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Abstract. Currently there is extensive theoretical work on inconsisten-
cies in logic-based systems. Recently, algorithms for identifying incon-

sistent clauses in a single conjunctive formula have demonstrated that

practical application of this work is possible. However, these algorithms
have not been extended for full knowledge base systems and have not

been applied to real-world knowledge. To address these issues, we pro-

pose a new algorithm for finding the inconsistencies in a knowledge base
using existing algorithms for finding inconsistent clauses in a formula.

An implementation of this algorithm is then presented as an automated
tool for finding inconsistencies in a knowledge base and measuring the

inconsistency of formulae. Finally, we look at a case study of a network

security rule set for exploit detection (QRadar) and suggest how these
automated tools can be applied.
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Introduction

Inconsistencies in any knowledge based system can have a significant, negative
impact on how the system will perform and on the conclusions that it will reach.
Recent developments in formal Artificial Intelligence (AI) approaches for incon-
sistency handling in logic-based systems have demonstrated the benefit of iden-
tifying the minimal number of formulae needed to create an inconsistency. From
this work, a number of measures have been proposed to quantify the degree of
blame associated with each formula for the inconsistency of the knowledge base,
i.e., how responsible a formula is for the overall inconsistency in the knowledge
base. The intuition being that identifying the most problematic formulae in an
inconsistent knowledge base is a first-step towards resolving inconsistencies.

There are many real-world systems where a logic-based interpretation is ap-
propriate and which would benefit from this approach to inconsistency handling.
In network security for example, it has been demonstrated that intrusion detec-
tion systems [1] are suitable for this interpretation and so finding the most prob-
lematic rules by applying inconsistency measures is possible. Similarly, in the area
of Requirements Engineering (RE) a logic-based approach has also been applied
to software requirements specifications [2], while other system such as firewalls,
Access Control Lists (ACLs) and access rights would be equally applicable.
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Currently there is little practical application of (or implemented systems for)
these logic-based approaches, both in terms of algorithms for finding inconsisten-
cies in a knowledge base, and for measuring the blame of inconsistent formulae.
To address these issues, we propose a new algorithm for finding the inconsistencies
in a knowledge base using existing algorithms for finding inconsistent clauses in a
single formula. An implementation of this algorithm is presented as an automated
tool for finding inconsistencies in a knowledge base and measuring the inconsis-
tency of formulae. Finally, we look at a case study of a network security rule set
for exploit detection and suggest how these automated tools can be applied.

The paper is organized as follows: in Sec. 1 we introduce notations; in Sec.
2 we describe a process for finding inconsistencies in a knowledge base and its
implementation in a tool called MIMUS; in Sec. 3 we discuss measures for calcu-
lating the degree of blame associated with each formulae for the inconsistency of
a knowledge base and their implementation in a tool called MINC; in Sec. 4 we
present a case study of a network security rule set in terms of how inconsistencies
can be automatically identified; and in Sec. 5 we conclude the paper.

1. Preliminaries

Let L denote the propositional language obtained from a finite set of propositional
atoms P = {a, b, c, ...}, using logical connectives {∨,∧,¬,→}. We denote formulae
from L as α, β, γ, etc and set inclusion (resp. strict) by ⊆ (resp. ⊂). Let ⊥ denote
an inconsistent knowledge base. We define a knowledge base K as the union of a
rule base (rule set) and a fact base, though either can be empty. A rule base is
a set of ‘if . . . then . . .’ rules (using material implication) of the form r : C → A,
where rC (resp. rA) denotes the condition (resp. action) of a rule r. If K entails
φ we denote this as K ` φ where φ is the consequence of K.

We define inconsistency (contradiction) as logical inconsistency in the clas-
sical sense, i.e., a knowledge base that is unsatisfiable under any interpretation.
The term inconsistency measure [3] may refer to: a measure of the overall incon-
sistency of a knowledge base (knowledge base-level); or a measure of the degree
to which a formula contributes to the inconsistency of a knowledge base (formula-
level). In this paper we use the formula-level interpretation since this is more rele-
vant for resolving inconsistencies within a single knowledge base. We consider the
term inconsistency measure as synonymous with the terms inconsistency value
[4], blame measure and degree of blame [5].

