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Abstract

Semi-structured information in XML can be merged in alogic-based framework [Hun02, HunO2b].
This framework has been extended to deal with uncertainty, in the form of probability values, degrees of
beliefs, or necessity measures, associated with leaves (i.e., textentries) in the XML documents [HLO44).
In this paper we further extend this approach to modelling and merging uncertain information that is
defined at different levels of granularity of XML textentries, and to modelling and reasoning with XML
documents that contain semantically heterogeneous uncertain information on more complex elements
in XML subtrees. We present the formal definitions for modelling, propagating and merging semanti-
cally heterogeneous uncertain information and explain how they can be handled using logic-based fusion
techniques.

1 Introduction

With XML fast emerging as the dominant standard for representing and exchanging information over the
web, the need for modelling uncertainty in the information has begun to be addressed. In [NJ02], a prob-
abilistic approach is taken to model and reason with uncertain information at different levels of tagsin
a single XML document. The final probability of the value of a specific tag is calculated via multiple
conditional probabilities on its ancesters' tags. In another approach [KKAOQ5], probability values are also
attached to tags, but it requiresthat the probabilities of aset of values associated with asingle tag must sum
to 1.0, acondition that was not required in [NJO2]. A simple merging method is also provided to integrate
two probabilistic XML treesin [KKAO05], whilst [NJO2] did not consider multiple XML documents. Since
[KKAO5] does not use much of the background knowledge to verify the probabilistic XML documents be-
fore merging, eventwo simple XML files asinput can produce a huge number of possible XML documents
as output (see Conclusion for details), which makes the method difficult to use in practice.

In contrast, our approach to modelling, reasoning, and merging XML documents with uncertain infor-
mation ([HLO4a]) concerns information within the logical fusion framework [HS04] where background
knowledge can provide additional information to facilitate merging and reduce redundancy and inconsis-
tency among information. In this paper, we focus on structured reports. The format of a structured report
isan XML document where the tagnames provide the semantic structure and coherence to the document
and the textentries (i.e. leaves) are restricted to (1) individual words or simple phrases from a scientific
nomenclature/terminology and (2) individual numerical values with units. For instance, a structured report
on deposits of a particular underground location can be represented using the tagnames deposit with
textentries such aswater, oil, gas, and sand, etc.
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Example 1 Consider the following two structured reports which are for the same area being explored.
Both of them define a mass function on the textentry deposit.

(report) (report)
(source) Experiment1 (/source) (source) Experiment2 (/source)
(date) 19/3/02 (/date) (date) 19 March 2002 (/date)
(location) NorthSea (/location) (location) NorthSea (/location)
(layer) layer 7 : 100m — 120m (/layer) (layer) layer 7: 100m — 120m(/layer)
(deposit) (deposit)
(belfunction) (belfunction)

(mass value = “0.4”) (mass value = “0.2”)
(massitem)water(/massitem) (massitem)water(/massitem)
(massitem)oil(/massitem) (/mass)

(/mass) (mass value = “0.8”)

(mass value = “0.6”) (massitem)gas(/massitem)
(massitem)gas(/massitem) (/mass)

(/mass) (/belfunction)

(/belfunction) (/deposit)
(/deposit) (/report)
(/report)

Let 7, 5 betwo logical terms that represent the two XML documents above, and let X be a variable. A
fusion predicate Dempster(7, 72, X ) defined later in Section 2 takes these two XML documents as inputs
and generates a merged structured report that grounds X with the combined mass function segment as
shown below.

(report)
(source) Expl and Exp2 (/source)
(date) 19/3/02 (/date)
(location) NorthSea (/location)
(layer) layer 7 : 100m — 120m (/layer)
(deposit)
(belfunction)
(mass value = “0.143”)
(massitem)water(/massitem)
(/mass)
(mass value = “0.857")
(massitem)gas(/massitem)
(/mass)
(/belfunction)
(/deposit)
(/report)

In our approach, each structured report can isomorphically be represented as a logical term: Each tagname
is afunction symbol, and each textentry is a constant symbol. Furthermore, subtrees of a structured report
can be isomorphically represented as subterms in logic. In this way, the information in each structured
report can be captured in a logical language. We have also defined a range of predicates, in a Prolog
knowledgebase, that capture useful relationships between structured reports, and so a set of them can
then be analysed or merged as Prolog queries to a Prolog knowledgebase. In this way, a query to merge
some structured reports can be handled by recursive calls to Prolog to merge the subtrees in the structured
reports. This gives a context-dependent logic-based approach to merging that is sensitive to the uncertain
information in the structured reports and to the background knowledge in the Prolog knowledgebase.



In [HLO44], a method to model and merge uncertain information, represented by probabilities, mass func-
tionsin the Dempster-Shafer theory of evidence (DS theory) [Sha76] and necessity measuresin possibility
theory [DP88], was proposed. Example 1 illustrates how a mass function can be encoded into XML for-
mat and how two mass functions on the same set of values can be merged to produce a combined XML
document. Details of the formal definition and merging procedurewill be reviewed in Section 2.

Herein this and subseguent examples, we use some simplified data from the petrol eum expl oration domain.
The main purpose of petroleum explorationisto analyse qualitatively and calculate quantitatively the well
logging data in order to predict the possible deposits in particular locations. The well logging data are
digital records which can reflect the underground physical features, for instance, electronic resistance,
micro-electrode resistance, natural gamma ray, etc. They are collected by well logging equipment inside
the well from the ground level to some depth underground. The whole depth from the ground level to
the bottom of the well is divided into layers (such as, 100meters to 150meters) based on the digital data
collected and the values of these physical features can give indications of layerswith possible deposits. The
first two XML documentsin Example 1 show how an expert can predict a possible deposit of a particular
layer, by examining the digital data of the layer. Since equipment used is subject to noise and inaccuracy,
multiple experiments are needed in order to make an accurate prediction. Furthermore, the genera analysis
of the broader area of the physical features of the location often provides some additional information
for predication. This knowledge can equally be represented as XML documents and be used to assist
predication when necessary.

The main focus of [HL044] is the modelling and merging of uncertain information associated with tex-
tentriesin XML documents. Multiple pieces of uncertain information concerning the same issue (such as
deposit in the above example) are assumed to be specified on the same set of possible values. However,
[HLO44] does not consider situations where one piece of information uses more specific values than an-
other nor the situation where one piece of information is described on one set of values and another ison a
different set of values where these two sets of values are inter-connected.

