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Abstract. In medical clinical trials, overall trial results are highlighted in the
abstracts of papers/reports. These results are summaries of underlying statistical
analysis where most of the time normal distributions are assumed in the analysis.
It is common for clinicians to focus on the information in the abstracts in order
to review or integrate several clinical trial results that address the same or simi-
lar medical question(s). Therefore, developing techniques to merge results from
clinical trials based on information in the abstracts is useful and important. In re-
ality information in an abstract can either provide sufficient details about a normal
distribution or just partial information about a distribution. In this paper, we first
propose approaches to constructing normal distributions from both complete and
incomplete statistical information in the abstracts. We then provide methods to
merge these normal distributions (or sampling distributions). Following this, we
investigate the conditions under which two normal distributions can be merged.
Finally, we design an algorithm to sequence the merging of trials results to ensure
that the most reliable trials are considered first.

Keywords Normal distribution, Merging statistical data, Consistency analysis.

1 Introduction

Clinical trials are widely used to test new drugs or to compare the effect of different
drugs [10]. Overall trial results are summarized in abstracts of papers/reports that re-
port the trial details. Given that there is a huge number of trials available and details of
reports are very time consuming to read and understand, clinicians, medical practioners
and general users mainly make use of this highly summaritive information in the ab-
stracts to obtain an overall impression about drugs of interest. For example, many clini-
cal trials have been carried out to investigate the intraocular pressure-lowering efficacy
of drugs, such as travoprost, bimatoprost, and latanoprost, [2,4,9,11,13,14,15,16,18].
When an overview or survey of a collection of clinical trials is required, a merged or
integrated result is desirable.

When the full details about the statistics used in the trials are available, merging the
results from these trials is usually a matter of systematic use of established techniques



from statistics. However, in reality, it is impossible to read all the details about each
trial. Most of the time, information in abstracts is most useful for the following reasons.
First, it is common that a person reads the abstract of a paper before reading the full
paper/report when deciding if the trial is relevant. Second, with more and more infor-
mation available on the Web, obtaining an abstract is much easier and most of the time
it is free while getting a full paper can be more difficult and expensive (one may need
to pay a fee). Third, in the field of clinical trials, abstracts often provide sufficient infor-
mation about trial analysis for a clinician to update their knowledge (such as about the
pros and cons of a particular treatment). Therefore, we concentrate here on developing
techniques to merging information solely provided in the abstracts.

As a convention, clinical trials usually use normal distributions to record trial re-
sults. So it is a natural idea to merge normal distributions to a single one as the inte-
grated result. There is a classical method to merge normal distributions [3]. However,
when using this method to merge two identical normal distributions, the merged re-
sult is a different normal distribution which is counterintuitive, since we would expect
the merged result to be the same as the original distribution. Some other methods have
been proposed to integrate probability distributions ([3,12,19]) or to learn the integrated
probability distributions ([6,8]). But these methods generally do not lead to a normal
distribution as a result, so they are not suitable for our purposes. Furthermore, in some
abstracts about clinical trials, information about underlying statistics can be incomplete,
e.g., the standard deviations are not given. To deal with this, we need to make use of
some background knowledge in order to construct an adequate normal distribution to
facilitate merging.

In this paper, we first propose approaches to constructing normal distributions from
both complete and incomplete statistical information in the abstracts. We then provide
methods to merge normal distributions. We also study how to measure if two normal
distributions are in conflict (or consistent), in order to decide if they should be merged.
To sequence a merging of multiple trials data, we introduce the notion of reliability to
sort the merging sequence. An algorithm is designed to merge trials results based on
both reliabilities of trials and consistencies among trials.

The remainder of this paper is organized as follows. Section 2 provides some pre-
liminary knowledge about normal distributions and introduces the notion of degrees of
consistency of normal distributions. Section 3 introduces categories of statistical infor-
mation commonly found in abstracts and how they are related to normal distributions.
Section 4 contains our merging methods for merging complete and incomplete statisti-
cal information. In Section 5, we give a definition for measuring conflict among normal
distributions and how this is used to decide if a merging shall take place. Section 6
investigates how a collection of clinical trials results should be sequenced for merging
and an algorithm is designed to implement this. Finally, in Section 7, we conclude the
paper.

