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Abstract

In previous papers, we have presented a logic-based framework based on fusion rules for merging
structured news reports [Hun00, Hun02b, Hun02a, HS03, HS04]. Structured news reports are XML doc-
uments, where the textentries are restricted to individual words or simple phrases, such as names and
domain-specific terminology, and numbers and units. We assume structured news reports do not require
natural language processing. Fusion rules are a form of scripting language that define how structured
news reports should be merged. The antecedent of a fusion rule is a call to investigate the information
in the structured news reports and the background knowledge, and the consequent of a fusion rule is a
formula specifying an action to be undertaken to form a merged report. It is expected that a set of fusion
rules is defined for any given application. In this paper we extend the approach to handling probabil-
ity values, degrees of beliefs, or necessity measures associated with textentries in the news reports. We
present the formal definition for each of these types of uncertainty and explain how they can be handled
using fusion rules. We also discuss the methods of detecting inconsistencies among sources.

1 Introduction

Structured news reports are XML documents, where the textentries are restricted to individual words or
simple phrases (such as names and domain-specific terminology), dates, numbers and units. We assume that
structured news reports do not require natural language processing. In addition, each tag provides semantic
information about the textentries, and a structured news report is intended to have some semantic coherence.
To illustrate, news reports on corporate acquisitions can be represented as structured news reports using tags
includingbuyer, seller, acquisition, value, anddate. Structured news reports can be obtained from
information extraction systems (e.g. [CL96]).

In order to merge structured news reports, we need to take account of the contents. Different kinds of
content need to be merged in different ways. In our approach to merging structured news reports [Hun0O,
Hun02b, Hun02a, HS03, HS04], we draw on domain knowledge to help produce merged reports. The
approach is based on fusion rules defined in a logical language. These rules are of thefofinwhere

if « holds, thens is made to hold. So we consideias a condition to check the information in the structured
reports and in the background information, and we considas an action to undertake to construct the
merged report. To merge a set of structured news reports, we start with the background knowledge and the
information in the news reports to be merged, and apply the fusion rules to this information. The application
of the fusion rules is then a monotonic process that builds up a set of actions that define how the structured
news reports should be merged. To evaluate the approach, we have undertaken a detailed case study of
merging weather reports [HS04].
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In this paper, we extend the approach of fusion rules, by including some forms of uncertainty in the struc-
tured news reports, and providing ways of merging the uncertainty using fusion rules.

A number of mechanisms for reasoning under uncertainty have been proposed and studied over the past 20
years. Probability theory, Dempster-Shafer theory of evidence (DS theory) [Dem67, Sha76], and possibility
theory [DP88a] are the three popular ones that have been widely applied in many different domains. Proba-
bility theory, the most traditional method, is one of the first to be used to represent uncertain information in
databases (e.g., [CP87, BGP92, NS94]). The restriction of assigning probabilities only to singleton subsets
of the sample space led to the investigation of deploying DS theory (e.g., [Lee92]) where uncertainty can
be associated with a set of possible events. A mass fungti@ssigns each unit of an agent’s belief to

a distinct subset of a set of all possible outcomes, with the total sum of all assignments being 1. When
all the distinct subsets are singletons, a mass function is reduced to a probability distribution. It is in this
sense, that DS theory can be regarded as a generalization of probability theory, and we adopt this view in
this paper. Possibility theory is another option to easily express uncertainty in information. A possibility
measurdl on a subset! of a set of possible events gives a valuglinl] which estimates to what extent
contains the true event. The dual function, necessity meagwh N (A) = 1 — I1(A) where A stands

for the complementary set of, evaluates the degree of necessity thas true.

There are two possible interpretations about the possibility and necessity measures. One is qualitative and
another is quantitative. They share the same mathematical definitions for the two measures, but depart
when considering merging methods. “Qualitative possibility theory is closely related to non-monotonic
reasoning” [DP98b] and the two measures are referred to as graded measures. “Quantitative possibility
theory can be related to probability theory and can be viewed as a special case of belief function theory.”
[DP98Db]. In this paper, we take this latter view of possibility theory, since we will deal with the issues of
merging uncertain information that is in the form of both mass functions and necessity measures.