Definition 1 (MC). A Maximal Consistent Subset Γ of a knowledge base K is

(1) Γ ⊆ K, (2) Γ 0⊥, (3) ∀Ω ⊆ (K \ Γ) s.t. Ω 6= ∅, Γ ∪ Ω `⊥.

Definition 2 (MI). A Minimal Inconsistent Subset (MIS) Γ of a knowledge base
K is

(1) Γ ⊆ K, (2) Γ `⊥, (3) ∀Ω ⊂ Γ,Ω 0⊥.

Then MI(K) is the set of MISes of K and MC(K) the set of Maximal
Consistent Subsets of K.

2. Finding MISes from MUSes

While the task of identifying MISes is computationally hard, algorithms for iden-
tifying Minimally Unsatisfiable Subformulas (MUSes) [6,7] mean that it is practi-



cally possible. In [4], these MUSes are said to be the same as MISes, however this
is not strictly true since a MIS is a set of inconsistent formulae in a knowledge base
while a MUS is an unsatisfiable set of clauses from a single formula in conjunctive
normal form (CNF). The difference being that MUSes are inconsistent clauses (a
disjunction of literals) while MISes are inconsistent formulae. Saying this how-
ever, if the model-based view of knowledge bases is taken, i.e., that the knowledge
base is equivalent to the conjunction of its formulae, then the knowledge base
can be converted to a single formula representing the whole knowledge base. This
formula can then be converted to CNF, from which MUSes can be identified. A
set of MISes can therefore be determined from each MUS, e.g. given formulae α
and β where α results in clauses {α1, α2} and β results in clauses {β1, β2, β3}, if
there is a MUS {α1, α2, β2} then the resulting MIS would be {α, β}. This process
of finding MISes from MUSes is explained in the remainder of this section and
has been implemented in an automated tool called MIMUS.

An algorithm for identifying MUSes, called CAMUS, is described in [6]. This
algorithm is based on the relationship between Maximally Satisfiable Subformulas
(MSSes) and MUSes, i.e., from the set complement of the MSSes of a formula
(called CoMSSes and later Minimal Correction Sets (MCSes) [8,9]) the MUSes
can be deduced because a MUS is an irreducible hitting set of the set of MCSes
(see Example. 3 and 4). A modification of the CAMUS algorithm, called HYCAM,
has also been developed [7]. Implementations of both algorithms are available
[10,11] incorporating a SAT solver for determining the MSSes of a formula. We
will demonstrate finding MISes from MUSes on a knowledge base ∆ from [3].

Definition 3 (MSS [7]). A MSS Γ of a set of clauses Σ is a set of clauses s.t.

(1) Γ ⊆ Σ, (2) Γ is satisfiable, (3) ∀Ω ⊆ (Σ \Γ) s.t. Ω 6= ∅, Γ∪Ω is unsatisfiable.

Definition 4 (MCS or CoMSS [7]). The MCS of a MSS Γ of a set of clauses Σ is
given by Σ \ Γ.

Definition 5 (MUS [7]). A MUS Γ of a set of clauses Σ is a set of clauses s.t.

(1) Γ ⊆ Σ, (2) Γ is unsatisfiable, (3) ∀Ω ⊂ Γ, Ω is satisfiable.

Definition 6 (Hitting set [8]). Let Ω denote a set of sets from some finite domain
D. A hitting set H of Ω is H ⊆ D such that ∀S ∈ Ω, H ∩ S 6= ∅.

Let MSS(Λ) denote the MSSes of a set of clauses Λ. Let MCS(ΛMSS) denote
the MCSes of a set of MSSes ΛMSS . Let HIT (S) denote the irreducible hitting
sets of a set of sets S. Then, as discussed previously, the MUSes of a set of clauses
Λ is MUS(Λ) = HIT (MCS(MSS(Λ))) [8].