2 Preliminaries

We start with some basic concepts about normal distributions. We then define the notion
of conflict (or consistency) of two normal distributions.
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Definition 1 A random variable X with mean value µ and variance σ2 is normally
distributed if its probability density function (pdf for short) f is defined as follows:

f(x) =
1√
2πσ

exp(− (x− µ)2

2σ2
)

In statistics, a normal distribution associated with a random variable is denoted as
X ∼ N(µ, σ2). For the convenience of further calculations in the rest of the paper,
we use notation X ∼ N(µ, σ) instead of X ∼ N(µ, σ2) for a normal distribution of
variable X . That is, we use a standard deviation rather than a variance because this will
greatly simplify mathematical equations in Section 4.

A normal distribution with X ∼ N(0, 1) is called a standard normal distribution.
Any normal distribution N(µ, σ) can be standardized by letting a random variable Z =
X−µ

σ , then Z ∼ N(0, 1) is a standard normal distribution. For N(0, 1), the standard
normal distribution table in statistics [20] provides sufficient information for further
calculations of probabilities, such as the probability of an interval that the variable falls
in.

In statistics, random samples of individuals are often used as the representatives of
the entire group of individuals (often denoted as a population) to estimate the values of
some parameters of the population. The mean of variable X of the samples, when the
sample size is reasonably large, follows a normal distribution. The standard error of
the mean (SEM for short), which is the standard deviation of the sample mean, is given
by SEM = σ√

n
, where σ is the standard deviation of X of the population and n is the

number of samples chosen from the population. We can write X̄ ∼ N(µ, SEM). When
σ is unknown, the standard deviation s of the samples is often used to replace σ.

To help define the degree of consistency of normal distributions, we introduce the
following well-known result.

Let v1 and v2 be two vectors. The angle between two vectors can be computed as
follows:

cos(v1, v2) =
< v1, v2 >

‖ v1 ‖2‖ v2 ‖2
where < v1, v2 > is the inner product of the vectors and ‖ v ‖2 is the L2 norm.

Definition 2 Let two normal distributions have f1(.) and f2(.) as their pdfs respec-
tively. The degree of consistency of the two normal distributions, denoted as c(f1, f2)
is defined as follows:

c(f1, f2) =
< f1, f2 >

‖ f1 ‖2‖ f2 ‖2
where < f1, f2 > is the inner product given by:

< f1, f2 >=
∫ +∞

−∞
f1(x)f2(x)dx

and ‖ f ‖2 is the L2 norm given by:

‖ f ‖2=
∫ +∞

−∞
f2(x)dx
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The degree of consistency c(f1, f2) defined above is in (0,1]. When f1 and f2 are
identical normal distributions, c(f1, f2) = 1, while c(f1, f2) → 0 when ‖ µ1 − µ2 ‖→
∞. Value c(f1, f2) increases along with the closeness of f1 and f2.

3 Statistical Information in Abstracts

In abstracts of papers about clinical trials, information about underlying statistics can
be summarized into the following four categories.

– Category I: A normal distribution can be identified when both µ and σ are given.
– Category II: A normal distribution can be identified when only µ is given.
– Category III: A normal distribution can be constructed when a confidence interval

is given.
– Category IV: A normal distribution can be constructed if at least two sentences,

each of which gives a probability value of the variable in a particular range, are
available in the abstract.

After looking through a large collection of abstracts of clinical trials on IOP reduc-
tions using different drugs, we believe that the above four categories cover a significant
proportion of statistical information in abstracts [2,4,9,11,13,14,15,16,18]. In this paper,
we concentrate on how to model and merge these four types of information.

For each category of statistical information, we try to interpret it in terms of a normal
distribution. We use X to denote the random variable implied in the context of each
sentence.

For the first category, a normal distribution is explicitly give, for example, sentence
“Mean IOP reduction at 6 months was -9.3+/-2.9 mmHg in the travoprost group” can
be interpreted as follows

X ∼ N(−9.3, 2.9)

For the second category, a normal distribution can be defined with a missing stan-
dard deviation. For instance, sentence “There was at least 90% power to detect a mean
IOP change from baseline of 2.9 mmHg” can be interpreted as

X ∼ N(2.9, σ)

where σ is unknown. To make use of this information, we need to draw on background
knowledge about the interval that σ lies. From our investigation, this information can
be obtained either through a clinician or from some text books on this specific topic.
Therefore, we can assume that this background knowledge is available and can be used
during merging.