We elaborate this issue further here. Assume that for a targeted layer of a specific well of a particular
area, we only wish to conclude whether the layer contains either solid or liquid materials, regardless of
the details of substance. Then we use a set of values {solid, 1iquid} to bear any information we have
about the layer. However, we could make this information more specific by giving different types of solid
and liquid substances, such as, stone, sand, water, gas, oil. Therefore some uncertain information can be
described on this detailed set of values {stone, sand, water, gas, oil}. Thislatter set of values has
a finer granularity than the former one. Furthermore, since possible deposits of a layer are often drawn
through interpreting well logging data other than being observed directly, well logging data will directly
influence the prediction. For instance, it is commonly known that a set of dataisfirst interpreted in terms of
geographical features, and then the assumed features are used to predict possible deposits. In this situation,
the information is represented on one set of values (geographical features, e.g., lithology) and the conclu-
sion is on another set (e.g., deposit). The information from the given set of values should be propagated to
the destination set of values as a new distribution of beliefs. To deal with these situations, in this paper, we
further extend the approach to merging multiple pieces of uncertain information where

e evidenceis specified at different levels of granularity on the same concept as textentries. We refer to
two pieces of this type of evidence as semantically homogeneous. In this case, avalue in a coarser
set can be replace by a set of valuesin afiner set. The example above relating solid and liquid with
stone, sand, water, gas, and oil, belongs to this category.

e evidence is specified on inter-related concepts as textentries. We refer to two pieces of this type of
evidence as semantically heterogeneous. Example 3 below relating stone, sand, water, gas, and oil,
with lithologies L1, L2 etc. belongsto this category.

e evidence is assigned to heterogeneous subtrees involving multiple concepts. We also refer to two
pieces of thistype of evidence as semantically heterogeneous. For instance, if we have a set of values



measuring the lithology of a layer and another set evaluating the type of deposit of the layer, and we
would like to know both the lithology and the deposit of the layer, then the joint set from these two
sets says what lithology and what type of deposit alocation has.

The first two types of evidence are illustrated by Examples 2 and 3 respectively and the third type of
uncertain information is demonstrated by Example 4.

Example 2 Consider the two structured reports about a specific underground layer. The first report gives
more precise descriptions of the possible deposit under a particular layer with probabilitieswhilst the other
gives a more general suggestion of the possible deposit. These two reports describe the same problem
with different levels of abstraction (different granularities), so they have uncertain information that is
semantically homogeneous.

(report) (report)
(deposit) (deposit)
(probability) (probability)
(prob value = “0.2”)water(/prob) (prob value = “0.4”)1iquid(/prob)
(prob value = “0.8”)sand(/prob) (prob value = “0.6”)solid(/prob)
(/probability) (/probability)
(/deposit) (/deposit)
(/report) (/report)

Evidencebearing on afiner granularity (e.g., deposit with valueswater, gas etc) would haveimpact ona
coarser granularity (e.g., deposit with valuesliquid, solid etc) or vice versa. It is sensible to consider
both pieces of evidence at the same level of granularity if one piece of evidence can be propagated to the
level of the other. Thisisthefirst topic we will look into in this paper.

Example 3 The following two structured reports provide two different but inter-related pieces of evidence
about the same layer of the same well. The evidence on the left-hand XML document reports directly the
potential physical nature of the deposit. Thisis commonly used for prediction and thisinformaton can come
from the general knowledge about the area. Whilst the second XML document reports the observationsin
terms of lithology made by the equipment. From the lithological features, we can determine the physical
nature of the deposit (or vice versa). To make use of this second XML report on prediction, we need to have
a proper mapping function which specifies how the interpretations of lithology imply deposits, and then
both of these reports can be merged. Snce these two reports provide uncertain information on two different
but inter-related conceptsi.e, deposit and lithology, we refer to them as semantically heterogeneous.
Propagating a piece of uncertain information from one set of valuesto a different set of valuesisthe second
topic we will investigate in this paper.

(report) (report)
(deposit) (lithology)
(belfunction) (belfunction)

(mass value = “0.2”) (mass value = “0.3”)
(massitem)water(/massitem) (massitem)L1({/massitem)
(massitem)oil(/massitem) (massitem)L3(/massitem)

(/mass) (/mass)

(mass value = “0.8”) (mass value = “0.7”)
(massitem)gas(/massitem) (massitem)L2(/massitem)

(/mass) (/mass)

(/belfunction) (/belfunction)
(/deposit) (/lithology)
(/report) (/report)



Example4 Consider the following two structured reports which again are for the same layer of the same
well. In the left report, there are two probability distributions on two textentries respectively. When we
use this single information to make a prediction, we can either use the information about the deposit or
lithology sincethe former may have been derived fromthelater or vice versa. Whilst in the right report,
the child of the (prob value = “...”) tag is not a textentry, it is in fact a subtree involving two concepts
deposit and Lithology. Thisinformation can be the summary of general knowledge about this area say-
ing what deposit is associated with what lithologies. For the purpose of prediction, uncertainties assigned
to the pairs of values (e.g., (water,L1)) have to be re-assigned to values of deposit such aswater, oil
etc. Following this uncertainty re-assignment, the newly derived uncertain information on deposit can be
merged with the information in the left XML. These two pieces of uncertain information are also referred
to as semantically heterogeneous, however, they require a different method to propagate before they can be
merged. Subtree uncertain information is the third topic we will study in this paper.

(report) (report)
(source) experiment3 (/source) (source) General knowledge (/source)
(date) 19/3/02 (/date) (date) 19 March 2002 (/date)
(location) NorthSea (/location) (location) NorthSea (/location)
(layer) 150m — 155m (/layer) (date) 150m — 160m (/layer)
(deposit) (probability)
(probability) (prob value = “0.4”)
(prob value = “0.2”)water(/prob) (deposit)water(/deposit)
(prob value = “0.8”)gas(/prob) (1ithology)L1(/lithology)
(/probability) (/prob)
(/deposit) (prob value“0.6”)
(lithology) (deposit)gas(/deposit)
(probability) (lithology)L2(/lithology)
(prob value = “0.3”)L1{/prob) (/prob)
(prob value = “0.7”)L2(/prob) (/probability)
(/probability) (/report)
(/lithology)
(/report)

So the purpose of this paper isto significantly extend our previous paper on handling uncertainty [HL04a]
by presenting techniques for merging structured reports with uncertainty expressed: (1) at different levels
of granularity; (2) on different but inter-related sets of values; and (3) on subtrees. We will proceed as
follows. In Section 2, we present formal definitions of logical representations of XML documents, review
the basics of DS theory, and provide formal definitions of modelling and merging uncertain informationin
structured reports in the form of mass functions on the same textentry of two XML documents. In Section
3, we consider propagating and merging uncertain information at different levels of granularity. In Section
4, we investigate methods of reasoning with semantically heterogeneous uncertain information on subtrees.
In Section 5, we compare our work with related research. Finaly, in Section 6 we provide conclusions.

2 Structured reports

We now briefly review definitions for structured reports, Dempster-Shafer theory of evidence (DS theory),
for representing uncertain information in structured reports.



2.1 Basic definition

Each structured report is an XML document, but not vice versa, as defined below. This restriction means
that we can easily represent each structured report by a ground termin classical logic.

Definition 1 Structured report: If ¢ is a tagname (i.e an element name), and ¢ is a textentry, then
(p)d(/p) isastructured report. If ¢ is a tagname (i.e an element name), ¢ is a textentry, 6 is an attribute
name, and « is an attribute value, then (p 6 = k)o(/p) is a structured report. If ¢ is a tagname and
01, ..., 0y @restructured reports, then (p)oy...0, (/) isa structured report.

The definition for a structured report is very general. In practice, we would expect a DTD for a given
domain. For instance, we would expect that for an implemented system that merges petroleum exploration
reports, there would be a corresponding DTD. One of the roles of a DTD, say for petroleum exploration
reports, would be to specify the minimum constellation of tags that would be expected of a petroleum
exploration report. We may also expect integrity constraints represented in classical logic to further restrict
appropriate structured reports for a domain [HS04]. In this paper, we will impose some further constraints
on structured reports, in Section 2.3, to support the handling of uncertainty.