Example 1. Let ∆R be a rule base:

f1 : red→ fast f2 : fast→ ¬fuelEfficient
f3 : offRoad→ expensive f4 : sporty → (expensive
f5 : ¬expensive→ under$20K ∧(black ∨ red ∨ white))
f6 : cabriolet→ ¬bigCapacity f7 : fuelEfficient→ ¬offRoad

Let ∆F be a fact base:

f8 : red f9 : offRoad f10 : ¬expensive f11 : fuelEfficient
f12 :sporty f13 :cabriolet f14 : bigCapacity



Let ∆ be a knowledge base where ∆ = ∆R ∪∆F .

We denote the set of clauses in the CNF equivalent of a propositional formula
α as CNF (α). The set of clauses for a knowledge base K is

⋃
α∈K CNF (α), i.e.,

a knowledge base is represented as a set of clauses interpreted as a single formula
by the conjunction of these clauses.

Example 2. Given the knowledge base ∆ then CNF (α) for α ∈ ∆ is (clauses
(resp. formulae) are denoted cn (resp. fn) where n is a unique identifier):

f1 : {c1 : ¬red ∨ fast} f2 : {c2 : ¬fast ∨ ¬fuelEfficient}
f3 : {c3 : ¬offRoad ∨ expensive} f4 : {c4 : ¬sporty ∨ expensive,
f5 : {c6 : expensive ∨ under$20K} c5 : ¬sporty ∨ black ∨ red ∨ white}
f6 : {c7 : ¬cabriolet ∨ ¬bigCapacity} f7 : {c8 : ¬fuelEfficient ∨ ¬offRoad}
f8 : {c9 : red} f9 : {c10 : offRoad}
f10 :{c11 : ¬expensive} f11 :{c12 : fuelEfficient}
f12 :{c13 : sporty} f13 :{c14 : cabriolet}
f14 :{c15 : bigCapacity}

Converting a knowledge base to a set of clauses is necessary for applying
existing methods for finding MUSes since a MUS is an inconsistent set of clauses.

Example 3. Let Θ = MSS(CNF (∆)). There are 69 MCSes in Θ (of which 10
sets of clauses are shown below). A sample clause from each MCS is underlined
to highlight a single MUS:

MCS(Θ) =

{c7, c11, c12}, {c11, c12, c15}, {c11, c12, c14}, {c2, c4, c7, c10},{c2, c10, c11, c14}, {c1, c8, c11, c14}, {c9, c10, c11, c14},
{c2, c8, c11, c14}, {c1, c10, c11, c14}, {c8, c9, c11, c14}, . . .

 .

Example 4. There are 5 MUSes from MCS(Θ). The sample MUS from Example.
3 is again underlined:

HIT (MCS(Θ)) =

{
{c12, c1, c2, c9}, {c12, c8, c10},

{c11, c3, c10}, {c11, c4, c13}, {c7, c14, c15}

}
.

The underlined variables in Example. 3 and the underlined MUS in Exam-
ple. 4 demonstrates the relationship between MCSes and MUSes, i.e., the MUS
{c12, c1, c2, c9} can be determined from the MCSes of Θ because the clauses c12,
c1, c2 and c9 are the minimal set of clauses whose elements appear at least once
in all MCSes. Therefore, a MCS contains at least one clause from each MUS.

Since a MUS is a set of clauses and a MIS is a set of formulae, it is necessary
to determine the formulae from which each clause in the MUS originated (the set
of FoMUSes of a MUS). Then, the set of MISes from an MUS is an irreducible
hitting set of the set FoMUSes for that MUS. Therefore, the MISes of a MUS can
be found using the same method used for finding a set of MUSes from a set of
MCSes, i.e., HIT (FoMUS) for each MUS.