For the third category of information, a confidence interval [a, b] is given. It is then
possible to convert this confidence interval into a normal distribution as follows

µ =
a + b

2
, σ =

b− a

2k

As a convention, the presented analysis of clinical trials results usually use the 95%
confidence interval. In this case, we have k = 1.96. However, if a given confidence
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interval is not the usual 95% confidence interval (say, it uses the p-confidence interval),
it is possible to use the standardization of the normal distribution as P (Z ∈ [−k, k]) =
p. Then value k can be found by looking up the standard normal distribution table.

For example, from sentence “Bimatoprost provided mean IOP reductions from base-
line that ranged from 6.8 mmHg to 7.8 mmHg (27% to 31%)”, it is possible to get a
normal distribution N(µ, σ) with full information.

For the fourth category of information, a sentence like “By month 3, 85% of partic-
ipants in the bimatoprost group had a mean IOP reduction of at least 20%” can be used
to define a probability of the variable in a particular range, such as

P (X ≥ 0.2b) = 0.85

where b is the baseline IOP value.
It is possible to generalize this expression to P (X ≥ x) = p and then further to

P (
X − µ

σ
≥ x− µ

σ
) = p

using the standardization technique.
By looking up the standard normal distribution table, it is possible to determine the

value for (x− µ)/σ. Similarly, if another sentence is given in the abstract with another
range for X , then another equation (x

′ − µ)/σ = y
′

can be obtained, therefore, the
values of µ and σ can be calculated. In a situation where only one of such sentence
is given but µ is provided, a normal distribution can still be constructed. Otherwise, it
would be difficult to use this piece of information. From our analysis of abstracts, it
seems that it is very rare that only one of these sentences is given, usually, two or more
such descriptions are available.

To summarize, from our case study, usually we can get normal distributions from
all the four type of information we normally find in abstracts.

4 Merging Normal Distributions

In this section, we discuss how to merge two normal distributions when either full
information or partial information about them is available.

4.1 Normal distributions with full information

Let the normal distributions associated with two random variables X1 and X2 be as
following

X1 ∼ N(µ1, σ1), X2 ∼ N(µ2, σ2)

We want to merge them into a new normal distribution with random variable X
as X ∼ N(µ, σ). An intuitive idea for merging is to let the merged µ divide the two
distributions equally. Since in general σ1 6= σ2, we cannot simply let µ = µ1+µ2

2 . We
define the following criterion that µ should satisfy

P (X1 ≤ µ) + P (X2 ≤ µ) = P (X1 ≥ µ) + P (X2 ≥ µ). (1)

Indeed, the above equation ensures that the merged µ divides the two distributions
equally.
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Proposition 1 Assume we have X1 ∼ N(µ1, σ1), X2 ∼ N(µ2, σ2), and let µ be the
merged result that satisfies (1), then we have

µ =
µ1σ2 + µ2σ1

σ1 + σ2
The proof of this and other subsequent propositions are given in the Appendix.
It is easy to see that if σ1 = σ2, then µ = µ1+µ2

2 . In particular, if two normal
distributions are the same, then the merged µ should not be changed, which is exactly
what we want.

From Proposition 1, we notice that the coefficients of µ1 (also X1) and µ2 (X2) in
calculating µ are σ2

σ1+σ2
and σ1

σ1+σ2
, respectively. So when calculating σ, we still use

these two coefficients for X1 and X2 and the variance σ2 should satisfy

σ2 =
σ2

σ1 + σ2

∫ +∞

−∞
f1(X1)(x− µ)2dx +

σ1

σ1 + σ2

∫ +∞

−∞
f2(X2)(x− µ)2dx (2)

where f1(X1) and f2(X2) are the pdfs for X1 and X2 respectively.

Proposition 2 Assume we have X1 ∼ N(µ1, σ1), X2 ∼ N(µ2, σ2), and let variance
σ2 be the merged result that satisfies (2), then we have

σ =

√
σ1σ2(1 +

(µ1 − µ2)2

(σ1 + σ2)2
)

It is easy to check that such a σ satisfies the following properties.

Proposition 3 Assume we have X1 ∼ N(µ1, σ1), X2 ∼ N(µ2, σ2), and the merged
result of these two distributions is X ∼ N(µ, σ), then

1. If µ1 = µ2 and σ1 = σ2, then σ = σ1 = σ2.
2. If σ1 = σ2, but µ1 6= µ2, then σ > σ1 = σ2.
3. If σ1 6= σ2, but µ1 = µ2, then min(σ1.σ2) ≤ σ ≤ max(σ1, σ2).