We will present approaches to modelling and merging of uncertain information in the form of probabil-
ity distributions, mass functions and necessity measures respectively, as well as merging heterogeneous
uncertain information where two pieces of uncertain information are modelled in different theories.

Since we restrict our textentries in news reports to discrete variables with a fairly small number of possible
values, we will not consider the application of fuzzy logic (or fuzzy set theory) in this paper. Though fuzzy
databases have also been studied in various papers (e.g., [BP91, Pet95]) and would be particularly useful
when a dataset contains variables with continuous values.

To illustrate our approach we consider weather reports such as in Example 1 and Example 2. These kinds
of uncertainty arise in many application areas for structured text such as in information/meta-information
in bioinformatics and more generally in the emerging area of e-science. The aim of this paper is to address
the problems of merging such uncertain information by harnessing well-established uncertainty formalisms
in the fusion rule technology. In these examples, we do include the use of intervals, since they constitute a
simple and clear choice for merging pairs of reports. However, because of problems that can arise from the
lack of associativity with this form of aggregation, we will not consider the use of intervals in detail in the
paper. Rather, we will focus on more sophisticated techniques as indicated above.

Example 1 Consider the following two conflicting weather reports which are for the same day and same
city. The(probability) tag demarks a probability distribution over textentrig®C and 12°C for the



(probability) tag.

(report) (report)

(source) TV1 (/source) (source) TV3 (/source)

(date) 19/3/02 (/date) (date) 19 March 2002 (/date)
(city) London (/city) (city) London (/city)

(outlook) showers (/outlook) (outlook) inclement (/outlook)
(windspeed) 1 kph (/windspeed) (windspeed) 25 kph (/windspeed)
( (

temperature) temperature)
(probability) (probability)
(prob value = “0.27)8°C(/prob) (prob value = “0.4”)8°C(/prob)
(prob value = “0.8”)12°C(/prob) (prob value = “0.6”)12°C(/prob)
(/probability) (/probability)
(/temperature) (/temperature)
(/report) (/report)

We can merge these reports so $wurce is TV1 and TV3, and outlook iS showers and inclement.

Clearly there is a contradiction with regard t@indspeed. Possibilities for merging include taking the
textentry for the prefered source or using the two values as an interval. Also for merging the probabilistic
information, we have choices. One possibility is to give intervals. Another possibility is to give a merged
distribution - either by taking an average or by using Dempster’s rule of combination if we believe the
sources are independent. We assume in this and the rest of the examples that both sources use the commonly
agreed sets of elements as possible textentries. For instance, foetagrature, the possible elements

are integers in[—30°C, 40°C]. Below we give two possible merged reports that we could obtain for the
above input. The report below left has been obtained using Dempster’s rule and below right has been
obtained using intervals.

(report) (report)

(source) TV1 and TV3 (/source) (source) TV1 and TV3 (/source)

(date) 19/03/02 (/date) (date) 19/03/02 (/date)

(city) London {/city) (city) London (/city)

(outlook) showers and inclement(/outlook) (outlook) showers and inclement (/outlook)
(windspeed) 1 — 25 kph (/windspeed) (windspeed) 1 — 25 kph (/windspeed)

( (

temperature) temperature)
(probability) (probability)
(prob value = “0.14”)8°C(/prob) (probinterval value = “0.2 — 0.4”)8°C(/prob)
(prob value = “0.86”)12°C(/prob) (probinterval value = “0.6 — 0.8”)12°C(/prob)
(probability) (probability)
(/temperature) (/temperature)
(/report) (/report)

Example 2 Consider the following two conflicting weather reports which are for the same day and same
city. The left report is certain that the temperaturef€, and the right report gives a probability distribu-

1A brief review on DS theory and Dempster’s combination rule is given in Section 2.2. Here we just illustrate how the two pieces
of uncertain information given in the two XML documents are actually combined to generate the merged uncertain information on
the left.