Clearly each structured report is isomorphic to a tree with the non-leaf nodes being the tagnames and the
leaf nodes being the textentries. When we refer to a subtree (of a structured report), we mean a subtree
formed from the tree representation of the structured report, where the root of the subtree is atagname and
the leaves are textentries. We formalize this as follows.

Definition 2 Subtree: Let o be a structured report and let p be a treethat isisomorphicto o. Atreep’ is
a subtree of p iff (1) the set of nodesin p’ is a subset of the set of nodes in p, and (2) for each node ¢ ; in
p', if @; isthe parent of ¢; in p, then ¢; isin p’ and ¢; is the parent of ¢; in p'. By extension, if o’ isa
structured report, and p’ isisomorphic to o, then we describe o’ as a subtree of o.

Each structured report is also isomorphic with a ground term (of classical logic) where each tagnameis a
function symbol and each textentry is a constant symbol.

Definition 3 Abstract term: Each structured report isisomorphic with a ground term (of classical logic)
called an abstract term. Thisisomorphismis defined inductively asfollows: (1) If {¢)¢(/ ) isastructured
report, where ¢ is a textentry, then ¢(¢) is an abstract term that is isomorphic with {(p)é(/¢); (2) If
(p 0 = k)p(/p) is a structured report, where ¢ is a textentry, then (¢, ) is an abstract term that is
isomorphic with {(p 8 = &)¢(/p); and (3) If (p)d1..¢, (/) isa structured report, and ¢ is an abstract
termthat isisomorphicwith ¢4, ....,and ¢}, isan abstract termthat isisomorphicwith ¢,,, then (¢!, .., ¢,)
isan abstract termthat is isomorphic with {p)é1..¢,(/p).

Via this isomorphic relationship, we can refer to a branch of an abstract term by using the branch of
the isomorphic structured report, and we can refer to a subtree of an abstract term by using the subtree
of the isomorphic structured report. Note, Definition 1 describes how an XML document can be defined
recursively starting from the simpliest one which has only one tag name and one value associated with the
tag name. Also Definition 3 specifies how atree structure like XML document can be equally described as
alogical term which also reflects the rel ationships between tag names and their values. For instance, XML
information (date)03/03/99(/date) is denoted as date(03/03/99) in logics where 03/03/99 can be
understood as the value of attribute date.



Example5 Consider the following structured report.

(fieldreport)
(log)(deposit)liquid(/deposit)(lithology)L1(/lithology)(/log)
(layer)250m — 300m(/1layer)

(/fieldreport)

This can be represented by the following abstract term:
fieldreport(log(deposit(liquid),lithology(L1)), layer(250m — 300m))

Inthis abstract term, fieldreport/log/deposit isa branch.

2.2 Basicsof Dempster-Shafer Theory of Evidence

The Dempster-Shafer theory (DS theory) of evidence provides a mechanism for modelling and reasoning
with uncertain information in a numerical way, especially when it is not possible to assign a proportion of
thetotal belief to single elements of a set of values. DS theory ([ Sha76, Sme88]) has acommonly accepted
advantage over probability theory in terms of assigning a proportion of an agent’s belief to a subset of a
set of possible values rather than only on singletons, and assigning any unspecified proportion to the whole
set. Thisis especially useful when the evidence supporting an agent’s belief is not accurate or incompl ete.
Furthermore, multiple pieces of evidence can be accumulated over time on the same subject and these
pieces of evidence should be combined/merged in some way in order to draw a conclusion out of them.
Dempster's combination rule in DS theory provides a simple mechanism to achieve this objective. Due
to these two advantages provided by DS theory, we have chosen it to model, reason and merge uncertain
information in structured reports.

Let 2 be afinite set containing mutually exclusive and exhaustive solutions to a question. {2 is called the
frame of discernment. A massfunction, also called abasic probability assignment, captures the impact
of a piece of evidence on subsets of Q2. A mass functionsm : p(2) — [0, 1] satisfies:

(1) m(®) =0
(2) EAQQ m(A) =1

Whenm(A) > 0, A isreferredto asafocal element. To obtain thetotal belief in asubset 4, i.e. the extent
to which all available evidence supports A, we need to sum all the mass assigned to all subsets of A. A
belief function, Bel : p(2) — [0, 1], isdefined as

B@l(A) = EBQAT)’L(B)
A plausibility function, denoted Pl : p(£) — [0, 1], is defined as

PI(A) = 1 — Bel(A) = Spnazg m(B)

Dempster’s rule of combination below shows how two mass functions m ; and m4 on the same frame of
discernment from independent sources, can be combined to produce a merged mass function.

_ Zuanp=c (mi(A) x my(B))
m&ma(0) = T i (A) x ms(B))

A mass function reduces to a probability distribution when every focal element isin fact asingleton. It is
with this aspect that in this paper, we view probability theory as a special case of DS theory.



2.3 Representing uncertain information

In order to support the representation of uncertain information in structured reports, we need some further
formalization. First, we assume a set of tagnamesthat are reserved for representing uncertain information.
Second, we assume some constraints on the use of these tags so that we can ensure they are used in a
meaningful way with respect to probability theory and Dempster-Shafer theory of evidence. The set of
key uncertainty tagnames for this paper are probability and belfunction. The set of subsidiary
uncertainty tagnames for this paper are prob, multiitem, mass, and massitem. The union of the key
uncertainty tagnames and the subsidiary uncertainty tagnamesis the set of reserved tagnames.

Definition 4 ([HLO04a]) Thestructured report (probability)oy,..,on(/probability) iscalledaprobability-
valid component (ProVC) iff each o; € {01,..,0,} is of the form (prob value = k)@(/prob) where
k € [0,1] and ¢ is a textentry.

All textentries ¢; between (prob value = k;)¢;(/prob) are elements of apre-defined set containing mu-
tually exclusive and exhaustive values that the rel ated tagname can take.

Example 6 Thefollowingisa ProVC which correspondsto a probability distribution p(water) = 0.2 and
p(gas) = 0.8.
(probability)
(prob value = “0.2”)water(/prob)
(prob value = “0.8”)gas(/prob)
(/probability)

Definition 5 Thestructuredreport (probability)oy, .., o, (/probability) iscalledasubtreeprobability-
valid component (ProSC) iff for eacho; € {01, ..,0,}, 0; isof theform

(prob value = k;)(multiitem)o!, ..., (/multiitem)(/prob)

andfor each o € {ai, .0}, }, o} isof theform (47, )¢5, (/¢5,), and ; € [0,1], 4}, isatagname, and ¢,
is a textentry.

Example 7 The following is a ProSC that models a probability distribution on a compound set of values
with p({water,L1}) = 0.4 and p({gas,L2}) = 0.6.

(probability)
(prob value = “0.4”)
(multiitem)
(deposit)water(/deposit)
(1ithology)L1(/lithology)
(/multiitem)
(/prob)
(prob value = “0.6”)
(multiitem)
(deposit)gas(/deposit)
(lithology)L2(/lithology)
(/multiitem)

(/prob)
(/probability)



The reserved tagname multiitem within tagname prob indicates that there are multiple conceptsin this
uncertain information. In the above example, each probability value is attached to a compound element
combining deposit and lithology.