Proof: The proof is straightforward and omitted.
Unfortunately, it does not satisfy the associative property.

Example 1 The following two normal distributions are constructed from [15,16]. In
[15], the baseline IOP (Intraocular Pressure) in the latanoprost 0.005% group is
(Mean(SD)) 24.1(2.9) mm Hg. We use XNM to denote the normal distribution of the
baseline IOP in the latanoprost 0.005% group, so we get XNM ∼ N(24.1, 2.9).
Similarly, in [16], the corresponding baseline IOP is 23.8(1.7) mm Hg, so we get
XPY ∼ N(23.8, 1.7).

Based on Propositions 1 and 2, we get

µ =
24.1 ∗ 1.7 + 23.8 ∗ 2.9

1.7 + 2.9
= 23.9 σ =

√
1.7 ∗ 2.9 ∗ (1 +

(24.1− 23.9)2)
(1.7 + 2.9)2

) = 2.2

So the merged normal distribution is XNMPY ∼ N(23.9, 2.2) and it is closer to
XPY than to XNM . This is natural because XPY with a smaller standard deviation
means that this normal distribution is more accurate and most of the values will be
closer to its mean value. Therefore, the merged result has a mean value that is closer to
this distribution.
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There is another well known method for merging two normal distributions [3] which
gives

µ =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

σ =

√
σ2

1σ2
2

σ2
1 + σ2

2

(3)

The above two equations come from the mathematical result of the distribution of X1 +
X2. A drawback of this equation is that when the two original normal distributions are
the same, the merged σ is different from the original one. This is not intuitively what
we want to get from a merging. Therefore, we start from the assumption that the mean
value µ should divide the two normal distributions equivalently that is how we have
obtained the different equations from above to calculate µ and σ.

4.2 A special case considering the sample mean

Now we consider situations where variable X denotes the mean of the samples. From
SEM = σ√

n
, we get n = σ2

SEM2 . Let X1 be the mean of m1 variables whose standard
deviation is σ1 and X2 be the mean value of m2 variables whose standard deviation is
σ2. Provided that m1 and m2 are reasonably large, X1 and X2 both follow a normal
distribution as

X1 ∼ N(µ1, SEM1), X2 ∼ N(µ1, SEM2)

respectively. When we consider merging two clinical trials results, we need to assume
that the populations of the two samples are similar (or even the same), therefore, it
is reasonable to assume that σ1 = σ2. Under this assumption, we have the following
merging result

Proposition 4 Let X1 ∼ N(µ1, SEM1) and X2 ∼ N(µ1, SEM2), then for the
merged normal distribution, we have

µ =
µ1 ∗ SEM2

2 + µ2 ∗ SEM2
1

SEM2
1 + SEM2

2

Proposition 5 Let X1 ∼ N(µ1, SEM1) and X2 ∼ N(µ1, SEM2), then for the
merged normal distribution, we have

SEM =

√
SEM2

1 ∗ SEM2
2

SEM2
1 + SEM2

2
Although the above merging results happen to be similar to the pair of equations in

(3), we need to point out that they are used in different circumstances. Unlike equations
in (3) which solve the sum of two normal distributions, Propositions 4 and 5 deal with
the merging of the sample means and with the assumption that the standard deviations
of the populations of the two samples are equivalent.

Here if the two normal distributions are the same, the SEM2 will be a half of the
original one. This satisfies the property that the variation of the mean is in counter pro-
portion to the sample size, so when the sample size is doubled (after merging), SEM2

is halved. It is also easy to prove that the above merging method has the associative
property.
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Example 2 The mean IOP reduction is a variable which is the mean of the distribution
of samples. When the sample size is reasonably large, it follows a normal distribution.
In [16], the mean IOP reduction of the travoprost 0.004% group at the end of three
months is XPY ∼ N(9.4, 3.1), while in [11], the corresponding mean IOP reduction
at the end of three months with the same drug is XHS ∼ N(8.7, 3.8).