Each probabilistic piece of information above can be modelled in terms of a mass function in DS theory

m1(Temp = 8°C) = 0.2, m1(Temp = 12°C) = 0.8; m2(Temp = 8°C) = 0.4, ma(Temp = 12°C) = 0.6
After applying Dempster’s rule, we have

m(Temp = 8°C) = (0.2 x 0.4)/0.56 = 0.14, m(Temp = 12°C) = (0.8 x 0.6)/0.56 = 0.86



tion over the options &g8°C and 12°C.

(report) (report)
(source) TV1 (/source) (source) TV3 (/source)
(date) 19/3/02 (/date) (date) 19 March 2002 (/date)
(city) London (/city) (city) London (/city)
(temperature) 12°C (/temperature) (temperature)

(/report) (probability)

(prob value = “0.4”7)8°C(/prob)
(prob value = “0.6”)12°C(/prob)
(/probability)
(/temperature)
(/report)

Two possible ways of merging these two reports are given below left and right. The left report is obtained
as an average distribution from the input reports, and the right report is given as an interval.

(report) (report)
(source) TV1 (/source) (source) TV3 (/source)
(date) 19/3/02 (/date) (date) 19 March 2002 (/date)
(city) London (/city) (city) London (/city)
(temperature) (temperature)
(probability) (probability)
(prob value = “0.2”)8°C(/prob) (probinterval value = “0.0 — 0.4”)8°C(/prob)
(prob value = “0.8”)12°C(/prob) (probinterval value = “0.6 — 1.0”7)12°C(/prob)
(/probability) (/probability)
(/temperature) (/temperature)
(/report) (/report)

Example 3 Consider the following two conflicting weather reports which are for the same day and same
city. Note in the right example, the child of therob value = “...”) tag is not a textentry. Whilst both fit

into our definition for structured news reports, we will restrict consideration in this paper to the structured
news reports where the child of tlierob value = “...”) tag is a textentry (as in the left but not the right
below), e.g., the given probability values are about elementary events. Situations such as on the right in
have been discussed in [HLO4a, HLO4b].

(report) (report)
(date) 19/3/02 (/date) (date) 19 March 2002 (/date)
(city) London (/city) (city) London (/city)
(outlook) (probability)
(probability) (prob value = “0.4”)
(prob value = “0.2”)sun(/prob) (outlook)sun(/outlook)
(prob value = “0.8”)snow(/prob) (temperature)3°C(/temperature)
(/probability) (/prob)
(/outlook) (prob value“0.6”)
(temperature) (outlook)snow(/outlook)
(probability) (temperature)0°C(/temperature)
(prob value = “0.37)0°C(/prob) (/prob)
(prob value = “0.7”)2°C(/prob) (/probability)
(/probability) (/report)
(/temperature)
(/report)

We will proceed as follows: in Section 2, we present formal definitions of uncertain information in struc-
tured news reports and their constraints. In Section 3, we define fusion rules, and explain how they are



executed to generate merged reports in general, and then in Section 4, we consider merging uncertain
information in detail. We will focus on merging probability, possibility and mass distributions over tex-
tentries. We will also discuss the detection of inconsistency among multiple news reports. In Section 5
we provide methods to merge multiple heterogeneous uncertainty components in news reports. Finally, we
compare our work with related research in the final section.

2 Structured news reports

We now provide basic definitions, in Section 2.1, for structured news reports. In Section 2.2, we review the
rudiments of DS theory and possibility theory. Then in Section 2.3, we show how to represent uncertain
information in structured news reports.

2.1 Basic definition

We use XML to represent structured news reports. So each structured news report is an XML document,
but not vice versa, as defined below. This restriction means that we can easily represent each structured
news report by a ground term in classical logic.