Example 5. The FoMUSes for the 4th MUS {c4, c11, c13} are {{f4 : sporty →
(expensive ∧ (black ∨ red ∨white))}, {f10 : ¬expensive}, {f12 : sporty}}. So, the
MISes for these FoMUSes can be determined by HIT ({{f4}, {f10}, {f12}}) :

{{sporty → (expensive ∧ (black ∨ red ∨ white)),¬expensive, sporty}}



2.1. Implementation

The main tasks performed when finding the MISes of a knowledge base are:
converting the knowledge base to CNF; finding the set of MCSes from a set of
clauses; and finding the set of MUSes from a set of MCSes (which is the same
task performed when finding the set of MISes from a set of FoMUSes). In terms
of computational complexity, conversion of an arbitrary propositional formula to
CNF has complexity O(2n) in the worst case while SAT is a classic NP-complete
problem. Additionally, the irreducible hitting set problem encountered in the tasks
of finding MUSes from MCSes and MISes from FoMUSes is also NP-complete [8].

Finding the set of MUSes (resp. MISes) from a set of MCSes (resp. FoMUSes),
denoted HIT, works by looping through each MCS and adding a clause (resp.
formula) to a forming MUS, then any remaining MCSes containing this clause
are removed. When the clause is added to a MUS it is forced to be ‘essential’
(removing it would leave at least one MCS unrepresented in the final MUS) by
removing all clauses in the current MCS from all remaining MCSes. All MUSes
for a set of MCSes are found recursively in this way. Either CAMUS or HYCAM
algorithms can be used for these tasks and both have been shown to perform well
in many complex cases [7,8]. We do not explain the other algorithms in detail
because of space limitations.

Algorithm 1 Finding MISes in a knowledge base

Require: Knowledge base K
Ensure: Set of MISes

clauses← ∅
for formula ∈ K do

for clause ∈ CNF (formula) do
if mapping(clause) exists then

mapping : clause 7→ mapping(clause) ∪ {formula}
else

mapping : clause 7→ {formula}
end if
clauses← clauses ∪ {clause}

end for
end for
MUSes←MUS(clauses)
MISes← ∅
for MUS ∈MUSes do

FoMUSes← ∅
for clause ∈MUS do

FoMUSes← FoMUSes ∪ {mapping(clause)}
end for
MISes←MISes ∪HIT (FoMUSes)

end for
return MISes

Algorithm 1 is the formal process for finding the MISes of a knowledge base
using existing algorithms for finding the MUSes of a single CNF formula [6,7]. In
summary, each formula in the knowledge base is converted to CNF, the formula (or
formulae) are mapped to each unique clause and a final set of clauses representing
the complete knowledge base is produced. The MUSes for this set of clauses



are found using either CAMUS or HYCAM and, for each MUS, the originating
formulae for each clause are found (FoMUSes). Then by applying the algorithm for
finding the irreducible hitting set of a set of sets (HIT), the set of MISes for each
MUS can be determined from the set of FoMUSes producing the MISes for the
knowledge base. This process has been implemented in the MIMUS tool which can
incorporate either CAMUS or HYCAM implementations and a combined analysis
of the performance of this tool along with a tool for measuring inconsistency
(MINC) is included in the following section.

3. Measuring the Inconsistency of Formulae

In the previous section we have shown that a practical implementation for find-
ing MISes is possible. However identifying inconsistencies is only the first step
in resolving conflicting knowledge, i.e., the reason it is important to identify in-
consistencies is so that they can be handled in some way. One such method for
inconsistency handling is to attempt to resolve inconsistencies, for example by
deletion, weakening or splitting of individual formulae [12]. However in cases of
large knowledge bases, or knowledge bases which have a large number of incon-
sistencies, there may be unmanageable numbers of inconsistent formulae so it
then becomes a question of which formula should be addressed first. For this pur-
pose, a number of inconsistency measures have been proposed [3,4] which quantify
the responsibility of each formula for the inconsistency of the overall knowledge
base. Intuitively, the more responsible a formula is for inconsistency, the sooner
it should be resolved. Furthermore, when formulae have varying degrees of im-
portance this can also be taken into account [5]. The practical benefit of these
measures in relation to a network intrusion detection rule set is discussed in [1].