Based on Proposition 4 and Proposition 5, we get:

µ =
9.4 ∗ 3.82 + 8.7 ∗ 3.12

3.82 + 3.12
= 9.1 SEM =

√
3.82 ∗ 3.12

3.82 + 3.12
= 2.4

So the merged normal distribution is XPY HS ∼ N(9.1, 2.4). We can see that the
merged SEM is significantly smaller than the original ones, because SEM decreases
when a sample size increases.

4.3 Normal distributions with missing standard deviations

We consider situations where one of the two standard deviations (or standard errors of
the mean) in two normal distributions is missing. As we have observed, in medical do-
mains there is usually an interval that contains σ or SEM . For example, in the clinical
trials, σ for baseline IOP is usually in [1.5, 4.0] mm Hg. We can then use the interval
for merging. Without loss of generality, we assume that σ2 (or the SEM2) is unknown,
but it is in an interval.

Proposition 6 Let X1 ∼ N(µ1, σ1) and X2 ∼ N(µ2, σ2) be two normal distributions
where µ1, σ1, µ2 are given but σ2 is in interval [a, b]. Then the merged µ based on
Proposition 1 is as follows

If µ1 > µ2, then µ ∈ [µ1a+µ2σ1
σ1+a , µ1b+µ2σ1

σ1+b ]
If µ1 = µ2, then µ = µ1

If µ1 < µ2, then µ ∈ [µ1b+µ2σ1
σ1+b , µ1a+µ2σ1

σ1+a ]

Proposition 7 Let X1 ∼ N(µ1, σ1) and X2 ∼ N(µ2, σ2) be two normal distributions
where µ1, σ1, µ2 are given but σ2 is in interval [a, b]. Then the merged σ based on
Proposition 2 is as follows

If µ1 = µ2, or b ≤ σ1 +
8σ3

1
(µ1−µ2)2

, then σ ∈ [

√
σ1a(1 + (µ1−µ2)2

(σ1+a)2
),

√
σ1b(1 + (µ1−µ2)2

(σ1+b)2
)]

If µ1 6= µ2 and a ≥ σ1 + (σ1+b)3

(µ1−µ2)2
, then σ ∈ [

√
σ1b(1 + (µ1−µ2)2

(σ1+b)2
),

√
σ1a(1 + (µ1−µ2)2

(σ1+a)2
)]

Proposition 8 Let X1 ∼ N(µ1, SEM1) and X2 ∼ N(µ2, SEM2) be two normal
distributions where µ1, SEM1, µ2 are known but SEM2 is in interval [a, b]. Then the
merged µ based on Proposition 4 is as follows

If µ1 > µ2, then µ ∈ [µ1a2+µ2SEM2
1

SEM2
1+a2 ,

µ1b2+µ2SEM2
1

SEM2
1+b2

]
If µ1 = µ2, then µ = µ1

If µ1 < µ2, then µ ∈ [µ1b2+µ2SEM2
1

SEM2
1+b2

,
µ1a2+µ2SEM2

1
SEM2

1+a2 ]
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Proposition 9 Let X1 ∼ N(µ1, SEM1) and X2 ∼ N(µ2, SEM2) be two normal
distributions where µ1, SEM1, µ2 are known but SEM2 is in interval [a, b]. Then the
merged SEM based on Proposition 5 is as follows

SEM ∈ [
√

SEM2
1 + a2

SEM2
1 a2

,

√
SEM2

1 + b2

SEM2
1 b2

]

In situations where both standard deviations (or the SEMs) are missing, the only
method we can use is to let the merged µ = µ1+µ2

2 and leave the new σ (or the SEM )
still in the interval [a, b].

5 Consistency Analysis of two Normal Distributions

Merging should take place when two normal distributions refer to the trials that have
been undertaken in similar conditions. More specifically, we shall consider the follow-
ing conditions. First, both trials should be for the same variable (e.g, both for the mean
IOP reduction), for the same drug used (e.g, both for travoprost 0.004%), and for the
same duration (e.g, both for 12-months). Second, they should be under a similar trial
design (e.g, both are cross-over designs) and with similar participants (e.g, the average
age should be approximately equivalent). Third, the two distributions from two trials
should not be contradict with each other, that is, we need to define a kind of measure to
judge how consistent (or conflicting) the two distributions are and give a threshold to
indicate whether two distributions can be merged.