Definition 6 ([HLO4a]) Thestructuredreport (belfunctionyoy,..,0,(/belfunction)iscalledabefunction-
valid component (BelVC) iff for each o; € {01, ..,0,} 0; is of the form (mass value = k;)t;(/mass)
and ¢; isintheform

(massitem)¢;, (/massitem), ..., (massitem)@; (/massitem)

where k; € [0,1] and ¢ is a textentry. To make the subsequent notation simpler, we also let ¢»; =
{di,,.-., ¢, }. In this way, a BelVC can be represented as a collection of (subset, mass value) pairs,
(wi,ni),i = ]-7"',77“

Example 8 The following is a BelVC on a single tagname deposit with m({water, 0il}) = 0.2 and

m({gas}) = 0.8.
(belfunction)

(mass value = “0.2”)
(massitem)water(/massitem)
(massitem)oil(/massitem)

(/mass)

(mass value = “0.8”)
(massitem)gas(/massitem)

(/mass)

(/belfunction)

The textentriesin a BelVC are elements of a pre-defined set containing mutually exclusive and exhaustive
values for the related tagname as in the case for ProV Cs. We now provide the definition of mass functions
on subtrees.

Definition 7 Thestructured report (belfunctionyoy, .., o, (/belfunction) iscalledasubtreebefunction-
valid component (BelSC) iff for each o; € {01, ..,0,} 0; isof theform (mass value = k;) ¢); (/mass)
and v; isintheform

(multiitem)ep;, (/multiitem)...(multiitem)p; (/multiitem)
and each ¢;; in{y;,,...,¢;, } isintheform
(5005, (1050 - (P53, )85, (/5

where ; € [0,1], pi, are tagnames, and ¢} are textentries. Equally, ¢; = {< ¢} ,..., ¢} >,...,<
L s> @, >} canbeusedto stand for asubset with mass value « ; where the subset consists of elements
with multiple atom values.



Example9 The following is a Bel SC providing a mass function on a subtree.

(belfunction)
(mass value = “0.4”)

(multiitem)
(deposit)water(/deposit)
(1ithology)L1(/1lithology)

(/multiitem)

(multiitem)
(deposit)oil(/deposit)
(1ithology)L3(/1lithology)

(/multiitem)

(/mass)
(mass value = “0.6”)

(multiitem)
(deposit)gas(/deposit)
(1ithology)L2(/1lithology)

(/multiitem)

(/mass)

(/belfunction)

If abelief functionis defined on asubtree, then for each massvalue, its elements should come from different
frames. So the tagnames should be distinct. In addition, if the subtree involves n tagnames, then in each
((multiitem), (/multiitem)) pair, there should ben tagnames. These are the two constraints we impose
on BelSCs. When a tagname among these n names is missing, this part of the XML can be extended to
include the missing tagname. More specifically, if we are defining a mass function for a subtree involving
frames ©, and O, then for a mass assignment that involves elements from just one of the two frames, we
can extend it to include al the elements in the other frame. For example, the mass function in Example 9
gives
m({< water,L1 >, < 0il,L3 >}) = 0.4, m({< gas,L2>}) = 0.6.

If it was the case that m({< gas,L2 >}) = 0.4 is misrepresented as m({gas}) = 0.4, then it can be
extended into m({< gas,L1 >, < gas,L2 >,...,< gas,L10 >}) = 0.4. Thismeans gas is compatible
with all the lithologies. Therefore, in the following, we always assume that a BelSC complies to these two
constraints.

The ProVCs, ProSCs, BelVCs, and BelSCs are referred to as uncertainty components and are normally
part of larger structured reports. Normally, we would expect that for an application, the DTD for the struc-
tured report would exclude a key uncertainty tag as the root of a structured report. In other words, the
key uncertainty tags are roots of subtrees nested within larger structured reports. We also assume various
integrity constraints on the use of the uncertainty components.

Definition 8 Let (probability)oy,..,0,(/probability) beaProVCor aProSC,andleto; € {o1,..,0n}
be either of the form (prob value = k;)¢;(/prob) or of the form (prob value = k;) (multiitem)
Giry---,Pi (/multiitem) (/prob). This component adheres to a full probability distribution con-
straint iff the following two conditions hold:

(2)forallid,j, ifl<i<nandl < j<nandi#j theng; # ¢; of {¢i,,..., 05} #{Djis-.., 05}

Definition 9 Let (belfunction)oy,..,0,(/belfunction) be a BelVC or a BelC, let S = {(+1, k1),
.oy (¥n, £n)} bethe collection of (subset, mass) pairs in the component. This component adheres to the
full belfunction distribution constraint iff the following two conditions hold:

(1) Xk =1

(2)foralli,j, ifl<i<nandl<j<mnandi#j, theny; # v,

10



When there are two BelV Cs referring to the same textentry, we need to merge them. The following proce-
dure implements Dempster’s combination rule.

Definition 10 ([HLO44]) Let the following be two BelVCs

(belfunction)oy,..,0,(/belfunction)
(belfunction)o?, .., 07 (/belfunction)

where

. 0} €{o},..,0,}isof theform (mass value = k})¢} (/mass)
. the (subset, mass) pair collectionis S1 = {(¢}, s}

2 2 27 i -
. 0; €{0of,..,0,} isof theform (mass value = &;

42 (/mass)

. the (subset, mass) pair collectionis Sy = {(¢/7,£7), ..., (¥7,K2)},

A W DN B

)
), ...
)
)

Let the combined BelVC be (belfunction)oy,..,05(/belfunction) whereeach oy € {o1,..,0,} isof
the form (mass value = ky)1;(/mass) and

k! xn?
kk = 1 2
1 -3k}, x K2,

such that ¢, = ¢} N o7 for the (¢}, k;) and (¢7, x3) pairs, and ¢, Ny, = O for the (¢, ;) and
(42, k2,) pairs, and ¢y, is of the form (massitem)¢y, (/massitem), ..., (massitem)gy. (/massitem).

m? m

Thevaluek, = Xkl x k2, (thatis, ¥ 4np—g (m1(A) x ma(B)) indicates how much of thetotal belief has
been committed to the emptyset while combining two pieces of uncertain information. A higher x | value
reflects either an inconsistency among the two sources or lower confidencein any of the possible outcomes
from both sources.

Definition 11 Let the abstract terms ;, and 7 each denote a BelVC and let X be alogical variable. The
predicate Dempster(7, T2, X ) issuch that X isevaluated to 73 where 73 is the abstract term denoting the
combined Bel VC obtained by Definition 10.

The predicate Dempster(r, 72, X) is defined in Prolog to carry out the actual merge. Looking back at
Example 1 again, if welet 7; and » be the abstract termsfor the first two XML documentsin the example,
then X represents the merged abstract term isomorphic to the third XML document in the example.

3 Merging uncertainty on textentrieswith compatible frames

In this section, we concentrate on merging structured reports with uncertain information (uncertainty valid
components) on textentrieswhere either the uncertainty is expressed at different levels of granularity (which
we describe as semantically homogeneous) or on different but inter-related sets of values (which we de-
scribe as semantically heterogeneous). We consider both probabilistic and belief function information and
take probability theory as a special case of belief function theory. We leave the topic of merging semanti-
cally heterogeneous uncertainty-valid components on subtrees from multiple structured reports to the next
section.
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When merging two structured reports, one with an uncertainty valid component and one without, we take
the latter as a special case of the former and assign value 1.0 (no matter whether it stands for a probability
value or a mass value) to the corresponding textentry (or textentries). Then, these two structured reports
can be merged using one of the rules defined bel ow.