3.1. Inconsistency Measures

The Scoring function presented in [3] is the truest formula-level inconsistency
measure since it is closely related to the concept of MISes, i.e., that an MIS can
be resolved by removing any formula. The Scoring function therefore assigns a
value to each formula based on the number of MISes that would be resolved
if the formula were removed from the knowledge base. Looking at Fig. 1 it is
clear, for the purpose of deletion-based resolution, that removing a formula which
is involved in multiple MISes is more efficient than removing a formula which
is involved in only one. By this intuition, the more inconsistencies a formula is
involved in, the more problematic it is in relation to the knowledge base.

Figure 1. MISes in ∆ where fuelEfficient, offRoad, ¬expensive are most problematic.



Since the Scoring function is unable to discriminate in terms of the complexity
and size of an inconsistency, a proportional inconsistency measure was proposed.
The Shapley Inconsistency Value (SIV) [4] takes an inconsistency measure as a
payoff function in coalitional form and, using the Shapley value from coalitional
game theory, determines the proportional inconsistency for each formula in a
knowledge base. In a knowledge base K, the SIV for α ∈ K calculates the sum of
the inconsistency of every subset of the power set of K for which α is involved. As
a logical property, when the Scoring function is applied as a Shapley inconsistency
measure, denoted SIMI

or MI Shapley, the result is to sum the proportion of each
MIS from which a formula is a member.

Both the Scoring function and the MI Shapley measure are limited by the
fact that they are unable to consider the relative degree of importance of a for-
mula, i.e., if two formulae have the same inconsistency values but one formula
is considered more important than the other, then it is logical that they should
not be considered as equally problematic. For this reason, the Blamev measure
for prioritized knowledge bases was introduced. While this measure is also based
on MISes, rather than assigning each formula with a single inconsistency value,
it instead assigns a vector value representing the blame at each priority level for
a formula. In order to demonstrate the benefit of prioritized measures on the
example knowledge base, it is necessary to produce a prioritized version of ∆.

Example 6. Let ∆ be prioritized as a Type-II2 prioritized knowledge base ∆P

where f1, . . . , f14 denote formulae from ∆:

∆P = 〈{f1, f2, f3, f4, f5}, {f6, f7, f8, f9, f10}, {f11, f12, f13, f14}〉.

Therefore ∆P has three priority levels where, for example, formulae f1 :
red → fast and f2 : fast → ¬fuelEfficient are more important than f8 : red,
which is more important than f11 : fuelEfficient. By taking the relative priority
of formulae into account, the Blamev measure can produce an ordering for the
degree of blame associated with each formula where the value is based on both
the formulas involvement in inconsistency and its relative importance.

Finally, an extension of the Blamev measure was introduced in [1], denoted
Blamel which takes into account the normalized number of atoms involved in
inconsistency at each priority level. The rational being that if two formulae are
of varying degrees of complexity, i.e., f4 : sporty → (expensive ∧ (black ∨ red ∨
white)) is more complex than f12 : sporty, then they should not be treated as
equally problematic. The Blamel measure therefore provides a deeper inspection
of formulae involved in inconsistency.

3.2. Implementation and Performance

The Scoring, MI Shapley, Blamev and Blamel measures have been implemented in
an automated tool, MINC (Measuring INConsistencies), which incorporates the
MIMUS tool for finding MISes and which will be downloadable soon [13]. Given
a propositional knowledge base, MINC can identify the inconsistencies (using
MIMUS) and determine the degree of blame associated with each formula. The

2 Let K be a knowledge base and KP be the Type-II prioritized [5] equivalent with n priority
levels. Let KP = 〈K1, . . . ,Kn〉 where K1, . . . ,Kn ⊆ K assigned to priority levels 1, . . . , n

respectively, where K1 has the most important formulae, and Kn the least important.



result of applying MINC to the prioritized knowledge base ∆P is shown in Table.
1 where f10 is identified as most problematic by Blamev and Blamel.

