situations that are not considered here, for example, how to get accurate n:1,
1:n or n:n mapping results. On the other hand, we will continue investigating
the uncertainty issues in ontology mapping and consider how to use different
uncertainty theories to deal with different situations in ontology mapping.
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