Before proceeding to the details of this logical based merging technique, we need to emphasize that in
this paper any two uncertainty valid components to be merged are assumed to refer to the same or related
issue (or topic) that are being considered. For instance, both uncertainty valid components are either about
the deposit of layer X of NorthSea for WellNo A, or about the deposit or 1ithology of NorthSea
for WellNo A, layer VY. If it is the case that one uncertainty valid component is about the deposit of
NorthSea for WellNo A and another is about the 1ithology of NorthSea for WellNo B, then these two
uncertainty valid components cannot be merged. The method to verify semantically whether two given
uncertainty valid componentsare eligiblefor mergingis givenin [HS04]. In therest of this paper, whenever
we intend to merge two such components, we assume their eligibility has been checked and we will not
repeat this prerequisite any further.

3.1 Propagation operation in DStheory

When two mass functions are not given on the same frame, they cannot be combined directly, rather one
mass function has to be propagated to the frame of another mass function. Let us now look at severa
situations when this propagation can take place.

Definition 12 Let Q; and Q5 be two frames of discernment and ' be a mapping functionT' : Q; — 292,
When thefollowing conditionshold, 2 iscalled arefinement of Q2,, and 2, iscalled a coar sening of 2,.
I iscalled a refinement mapping.

(1) T(p) =Ty # 0, for all ¢ € Q;, whereTy C Q,
(2) T(¢:) NT(¢;) =0, wheni#j
(3) Useq, T'(¢) = Q2

Example 2 in Section 1 gives a mass function (we take a probability distribution as a special case of mass
function) on frame Q; = {liquid, solid} and another on frame 2> = {water,o0il, gas, sand, stone}
respectively. (2, isin fact arefinement of €24, if we define the refinement mapping function I as

I'(liquid) = {water,oil,gas}, I'(solid) = {sand, stone}.
A refinement mapping generates a set of disjoint subsets of the finer frame. Through a refinement mapping
I", we can aso define a coar sening mapping functionT' : Qy — Q4 as;
I'(¢y)=¢ where ¢ € Ty, andT'(¢) =Ty,
For instance, the coarsening mapping function of the above refinement mapping function gives
[(water) = [(0il) =I'(gas) = liquid I''(sand) = ['(stone) = solid
Lemmal Let (2, be a refinement of frame 2, by mapping function I" and let m o, be a mass function on

Q4. Function mgq,, defined below is a mass function on (2,.

ma, (T) = mq, (S) whereT = | JT\(¢) for ¢ € S,and S C ), isafocal element. (1)
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Let 0, and Q, betwo frames as defined in Example 2 and let
mgq, ({1iquid}) = 0.4, mgq, ({solid}) = 0.6
be amass function on Q. Applying Lemma 1,
maq, ({water, oil, gas}) = 0.4 mgq,({sand, stone}) = 0.6

isamass function on 5.

Lemma?2 Let Q; bea coarsening of frame 2, by coarsening mapping function T'’ and let mq,, be a mass
function on €2,. Function mgq,, defined below isa mass function on ;.

ma, (S) = X1 ma, (T) whereS = | JT'(¢) for ¢ € T and T C Q, isafocal element.  (2)

Yet again, if we have mq, ({water,0il}) = 0.2 and mq,({gas}) = 0.8, based on Lemma 2, this mass
function generates amass functionon 2; asmg, ({1iquid}) = 0.2+ 0.8 = 1.

Now we look at more complex mapping relations between frames.

Definition 13 Let ©2; and Q5 be two frames of discernment containing possible values to two related
questions Q; and Q. Let T be a mapping function T : Q; — 2%2 which defines that whenever ¢} is the
true answer to question 9 then the true answer to question () must be one of the elementsin T'(¢}) # 0,
and for every ¢7 € Q,, there exists at least one ¢} suchthat ¢> € I'(¢; ). Then frames €2, and Q2 are said
to be compatible.

Mapping T is referred to as a compatibility mapping [LGS86, LH+93]. Equally, a compatibility mapping
can be defined from Q5 to ;. A refinement (or coarsening) mapping is a specia case of compatibility
mapping.

Lemma3 Let 2, and Q, be two related frames with a compatibility mapping I'. Let mq, be a mass
function on €2 . Then function mq, defined below is a mass function on 2.

ma,(T) = Ss mo, (S) where T = | JT(¢) for ¢ € S and S C 0, isafocal element. (3)

All these three Lemmas can be proved easily (e.g., [Sha76]).

For instance, the relationship between deposits (captured by Q2 ») and lithologies (captured by €23) can be
established through amapping T : Q5 — 22 as

P(water) = {L1,L2}, T'(oil) = {L3,L4}, ['(gas) = {L2,L5,L6},
[(sand) = {L8,L9}, TI'(stone)= {L7,L8}.

Or amapping functionT'”" : Q3 — 22 as

I'"(L1) = {water}, TI"(L2) = {water,gas}, TI"(L3)={oil},
["(L4) = {oil},  I"(L5) = {gas}, I"(L6) = {gas},
["(L7) = {stone}, TI'"(L8)= {sand,stone}, I"(L9) = {sand}.

Using this mapping relationship, the uncertain information on €2 3 in the second XML document in Example
3 can be propagated to 2, to obtain anew mass function on deposit as

maq,({water,0il}) = 0.3, mgq,({water,gas}) =0.7.
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3.2 Predicatefor belief propagation on textentries

We now define aformal procedureto perform the above propagations as discussed in Section 3.1 and define
apredicateto call the procedure.

Definition 14 Let (belfunction)oy,..,0,(/belfunction) bea BelVC where

1 o} €{o},.,0,} isof theform (mass value = x;)1); (/mass)

i

2. S ={(},k1),..., (¥}, k})} isthe collection of (subset, mass) pairs

3T : O — 2% is a compatibility mapping and I'(¢}) = I'(¢}) U ... U T(¢; ) where
b =A{di,,--- 05}

Let the propagated BelVC on €2, be (belfunction)of, .., o; (/belfunction) whereeacho? € {of,..,0;}
isof the form (mass value = «7)¢7(/mass) and
K7 =Sk st ] =T(y;) for each (¥}, x;) pair

and+)7 isof theform (massitem)¢? (/massitem)--- (massitem)gb?y (/massitem)

Definition 15 Let the abstract term beaBelVC on ;. Let I' be a compatibility mapping T : Q; — 22,
and X bealogical variable. The predicate Propagate(r,T', X) issuch that X isevaluatedto 7' where 7/
is the abstract term denoting the propagated BelVC on €2, obtained by Definition 14.

Predicate Propagate(r,[’, X') can be used to generate a BelVC on a frame from an existing BelVC on
another frame, no matter whether the relationship between the two framesis a refinement, or a coarsening,
or compatible.

Since we take a ProV C as a special case of BelVCs, it is possible to easily convert the former to the format
of the latter as givenin [HLO4a]. We repeat this definition again here.

Definition 16 Let abstract term 7 be a ProVC (probability)oy, ..,0,(/probability) and each o; €
{o1,..,0,} isof theform (prob value = k)¢(/prob) wherex € [0, 1] and ¢ isatextentry. Then 7’ isthe
abstract term denoting the BelVC (belfunction)oy, .., o (/belfunction) whereeach o} € {o1,..,0,}
isof the form (mass value = k) (massitem)d(/massitem)(/mass)and x € [0, 1], and ¢ is a textentry.