Proposition 10 Let f1 and f2 be the pdfs for X1 ∼ N(µ1, σ1) and X2 ∼ N(µ2, σ2)
respectively, then the degree of consistency of X1 and X2 based on Definition 2 is

c(f1, f2) =

√
2σ1σ2

σ2
1 + σ2

2

exp(− (µ1 − µ2)2

2(σ2
1 + σ2

2)
)

Definition 3 Let X1 ∼ N(µ1, σ1) and X2 ∼ N(µ2, σ2) be two normal distributions
with f1 and f2 as their pdfs respectively. They are consistent and can be merged if
c(f1, f2) ≥ t holds where t is pre-defined threshold for consistency (such as 0.9).

The degree of inconsistency (or conflict) can be defined as 1− c(f1, f2). The threshold
is application dependent and can be tuned to suit a particular application.

When variables X1 and X2 denote the means of samples, the above proposition still
holds except that we should replace σs with SEMs. In a situation where a standard
deviation is missing from one of the normal distributions, we assume the two given
normal distributions share similar conditions, so we simply let the missing standard
deviation be equal to the existing one. Then the above equation is reduced to:

c(f1, f2) = exp(− (µ1 − µ2)2

4σ2
1

)
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When both of the standard deviations are not given, as discussed in Section 4, if we
know that σ ∈ [a, b], then we have

c(f1, f2) ∈ [exp(− (µ1 − µ2)2

4a2
), exp(− (µ1 − µ2)2

4b2
)]

For this case if the given threshold t also falls within this interval, it would be hard to
tell whether t ≥ c(f1, f2) holds. A simple method is to compare t with the middle value
of the interval, if t is less than the middle value, a merge shall take place otherwise a
merge may not be appropriate.

Example 3 (Con’t Example 1) For the two normal distributions in Example 1, we have
c(f1, f2) > 0.9, so these two distributions can be merged.

If we use the two normal distributions of the baseline IOP of the travoprost 0.004%
group in [11, data collected at 10am] and [16], we have X1 ∼ N(28.0, 3.1), X2 ∼
N(25.4, 3.0), which gives c(f1, f2) < 0.9, so we advise that these two distributions
should not be merged. However, if t is changed to be 0.8, they can be merged. This
example also reveals that in our definition of consistency between two normal distribu-
tions, the values of means from the distributions play more dominating roles than the
standard deviations.

6 Sequencing the Merge of Multiple Trials Data

When there are more than two (potentially many) clinical trials data to be merged, the
sequence of merging is very important because our merging methods of two normal
distributions are not associative. For the four categories of information we summarized
in Section 3, we can get a normal distributions with full information for three types
and for the 2nd category, we get a distribution with a missing standard deviation. Since
merging a full distribution with an incomplete distribution results in σ (or SEM) being
in an interval, this result will make any subsequence merging more complicated. To
address this issue, we merge full and incomplete distributions separately first and then
merge the merged results from these two separate sequences.

To decide which trial should be the first data to consider, we consider reliabilities.
Unlike the use of reliabilities in the form λ1P1 + λ2P2 where the λi, i = 1, 2 are used
to denote the reliabilities of the sources [1,5,7,17], we use the reliability information to
rank clinical trials data. Reliability information is usually provided separately as extra
information, for clinical trials, we do not have this information, so we take the number
of samples used in a trial as a measure of reliability. That is, the larger the sample size,
the more reliable the trial result.

Given a set of trials results that are modeled with incomplete distributions (σ is
missing), we rank them based on their sample sizes as (we denote each trial result as µ)
µ1, µ2, . . . , µn. Then the merging of these results are as follows. We first find all the µs
that are consistent with µ1 (the most reliable one) and calculate their average (including
µ1). The result is denoted as µ1

1. We delete these entries from the above sequence, and
we then repeat this procedure for the current most reliable µ in the remaining sequence,
and so on. When the initial sequence is empty, we get a new set of µs: µ1

1, µ
1
2, . . . , µ

1
n1

.
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When n1 = n, no merging has been taken. That is all trials data are inconsistent
with each other. We return µ1 as the merged result as it is the most reliable one. If
n1 < n, we repeat the above merging procedure for the new sequence µ1

1, µ
1
2, . . . , µ

1
n1

.
This merging procedure is described in the following algorithm.
Algorithm Merge(µs)
Begin

Ψ1 = {< µ1, 1 >, < µ2, 2 >, . . . , < µn, n >}, Ψ2 = {}, m = n;
//Here < µi, i > means that µi is the ith most reliable one.
while n 6= 1 do

while |Ψ1| > 0 do
Let < µi, i > have the minimal i (or, the most reliable one) in Ψ1, and let
S = {< µi1 , i1 >, < µi2 , i2 >, . . . , < µij , ij >} containing all the elements
in Ψ1 where the µik , 1 ≤ k ≤ j are consistent with µi based on Def 3 (note that
µi itself is in S), let µ

′
i = (

∑j

k=1
µik )(|S|), and Ψ2 = Ψ2 ∪ {< µ

′
i, i >}.