Formula Priority Scoring MI Shapley Blamev Blamel

f1 1 1 0.25 (0.02, 0.02, 0.02) (0.00, 0.00, 0.01)

f2 1 1 0.25 (0.02, 0.02, 0.02) (0.00, 0.00, 0.01)

f3 1 1 0.33 (0.00, 0.11, 0.00) (0.00, 0.02, 0.00)

f4 1 1 0.33 (0.00, 0.06, 0.06) (0.00, 0.01, 0.01)

f5 1 0 0.00 (0.00, 0.00, 0.00) (0.00, 0.00, 0.00)

f6 2 1 0.33 (0.00, 0.00, 0.11) (0.00, 0.00, 0.03)

f7 2 1 0.33 (0.00, 0.06, 0.06) (0.00, 0.01, 0.01)

f8 2 1 0.25 (0.04, 0.00, 0.02) (0.01, 0.00, 0.01)

f9 2 2 0.67 (0.06, 0.11, 0.06) (0.01, 0.02, 0.01)

f10 2 2 0.67 (0.11, 0.06, 0.06) (0.04, 0.01, 0.01)

f11 3 2 0.58 (0.04, 0.13, 0.00) (0.01, 0.02, 0.00)

f12 3 1 0.33 (0.06, 0.06, 0.00) (0.03, 0.01, 0.00)

f13 3 1 0.33 (0.00, 0.06, 0.06) (0.00, 0.02, 0.01)

f14 3 1 0.33 (0.00, 0.06, 0.06) (0.00, 0.02, 0.01)

Table 1. Comparison of inconsistency measures for ∆P rounded to 2 decimal places.

The complexity of creating efficient SAT solvers has resulted in extensive SAT
benchmarks. Since the process of finding MISes described in this paper is based
on using SAT solvers to determine the satisfiability of sets of clauses in a CNF
formula, these benchmarks are particularly suitable for testing the performance
of MINC. However since each SAT benchmark is just a single CNF formula, and
the purpose of MINC is to measure inconsistent formulae in a knowledge base, it
is necessary to convert this CNF formula into a knowledge base. For the purpose
of these experiments, the SAT benchmark was assumed to be a knowledge base
where each clause was assumed to be a formula, i.e., each formula is a single
clause and each MUS is directly equivalent to a MIS.

Figure 2. Measuring inconsistency of Benz benchmark set using MINC.

Figure. 2 shows the execution time of running MINC on knowledge base
versions of the Benz [14] benchmark set. The test system was an Ubuntu Linux
10.04 Virtualbox virtual machine on a Windows 7 desktop PC with a 3.20GHz
Intel Xeon quad core processor and 3GB of RAM. The execution time includes the



time it took MIMUS to find all MISes and MINC to calculate all four inconsistency
measures. The performance of MIMUS is closely related to the performance of
the implementation for finding MUSes so these results are omitted. In [15] it is
argued that the ratio of clauses to variables is more useful for measuring the
performance of SAT solvers than the total number of variables or clauses. No
correlation was found with the total number of variables or formulae or with the
ratio of formulae to variables. As expected however, the overall results for MINC
show a clear correlation between the number of MISes in a knowledge base and
the time it takes to calculate the inconsistency values of each formula. In this
case, MINC performed well against the Benz benchmark set: the longest duration
was 19.004 seconds for a knowledge base equivalent to C220 FV 92 14 with 1728
variables, 4508 formulae and 4224 MISes.

4. A Case Study: QRadar

QRadar [16] is an intelligent network security architecture developed by Q1
Labs/IBM, which provides exploit detection based on log data (e.g., application,
operating system and firewall logs) as well as network traffic. Log data is analyzed
by the QRadar system and normalized events, called Events, are generated. For
example, if an application on the network produces a log message then QRadar
generates an event with all the relevant information such as time, source address,
destination address and message contents. Similar to log data, network traffic is
also analyzed by QRadar and normalized events, called Flows, are generated.