Definition 17 If the abstract term 7 isa ProvVC and X isalogical variable, then BayesBelief(r, X) is
a predicate such that X isevaluated to 7’ where 7' isthe abstract term denoting the BelVC aobtained from
7 by Definition 16.

In an analogous way to Definitions 16 and 17, it is possible to define how a ProSC can be converted into a
BelSC.

Definition 18 Let abstract term 7 be a ProSC (probability)oy, .., 0, (/probability) and each o; €
{01, .., 0, } isof the form (prob value = k;)1);{/prob) where x; € [0,1] and ¢; isin theform

(multiitem)(pi, )i, (/pir) - - (pi.)¢i. (/pi,)(/multiitem)

Then 7' is the abstract term denoting the BelVC (belfunction)of,..,0),(/belfunction) where each
o} € {o1,..,0,,} isof theform (mass value = k; )} (/mass) and x; € [0,1],and ¢} isin theform

(multiitem)(pi, )i, (/pa) - -- (pi,)bi. (/pi, ){/multiiten)
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Definition 19 Let the abstract term 7 be a ProSC and let X be a logical variable. The predicate
BayesTreeBelief(r, X) is such that X is evaluated to 7' where 7’ is the abstract term denoting the
Bel SC obtained from 7 by Definition 18.

Example 10 Let usre-visit Example 2. Let 7, and = be the abstract terms for the two XML documentsin
this exampleleft and right. Both of the ProVCs can be converted by calling predicatesBayesBelief(7, X)
and BayesBelief(7s, X2), where X; and X, are ground by abstract terms 7| and 7 respectively where
7, and 75 are the converted BelVCs represented by the XML documents|eft and right below (respectively).

(report) (report)
(deposit) (deposit)
(belfunction) (belfunction)
(mass value = “0.2” (mass value = “0.4”
(massitem)water(/massitem) (massitem)liquid(/massitem)
(/mass) (/mass)
(mass value = “0.8”) (mass value = “0.6”)
(massitem)sand(/massitem) (massitem)solid(/massitem)
(/mass) (/mass)
(/belfunction) (/belfunction)
(/deposit) (/deposit)
(/report) (/report)

If an agent’s query is posed on the concept deposit at the general level, eg, either answer solid or
liquid will be sufficient, then uncertain information represented by X'y should be propagated to this gen-
eral frame using predicate Propagate(X;, I, X3) where I’ is a coarsening mapping and X3 is ground
to 3 asfollows.

(belfunction)
(mass value = “0.2”)
(massitem)liquid(/massitem)
(/mass)
(mass value = “0.8”)
(massitem)solid(/massitem)
(/mass)
(/belfunction)

Finally, 73 can be combined with 7} using Dempster(X3, X5, X4) to obtain the final result where X3
is ground by 75 and X is ground by 75. The whole sequence of calls to the Prolog predicates can be
summarized as.

BayesBelief(7, X1) A BayesBelief(my, X») A Propagate(Xy,I", X3) A Dempster(Xs, Xs, X4)

On the other hand, if a query is posed at a more detailed level, then the call to Propagate(X ,I", X3)
isreplaced by Propagate(Xs, I', X3) where the mass function on the general level of frame will be prop-
agated to the finer frame through a refinement mapping T'. In this case, the sequence of executions of
predicatesisrevised as.

BayesBelief(7y, X1) A BayesBelief(m, Xa) A Propagate(X»,I', X3) A Dempster(X;, X3, X4)

Example 11 Consider the following three uncertainty valid components where 71, 7 are the abstract
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terms of the left and right BelVCs, and 73 is the corresponding abstract term for the ProVC.

(belfunction) (belfunction)

(mass value = “0.2”) (mass value = “0.4”)
(massitem)water(/massitem) (massitem)liquid(/massitem)
(massitem)gas(/massitem)

(/mass) (/mass)

(mass value = “0.8”) (mass value = “0.6”)
(massitem)sand(/massitem) (massitem)solid(/massitem)

(/mass) (/mass)

(/belfunction) (/belfunction)
(probability)

(prob value = “0.2”)water(/prob)
(prob value = “0.8”)gas(/prob)
(/probability)

Let () be an agent’s query about information on the possible deposit of a certain location at the most
general level. Q can be answered by the following string of callsto several predicates.

Propagate(r;, I, X1) A Dempster(X;, 2, X2)
NBayesBelief(r3, X3) A Propagate(Xs,IV, X4) A Dempster(Xa, X4, X;5)

Inthis, Propagate(r;, ', X1) ADempster(X;, 72, X2) takes the converted BelVC (froma detailed frame
to a general frame through a coarsening mapping I'') asiits first argument and combines it with the second
BelVC (on the right-hand side) to produce a merged result denoted by X 5. This newly generated BelVC is
then combined with another converted Bel\VVC denoted by variable X 4 (from probability, using condition
literal BayesBelief(rs, X3) first and then propagated to the right frame) using predicate Dempster to
obatin the final result which is denoted by X 5.

(belfunction)
(mass value = “0.039”)
(massitem)liquid(/massitem)
(/mass)
(mass value = “0.960”)
(massitem)solid(/massitem)

(/mass)

(/belfunction)

All the three sources have a high confidencein choice {solid} thanin {1iquid}, so the combined result
gives ahigher confidencein the choice preferred by all of them and alower confidencein the less preferred
one. Thisis due to the fact that these sources are in agreement with each other. Therefore, when multiple
sources are not in conflict, merging them will produce a more complete and comprehensive solution than
individual sources. Methods for detecting inconsi stencies among multiple sources have been discussed and
provided in [HL044a] and we will not discuss them further here.

4 Merging uncertain information on subtrees

To develop predicates for merging subtree uncertainty components, we need to look at the approaches to
propagating mass functions among compound frames, since a subtree uncertainty component contains two
or moreframes of discernment whilst aquery may only berelated to one of them. Thefirst subsection below
looks into the techniques of mass function propagation in this situation which is followed by a subsection
on predicates to merge subtree uncertainty components.
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4.1 Extension and projection operationsin DStheory

The concept of compatible frames (or compatibility relations) can be extended to situations where aframe
isinfact a Cartesian product (or a subset of the product) of several frames.

Definition 20 Let Q;,i = 1,...,n ben frames of discernment each of which contains mutually exclusive
and exhaustive solutions to a related question or a variable. Frame 2 = ® ;{2; isajoint frame containing
solutions to the joint question or the joint variable.

For instance, let ©2; be a frame containing values (answers) to question ‘What deposit is it?’, and
5, be a frame containing values (answers) to question ‘What lithology is it?’, then Q; ® Q5 is
the frame containing valuesfor the joint question 'What deposit and what lithology is it?’ with
vauesthat areintheform < wy,,ws; > wherew;; € Oy andws; € Q». If some of the pairs < wy,, wa; >
are false, that is, w;; and w; are not compatible, 2; ® Q- is then a proper subset of the set product
consisting of only those pairs with compatible elements from individual frames. Values of aframe are also
referred to as configurations of the question or variable associated with the frame. For example, if we let
g and h be two variables that can take values from 2, and 2 ® Q, respectively, then value water is a
configuration of g and value < water, L1 > isaconfiguration of h.