Let Ψ1 = Ψ1 \ S.
End of while
If |Ψ2| = m, Return µ

′
1 in Ψ2 as the result.

Else Let Ψ1 = Ψ2, m = |Ψ2|, and Ψ2 = {}.
End of while

Return µ1 in the Ψ1 which has the index 1.
This algorithm stops when no further merging is possible, either because all trials

are in conflict or all the results have already been merged into one.
In terms of computational complexity, the number of consistency checks is O(n3),

and the number of arithmetic calculation is O(n). So the complexity of the algorithm is
O(n3).

When we replace the set of trials results in the above algorithm with a set of
complete normal distributions N(µ1, σ1), N(µ2, σ2), . . . , N(µn, σn), this algorithm
merges these full distributions except that the calculation of averages of µs should be
replaced by the equations in Proposition 1 and Proposition 2.

Finally, we merge the results of these two separate sequences to obtain a final result.

7 Conclusion

In this paper, we investigated different types of statistical information implied in ab-
stracts (of papers/reports) about clinical trials. We summarized four types of statistical
information and three out of these four types would enable us to get a full normal
distribution about a trial result. The 2nd category provides us with only incomplete dis-
tributions. Based on this, we developed methods to merge these types of information.
We also defined how to measure the degree of consistency between two distributions.
An algorithm was designed to sequence multiple merges.

There are a number of issues we will further look at. First, the threshold used in
consistency checking would have an effect on the final result of merging, we will ex-
periment with different threshold values to see how much effect they have. Second, the
algorithm divides trials results based on whether a distribution is complete. There can
be other sequences for merging which may be able to merge consistent results (cur-
rently in the two separate sequences) at an earlier stage. We will need to experiment

11



on this to see what sequence provides the most suitable merging and what conditions
are required. Third, we will consider some necessary background knowledge in order
to select trials from a large collection of trials data in order to perform a merge.

Acknowledgement: This work is funded by the EPSRC projects with reference
numbers: EP/D070864/1 and EP/D074282/1.

Appendix

Proof of Proposition 1: From P (X1 ≤ µ)+P (X2 ≤ µ) = P (X1 ≥ µ)+P (X2 ≥ µ)
and P (X1 ≤ µ) + P (X2 ≤ µ) + P (X1 ≥ µ) + P (X2 ≥ µ) = 2, we get:

P (X1 ≤ µ) + P (X2 ≤ µ) = 1.

By using the standardization of the normal distributions, we get

P (
X1 − µ1

σ1
≤ µ− µ1

σ1
) + P (

X2 − µ2

σ2
≤ µ− µ2

σ2
) = 1.

So it is equivalent to say: µ−µ1
σ1

+ µ−µ2
σ2

= 0. Therefore, we have

µ =
µ1σ2 + µ2σ1

σ1 + σ2

Proof of Prop 2: From f(X) = σ2
σ1+σ2

f1(X1) + σ1
σ1+σ2

f2(X2), we get

DX =
σ2

σ1 + σ2
D1X +

σ1

σ1 + σ2
D2X

Now Let us compute D1X first. Let z = x−µ1
σ1

,

D1X =
∫ +∞

−∞

1√
2πσ1

exp(− (x− µ1)2

2σ2
1

)(x− µ1σ2 + µ2σ1

σ1 + σ2
)2dx

=
∫ +∞

−∞

σ2
1√
2π

exp(−z2

2
)(z +

µ1 − µ2

σ1 + σ2
)2dz

=
σ2

1√
2π

(
∫ +∞

−∞
exp(−z2

2
)z2dz + 2

µ1 − µ2

σ1 + σ2

∫ +∞

−∞
exp(−z2

2
)zdz

+(
µ1 − µ2

σ1 + σ2
)2

∫ +∞

−∞
exp(−z2

2
)dz)