For the purpose of exploit detection, the QRadar system is shipped with
around 200 default rules which are used to classify log Events and network Flows.
The default rules are designed to be customized for each unique network and users
can create new rules to introduce new functionality. However, with this ability
to modify and create rules comes the possibility of introducing inconsistencies
into the rule set and these inconsistencies could have potentially serious implica-
tions for the systems functionality. Also, the larger a rule set becomes the more
likely it is for inconsistencies to appear. For this reason, a method to automati-
cally validate the rule set (after changes), and suggest a method to resolve any
inconsistencies which may occur, would be an important feature.

In QRadar, knowledge is represented initially by these rules which are rea-
soned with only when facts are learned, i.e., rules are used to classify Events and
Flows as they occur where facts are the Events and Flows themselves. This is
true of many similar systems. However since a rule set is only a set of conditional
statements, rules are seldomly inconsistent in isolation before facts are known.
Often it is only when rules are applied to a set of facts that the rules themselves
will create logical inconsistencies (see Θ-inconsistency [1] and rule inconsistency
[17]). For the purpose of this case study, we add the minimal set of facts needed
to trigger all rules in the rule set in order to produce a complete knowledge base.

4.1. Existing Rules and Potential Inconsistencies

All QRadar rules are created in a natural language format using a rule builder
tool. This tool provides the ability to build rules from an existing set of natu-
ral language conditions which can be customized and combined for the desired
rule. While there are additional actions which may be assigned to a rule, e.g.,
dispatching a new event, we will focus on the core behavior only.



We have the following anomaly-based rule (rule r1):

Apply Anomaly: Potential Honeypot Access on events which are

detected by the Local system and when an event matches any of

the following BB:NetworkDefinition: Honeypot like Addresses.

This calls the following rule (rule r2):

Apply BB:NetworkDefinition: Honeypot like Addresses on events

or flows which are detected by the Local system and when the

destination IP is a part of any of the following Bogon.

Name Description

Event(x) denotes that x is an event

Flow(x) denotes that x is a flow

Dest ip(x, y) denotes that the destination IP of x is y

Honeypot like address(x) denotes that x is a honeypot like address

Potential honeypot access(x) denotes that x is a potential honeypot access

Honeypot safe(x) denotes that x is honeypot safe

Table 2. Predicates for set of QRadar rules.

Propositional logic is not sufficiently expressive to accurately represent these
rules so we will represent them in first-order logic. Using predicates from Table.
2, the rules can be represented as:

r1 : (∀x)
(
Event(x) ∧Honeypot like address(x)
→ Potential honeypot access(x)

)

r2 : (∀x∃y)
(
(Event(x) ∨ Flow(x)) ∧Dest ip(x, y) ∧ y ∈ bogon

→ Honeypot like address(x)

)
These can be read as:

• r1: If x is an event and x is a honeypot like address then x is a potential
honeypot access

• r2: If x is an event or flow and the destination IP of x is part of Bogon
then x is a honeypot like address

Since users can create their own rules, the following would be possible:

• r3: If x is an event or flow and the destination IP of x is part of Bogon and
x is not a honeypot like address then x is honeypot safe

As a QRadar rule it could be written as (rule r3):

Apply Anomaly: Honeypot Safe on events or flows which are

detected by the Local system and when the destination IP is a

part of any of the following Bogon and when an event matches

none of the following BB:NetworkDefinition: Honeypot like

Addresses.

Using predicates from Table. 2, this can be represented in first-order logic:

r3 : (∀x∃y)
(

(Event(x) ∨ Flow(x)) ∧Dest ip(x, y) ∧ y ∈ bogon
∧¬Honeypot like address(x)→ Honeypot safe(x)

)



Name Description

event1 denotes an event with a destination IP 192.168.1.137

bogon denotes {192.168.1.100, 192.168.1.101, . . . , 192.168.1.150}
Table 3. Constants for QRadar system.