Definition 21 [LHAO3] Let V' = {ry,r2,...,7,} ben variables each of which has a set of configurations
represented by its associated frame of discernment 2;. Let V,, C V and V, C V' be two subsets of variables
whereV, C V,,andlet Qy, = ®,,ev,Q; andQy, = ®,, ¢y, (2; betwojoint framesfor them. Let @ C 2y,
be a set of configurationsof V. Then, the proj ection of ) to (2, , denoted by Q*"» isaset of configurations
for V,,. Similarly, let H bea subset of 2y, , then the extension of H to 2y, , denoted by H ™V« is H @ Qy, \v,
which is a set of configurationsfor variable set V.

V. asubset of variables, is also referred to as a joint variable. In the following, we talk about a subset of
variables or ajoint variable interchangeably without further explanation. In either case, 2 v, is the full set
of configurationsfor it.

Example 12 Assume r1, 72,73, and r4 are four variables taking values from frames of discernment Q;,
1 = 1,2,3,4 r%pectively, where 0 = {wn,wlg}, 0y = {WQl,wQQ,OJQ3}, 93 = {W31,W32,w33}, and
Oy = {W41,w42,w43,w44}. Let Vp = {7'1,’/'2} and Vq = {7“1,’/’2,’/’3} be two subsets of VariablesandQ =
{< w1, wa1,ws1 >, < wi2,wss,ws >} beaset of configurations for V,,, then Q> = {< w1, w1 >,
< wia,wa3 >} isaset of configurationsfor V.

However, given a set of configurations H = {< wi1,ws1 >,< wi2,we3 >} for V,, its extension to
variable set Vq would be Ql = H"Wa = {< w11, Wwa1,ws1 >, < Wiz, Wss,ws; >, < Wii,wWs1,wWss >,
< wig,Wes, Wi >, < Wi1,wWer,wss >, < Wia,wWss,wss >}. Thisset of configurationsis different from @
although the projection of @) is H too.

Definition 22 Let V,, C V and V, C V be two subsets of variableswhere § # V,, C V;. Let m be a mass
function on 2y, for thejoint variable V;, then the marginal of m on Qy, for thejoint variable V,,, denoted
by m*"» defined below, is a mass function on Q.

m*V (H) = 2{m(G)|G C Q,,G*"» = H, G isafocal elemet}

Equally, if m is a mass function on Qy;, for the joint variable V), then the marginal of m on Qy, for the
joint variable V;, denoted by m ™V defined below, is a mass function on Qy;,

m'"e(G) = S{m(H)|H C Qy,,H"* = G, H isafocal element}
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Example 13 Consider the following two uncertainty-valid components.

(belfunction) (belfunction)

(mass value = “0.2”) (mass value = “0.4”)
(massitem)water(/massitem) (multiitem)
(massitem)gas(/massitem) (deposit)water(/deposit)

(/mass) (lithology)L1({/1lithology)

(mass value = “0.8”) (/multiitem)
(massitem)sand(/massitem) (multiitem)

(/mass) (deposit)oil(/deposit)

(/belfunction) (lithology)L3(/1lithology)
(/multiitem)
(/mass)
(mass value = “0.6”)
(multiitem)

(deposit)gas(/deposit)
(lithology)L2(/1lithology)
(/multiitem)

(/mass)

(/belfunction)

The left-hand XML document defines a mass function on frame 2, = {water,o0il, gas, sand, stone}
asmgq, ({water, gas}) = 0.2 and mq, ({sand}) = 0.8, and the right-hand XML document defines an-
other mass function on frame 2, ® Q3 where 3 = {L1,L2,L3,L4,L5} as mq,pa, ({< water,L1 >
,< 0il,L3 >}) = 0.4 and mg,gq, ({< gas,L2 >}) = 0.6. Assume an agent is interested in knowing
the joint impact of these two pieces of evidence on the value set (2 5, then the impact of the mass function
on Q, ® (3 has to be marginalized on 2,. Based on Definition 22, mq,q, gives a new mass function
on Qy as mgq, ({water,0il}) = 0.4 and mg, ({gas}) = 0.6, which can be merged with mg, using
Dempster(7;, T2, X ) to obtainthefinal result m({water}) = 0.4 and m({gas}) = 0.6, if we assume that
these two pieces of evidence are from independent sources.

4.2 Predicatefor belief marginalization on subtrees

Now we provide a procedure that implements the marginalization of a mass function from alarger variable
set to asmaller set defined in Definition 22.

Definition 23 Let the following be a BelSC (belfunction)oy, .., 0, (/belfunction) where

1 oj € {oi,.,0,} isof theform (mass value = x;) ¢} (/mass)
2. ¢} isof theform (multiitem)p; (/multiitem)...(multiitem)y; (/multiitem)

3. eachy] in{p} ,...,¢; }isoftheform(p} ) Z1“(//)}“),...,(&1”) Z1”(//)}”)

4. andp; ,...,p;, aretagnames,and¢; ,...,¢; aretextentries.

it1” i1

Let the variable set associated with it be V;, with configurationsin Qy, . Let V}, C V.

When |V, | > 1, let the marginalized BelSC on Qy;, be

(belfunction)oi, .., Ug (/belfunction)

where each 0]2 € {o?, ..,0'3} isof theform (mass value = ﬁ?)@[}?(/mass)
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and each ¢ is of the form
.. 9 .. .. 9 ..
(multiitem)ep; (/multiitem)...(multiitem)y; (/multiitem)

and each 7, is of the form

2 2 2 2 2 2
(ij) jM(/pjkl): ) <ijf> jk,</ijf>

and
K= Sik, st {< @), 00, PP ={<9F .07, >)
When |V, | = 1, let the marginalized BelVC on Qv be
(p?)(belfunction)o?, .., Uﬁ(/belfunction)(/pQ)

where each 0]2 € {o?, ..,0'3} isof theform (mass value = ﬁ?)@[}?(/mass)

and each ¢? is of the form

<massi1:em)<;5?1 (/massitem), ..., <massitem)¢?m (/massitem)

and
K; = Sikg, St {< diy,e 00, P = {61} | (67, € {¢],,--. 4], })
and p? isa tagnamethat is associated with the set of valuesin Qy; .

When | V,, |= 1, that is, thereis only one variablein set V,,, aBelSC is reduced to aBelVC.

Definition 24 Let the abstract term 7 be a BelSC on a subtree with variable set V. Let V,, be a subset of
V, and X bealogical variable. The predicate PropagateTree(r, V,, X) issuch that X is evaluatedto 7’
where 7' is the abstract term denoting the propagated Bel SC (or BelVC) on V/,, obtained by Definition 23.

Example 14 Let r denotethe BelSC in Example 13. Applying predicatePropagateTree(r, {deposit}, X),
we obtain a new BelVC as
(deposit)
(belfunction)
(mass value = “0.4”)
(massitem)water(/massitem)
(massitem)oil(/massitem)
(/mass)
(mass value = “0.6”)
(massitem)gas(/massitem)
(/mass)
(/belfunction)
(/deposit)

Sncethereis only one variable to project on when using this predicate, a subtree structure is reduced to a
BelVC on a textentry.