=
σ2

1√
2π

(
√

2π + 0 + (
µ1 − µ2

σ1 + σ2
)2
√

2π)

= σ2
1(1 + (

µ1 − µ2

σ1 + σ2
)2)

Similarly, we get D2X = σ2
2(1 + (µ1−µ2

σ1+σ2
)2). So after some simple calculation, we

have DX = σ1σ2(1 + (µ1−µ2
σ1+σ2

)2), σ =
√

DX =
√

σ1σ2(1 + (µ1−µ2
σ1+σ2

)2)
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Proof of Prop 4: µ = µ1∗m1+µ2∗m2
m1+m2

=
µ1∗ σ2

SEM2
1

+µ2∗ σ2

SEM2
2

σ2

SEM2
1

+ σ2

SEM2
2

= µ1∗SEM2
2+µ2∗SEM2

1
SEM2

1+SEM2
2

Proof of Prop 5: SEM = σ√
m1+m2

= σ√
σ2

SEM2
1

+ σ2

SEM2
2

=
√

SEM2
1 ∗SEM2

2
SEM2

1+SEM2
2

Proof of Proposition 6: If µ1 = µ2, it is straightforward that µ = µ1. The remain-
ing part of the proposition is equivalent to prove that when µ1 > µ2, µ = µ1σ2+µ2σ1

σ1+σ2
,

denoted as g(σ2), is an increasing function of σ2, while when µ1 < µ2, a decreasing
function. As the differential of g(σ2) is g

′
(σ2) = (µ1−µ2)σ1

(σ1+σ2)2
, the result is straightfor-

ward.
Proof of Proposition 7: Let g(σ2) denote σ1σ2(1 + (µ1−µ2

σ1+σ2
)2), then σ is an in-

creasing or decreasing function of σ2 is equivalent to say that g(σ2) is an increasing or
decreasing function of σ2. The differential of g(σ2) is g

′
(σ2) = σ1(1 + (µ1−µ2

σ1+σ2
)2) −

2σ1σ2
(µ1−µ2)

2

(σ1+σ2)3
.

It is obvious that if µ1 = µ2, g
′
(σ2) = σ1 > 0. If µ1 6= µ2, the +/− sign of g

′
(σ2)

is equivalent to the +/− sign of σ1(σ1 +σ2)3 +σ1(σ1 +σ2)(µ1−µ2)2− 2σ1σ2(µ1−
µ2)2, and consequently equivalent to the +/− sign of (σ1+σ2)3−(σ2−σ1)(µ1−µ2)2.
When condition b ≤ σ1 + 8σ3

1
(µ1−µ2)2

holds, if σ2 < σ1, obviously the sign of g
′
(σ2) is

+; moreover, if σ2 ≥ σ1, then (σ2 − σ1)(µ1 − µ2)2 ≤ (b − σ1)(µ1 − µ2)2 ≤ 8σ3
1 ≤

(σ1 + σ2)3, the sign of g
′
(σ2) is still +.

When µ1 6= µ2 and condition a ≥ σ1 + (σ1+b)3

(µ1−µ2)2
holds, we have (σ2 − σ1)(µ1 −

µ2)2 ≥ (a− σ1)(µ1 − µ2)2 ≥ (σ1 + b)3 ≥ (σ1 + σ2)3, so the sign is −.
Proof of Proposition 8: The proof is similar to the proof the Proposition 6, except

that

g
′
(SEM2) =

2(µ1 − µ2)SEM2
1 SEM2

(SEM2
1 + SEM2

2 )2

Proof of Proposition 9: Simply notice that SEM2
1+SEM2

2
SEM2

1 SEM2
2

is an increasing function
of SEM2.

Proof of Proposition 10: It is easy to computer that

‖ f1 ‖2=
√

1
2
√

πσ1
, ‖ f2 ‖2=

√
1

2
√

πσ2

and

< f1, f2 >=
√

aexp(−c)
2
√

πσ1σ2
,

where

a =
2σ2

1σ2
2

σ2
1 + σ2

2

, c =
(µ1 − µ2)2

2(σ2
1 + σ2

2)

Therefore

c(f1, f2) =
< f1, f2 >

‖ f1 ‖2‖ f1 ‖2 =

√
2σ1σ2

σ2
1 + σ2

2

exp(− (µ1 − µ2)2

2(σ2
1 + σ2

2)
)
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