In order to determine inconsistency we must instantiate (ground) these uni-
versally quantified formulae by constants representing a certain scenario (propo-
sitional case). Using the constants from Table. 3, these rules can be grounded in
a propositional rule set Q = {r1, r2, r3, bogon} where:

r1 : Event(event1) ∧Honeypot like address(event1)
→ Potential honeypot access(event1)

r2 : (Event(event1) ∨ Flow(event1)) ∧Dest ip(event1, 192.168.1.137)
∧192.168.1.137 ∈ bogon→ Honeypot like address(event1)

r3 : (Event(event1) ∨ Flow(event1))
∧Dest ip(event1, 192.168.1.137) ∧ 192.168.1.137 ∈ bogon
∧¬Honeypot like address(event1)→ Honeypot safe(event1)

Currently the rule set Q is consistent but if the condition for r3 were ever
met, i.e., rC3 : (Event(event1)∨Flow(event1))∧Dest ip(event1, 192.168.1.137)∧
192.168.1.137 ∈ bogon∧¬Honeypot like address(event1), then the system would
be inconsistent. Formally, MI(Q ∪ {rC3}) = {{bogon, r2, rC3}} since the inconsis-
tency is between r2 and the condition of r3. In practice however, there are likely
to be two outcomes from adding r3 to the rule set (depending on the order of rule
execution and assumptions made by the reasoning engine):

• the rule engine assumes ¬Honeypot like address(event1) until it can be
inferred otherwise. In this case, depending on the order of execution, it can
infer Honeypot like address(event1)∧Potential honeypot access(event1)
or Honeypot safe(event1). Alternatively,

• nothing is assumed by the rule engine but r2 is applied first since the
condition for r3 encompasses the condition for r2. In this case, it will in-
fer Honeypot like address(event1) ∧ Potential honeypot access(event1),
so r3 will never be triggered but will remain in the rule set.

The significance of identifying this inconsistent set of rules is that depend-
ing on the reasoning engine, different conclusions may be reached (event1 will be
classified differently) or one rule will never be triggered. In relation to the QRadar
system, it is obviously problematic that different conclusions can be reached from
the same rule set. However, a non-triggering rule can also be considered problem-
atic since there is likely to be a performance overhead. Other issues include the
loss of functionality when a non-triggering rule is a prerequisite for another rule.

4.2. Implications for Automated Inconsistency Handling in QRadar

From this case study it is clear that a grounded first-order logic interpretation
of the QRadar rule set is possible. This allows automated tools to be applied for
identifying inconsistencies and formally measuring the degree to which each rule
in the rule set is responsible for inconsistency. However the case study also raised
an issue affecting any rule set (including QRadar) in relation to finding inconsis-
tencies, i.e., that explicit inconsistencies may not occur until facts are learned. We
demonstrated the performance of MINC in terms of complex synthetic knowledge
bases which performed well in experimentation, i.e., it took 18 seconds to measure



the inconsistency of formulae in a knowledge base with 1728 variables, 4508 for-
mulae and 4224 MISes. This suggests that the process of finding and measuring
the inconsistency of QRadar rules can be automated with MINC after manually
inserting the facts needed to trigger rules. However, if a tool was developed for
this purpose then the entire process of detecting inconsistencies between rules in
the QRadar system could be fully automated. A complete architecture is partic-
ularly justified because existing features for allowing users to create and modify
rules do not include this type of inconsistency validation.

5. Conclusion

The main contributions of this paper can be summarized as:

• a new algorithm for finding the MISes of a knowledge base from the MUSes
of a CNF formula has been proposed and implemented in a tool (MIMUS);

• a number of inconsistency measures, which identify an ordering for the
degree of blame associated with each formula in a knowledge based, have
been implemented in a tool (MINC); and

• a case study has been carried out on the existing QRadar network security
rule set and it has been suggested how MIMUS and MINC could be applied
in order to automate inconsistency handling.

Future work will focus on developing a tool to automatically insert triggering
facts so that MIMUS and MINC can be used to identify and measure the incon-
sistency in a rule set such as QRadar. From there, we hope to propose methods
to resolve inconsistencies using these tools on experimental data.
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