Definition 1 Structured news report: If ¢ is a tagname (i.e an element name), ani textentry, then
(p)od(/p) is a structured news report. If is a tagname (i.e an element name)ijs textentry,f is an
attribute name, and: is an attribute value, thexy 0 = k)¢(/p) is a structured news report. I is an
tagname and, .., o, are structured news reports, thép)o;..0,, (/) is a structured news report.

The definition for a structured news report is very general. In practice, we would expect a DTD for a given
domain. So for example, we would expect that for an implemented system that merges weather reports,
there would be a corresponding DTD. One of the roles of a DTD, say for weather reports, would be to
specify the minimum constellation of tags that would be expected of a weather report. We may also expect
integrity constraints represented in classical logic to further restrict appropriate structured news reports for
a domain. We will not consider these issues further in this paper. However, in this paper, we will impose
some further constraints on structured news reports, in Section 2.3, to support the handling of uncertainty.

Clearly each structured news report is isomorphic to a tree with the non-leaf nodes being the tagnames
and the leaf nodes being the textentries. This isomorphism allows us to give a definition for a branch of a
structured news report.

Definition 2 Branch: Leto be a structured news report and lgtbe a tree that is isomorphic te. A
sequence of tagnames/../y,, is a branch ofp iff (1) ¢ is the root ofp and (2) for each;, if 1 < i < n,
then; is the parent ofp,; 1. Note, the child ofp,, is not necessarily a leaf node. By extensigyp)../ ¢,
is a branch ofs iff 1 /../¢, is a branch ofp

When we refer to a subtree (of a structured news report), we mean a subtree formed from the tree represen-
tation of the structured news report, where the root of the subtree is a tagname and the leaves are textentries.
We formalize this as follows.

Definition 3 Subtree: Leto be a structured news report and lebe a tree that is isomorphic . A tree
p' is a subtree of iff (1) the set of nodes ip’ is a subset of the set of nodesdrand (2) for each node;
in o/, if o, is the parent ofp; in p, theny; is in p’ andy; is the parent ofp; in p’. By extension, i’ is a
structured news report, and is isomorphic tas’, then we describe’ as a subtree of.



Each structured news report is also isomorphic with a ground term (of classical logic) where each tagname
is a function symbol and each textentry is a constant symbol.

Definition 4 News term: Each structured news report is isomorphic with a ground term (of classical
logic) called a news term. This isomorphism is defined inductively as follows: (&) df /¢) is a struc-
tured news report, wherg is a textentry, thep(¢) is a news term that is isomorphic witlp)¢{/»); (2)

If (¢ 6 = Kk)Yo(/p) is a structured news report, whedeis a textentry, therp(¢, x) is a news term that is
isomorphic with{p 8 = k)& {/v); and (3) If (©)p1..0, (/) is a structured news report, ant} is a news
term that is isomorphic witkp,,...., and¢/, is a news term that is isomorphic with,, thenp (47, .., ¢!,) is

a news term that is isomorphic witp)1..¢,,(/¥).

Via this isomorphic relationship, we can refer to a branch of a news term by using the branch of the
isomorphic structured news report, and we can refer to a subtree of a news term by using the subtree of
the isomorphic structured news report. Next we define two functions that allow us to obtain subtrees and
textentries from news terms.

Definition 5 Letr be a news term, let’ be a subtree of, and lety be a textentry. If1 /../¢,, is a branch
of 7, and the root of’ is ¢,,, then letSubtree(¢1/../vn, 7) = 7/, otherwise leSubtree(v1/../pn, T) =
null. If v1/../¢, is a branch ofr, and¢ is the child ofp,,, then letTextentry(¢1/../¢n, T) = ¢, Otherwise

Textentry(1/../¢n, ) = null.
Example 4 Consider the following structured news report.