Similar to the procedure and predicate above, it is possible to define another procedure and predicate to
marginaize amass function from 2y, to 2y, through an extension operation. However, obtaining a mass
function on alarger frame (with more variables) is not as useful as the projection operation which derives
amass function on asmaller frame, therefore we will not include these detailed definitions in this paper.
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5 Comparison with related approaches

In [NJO2], a probabilistic XML model was presented to deal with information with uncertainty that was
in the form of probabilities. Using this model, we can construct an XML report as illustrated below. Two
types of probability assignments are distinguished, mutually exclusive or not mutually exclusive. For the
first type, probabilities are assigned to single atoms where only one of these atoms can be true, and the total
sum of probability values is less than or equal to 1 (asfor (precipitation)). For the second type, two
single atoms can be compatible, so the total sum of probabilities can be greater than 1 (asfor (cities)).

(report)
(source)TV1(/source)
(date)19/3/02(/date)
(cities)

(city Prob = “0.77)
(cityName)London(/cityName)
(precipitation)

(Dist type = “mutually — exclusive”)
(Val Prob = “0.1”)sunny(/Val)
(Val Proc = “0.7”)rain(/Val)
(/Dist)
(/precipitation)

(/city)

(city Prob = “0.4”)
(cityName)GreaterLondon(/cityName)
(precipitation)

(Dist type = “mutually — exclusive”)
(Val Prob = “0.2”)sunny(/Val)
(Val Proc = “0.6”)rain(/Val)
(/Dist)
(/precipitation)
(/city)
(/citties)
(/report)

This model allows probahilities to be assigned to multiple granularities. When this occurs, the probability
of an element is true is conditioned upon the existence of its parent (with probability), and so on until up
to theroot of the tree. For example, if we would like to know the probability of sunny in London, we have

Prob(precipitation = sunny A cityName = London)

= Prob(precipitation = sunny) * Prob(cityName = London)
*Prob(precipitation = sunny A cityName = London | city) x Prob(city | cities)
*Prob(cities | report) x Prob(report)

=0.1%x1.0%x0.7%x1.0%x1.0% 1.0 =0.07

Therefore, the probability associated with atextentry (at any level) is treated as the conditional probability
under its parent. A query is answered by tracing the relevant branches with the textentries specified by the
query, and cal cul ating probabilities using the conditional probabilities along these branches. These derived
probabilities are then either multiplied or added depending on wherher the “and” or the “or” operation are
used in the original query. For instance, the query “London s either sunny or rain on 19/3/02" is evaluated

20



/\d

[ )
nm ‘o t ‘o nm ‘o/ x“o
\Y \Y \Y%
1 1 1] 1]
o o o (e}
| L |
John 1111 John 2222

Figure 1: A probabilistic XML tree.

as.

Prob(cityName = London A ((precipitation = sunny) V (precipitation = rain)))

= Prob(cityName = London) * Prob(precipitation = sunny)
*Prob(cityName = London A precipitation = sunny | city) * Prob(city | cities)
*Prob(cities | report) x Prob(report)

+Prob(cityName = London) * Prob(precipitation = rain)

*Prob(cityName = London A precipitation = rain | city) * Prob(city | cities)
*xProb(cities | report) x Prob(report)

= (1.0%0.1%0.7 % #1.0 % 1.0 % 1.0) + (1.0 % 0.7 % 0.7 % 1.0 % 1.0 + 1.0) = 0.07 + 0.49 = 0.56.

The main advantage of thismodel isthat it allows probabilities to be assigned to multiple levels of subtrees
and provides a means to calculate the joint probability from them. However, it does not merge multiple
probabilistic XML documents on the same issue. On the contrary, our uncertainty XML model focuses
on multiple XML datasets and provides a set of means to merge opinions with uncertainty from different
sources on textentries and subtrees. Therefore, our modelling and reasoning method is more general then
that in [NJ02].

Another method to model and reason with probabilistic XML information is reported in [KKAO5]. In this
paper, three types of tags are identified as: (1) tags that stand for probabilities (denoted as V); (2) tags that
stand for possible values associated with probabilities (denoted as o); and (3) ordinary tag names (denoted
ase). A tree structure including these notations isillustrated in Figure 1 [KKAOQ5].

Since the authors in the paper did not provide the actual XML structure for the example (or any other
examples) to explicitly show how these types of tags are represented, we created an XML document for
this example based on our own understanding as demonstrated in Figure 2 left. As we can see, there is
lot of redundant information in this XML document, such as all the tags related to possible values are
not strictly required, since apossible tag will always sit in between a probability tag and a normal
tag. This example can be equivalently represented in our ProSC with a more compact structure as show in
Figure 2 right.

Apart from the apparent structural differences between the approach in [KKAQ5] and ours, the real dif-
ference lies in the merging process itself. In [KKAQ5], each pair of (tag, value) and the combination of
these pairs are treated as possible worlds. The merging of two probabilistic XML documentsis to gen-
erate all the combinations of possible worlds from the two documents. As a consequence, there can be
a huge number of branches in the merged XML document and there can be varieties of the document.
For instance, one example given in the paper consists of two simple XML documents about persons
with certainty (no probabilities). One document has details for four persons with each person has tags
firstname, lastname, phone, roomand associated values, the other document hasdetailsfor two persons
with the same set of tag names and corresponding values. Interestingly, merging this two simple documents
in [KKAO5] generates 3201 possible worlds which result in a very large and complex tree. Most of the
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branches in the tree are completely meaningless. However, using our logical based merging tool, coupled
with the background knowledge that only persons with the same firstname and lastname may refer to the
same person, the merging result is a very smple XML document with four segments for four persons and
with some probability components to indicate multiple values for same tags, such as room.

I ssues on managing uncertain information on multiple levels of subtrees can be dealt with using dicount-
ing operation in DS theory and it will provide the same effect as the conditional probabilities in [NJO2].
Discussions on modelling and merging this type of uncertain information are considered in [HL04b].

For semantically heterogeneous uncertain information, we have mainly concentrated on semantic meanings
of conceptsthat carry the uncertain information. In this paper we have not considered the semantic hetero-
geneity of XML branches. Also these issues have not been discussed in [NJO2] and [KKAOQ5]. Toillustrate
a problem arising with semantic heterogeneity of XML branches, it is possible that we may wish to treat
some branches as equivalent to others. So for example, in aparticular application, we may wish to consider
abranchreport/deposit/zone and abranch report /deposit/sector ascarrying information for the
same location if they both have the same textentry. It is possible to axiomatize such equivalences on an
application-dependent basis.

6 Conclusion

This paper significantly extends our previous paper [HLO4a] on merging structured reports that contain
uncertain information. In this paper, we have discussed methods to model and merge mass functions and
probabilities assigned to textentries with different levels of granularity or to textentries which are inter-
related, and to subtrees involving multiple frames where uncertain information is semantic heterogeneous.

Because the main focus of the paper is on how to integrate DS theory and its developmentsinto an XML
framework and how to merge XML documents that involve uncertainties in the format of mass functions,
we did not include research results that justify the propagations and combinations of mass functions re-
ported in the paper. These results can be found in research papers such as [LGS86, SSM87, LHAQ3] etc.
Instead, we emphasized on how such information, when encoded into XML structures, can be merged
and how this procedure can be formally described in logical terminologies and then be executed as Prolog
predicates. Developing this framework has involved a number of design decisions that we believe have
resulted in a set of definitions for handling and merging uncertain information in a viable and useful way.
Whilst other authors have considered some of these goal's, we have shown in Section 5 how our approach
is superior.
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