(fieldreport)
(log)(station)Inverness(/station)(date)12/3/03(/date)(/1log)
(rainfall)2.3cm(/rainfall)

(/fieldreport)

This can be represented by the following news term:
fieldreport(log(station(Inverness),date(12/3/02)),rainfall(2.3cm))
In this news termfieldreport/log/station is a branch. If the news term is denotedhywe have

Subtree(fieldreport/log, 7) = log(station(Inverness),date(12/3/03))
Subtree(fieldreport/log/station,T) = station(Inverness)
Textentry(fieldreport/log/station,7) = Inverness

Example 5 Consider the structured news report in Example 2 (right). Let the isomorphic news term be
represented by.
Subtree(report/precipitation/probability, )

= probability(prob(8°C,0.4), prob(12°C,0.6))

Definition 6 A skeletonis of the formp(¢1, .., ¢,,) Whereyp is atagname ang,, .., ¢,, are each a skeleton.
If ¢; is a textentry, then it is a skeleton. A skelejdi®, .., ¢,,) can be regarded as a tree.

A skeleton is a equivalent to a structured news report without textentries. It is the underlying structure
without the content.



2.2 Brief review of DS theory and possibility theory
2.2.1 Dempster-Shafer theory

Dempster-Shafer theory of evidence offers some significant advantages over probability theory when the
degree of uncertainty is not assigned to the singleton set. Furthermore, we can define condition literals for
which associativity does hold, and therefore the sequence in which we merge the distributions does not
matter.

Let © be a finite set containing mutually exclusive and exhaustive solutions to a quéstmcalled the
frame of discernment

A mass function also called dasic probability assignment captures the impact of a piece of evidence
on subsets of). The empty set, i.€) always hag).0 mass value. Since one of the elements in the frame
of discernment has to be true, the total mass value for the frame.ighis is summarised as follows: A
mass functionn is a function fromgp(€2) into [0, 1] such that

(1) m(®) =0

(2) Yaco m(A) =1

m(A) defines the amount of belief to the subdegxactly, not including any subsetsih Whenm(A) > 0,
A is referred to as &ocal element To obtain the total belief in a subsdt i.e. the extent to which all
available evidence supports A, we need to sum all the mass assigned to all subkets of

For a given mass functiom, if each of its focal elementi contains only a single element, this mass
function is reduced to be a probability distribution. It is with this view that in this paper, we take probability
distributions as special cases of mass functions.

A belief function, denotedBel, is defined as follows, whetBel : p(Q2) — [0, 1].
BGZ(A) = ZBgAm(B)

A plausibility function , denotedP!, is defined as follows, wherB!l : () — [0, 1].
PI(A) =1 — Bel(A) = Xpnazp m(B)

Now we consider Dempster’s rule of combination. For this we suppose we have two mass fungtions
andms from independent sources, and we want to combine them into a combined mass function.

Definition 7 Letm; andmy be two mass functions, and let; ® m+ be the combined mass function.

_ Yans=c (m1(A) x my(B))
m1 ®ma(C) = g e e

When using Dempster’s rulé,— ¥ 4~ 5—¢ (m1(A) x ma(B)) is the normalization coefficient obtained by
deducting the mass assigned to the empty set.

2.2.2 Possibility theory

Possibility theory is another useful choice for representing uncertain information ([DP88a, SDK95, BDP97],
etc), especially when an agent’s knowledge is not sufficient to provide either a probabilistic or a mass as-
signment.



A possibility measure, a value [f, 1], assigned to a subset of a set of possible solutions, estimates to what
extent the true event is believed to be in the subset and a necessity measure, aflalijeemaluates the

degree of necessity that the subset is true. Numerical values (or values in a pre-defined partial ordered set)
are used to represent levels (grades) of beliefs in propositions.

Even though numerical values are used in possibility theory to express the degrees of possibilities and
necessities, the calculation of possibility and necessity measures are not the usual arithmetic calculations.
The two main operators used in the theory are comparison functiargndmin, which obtain either the
maximum or minimum values among a set of possibility or necessity measures. Because of this, possibility
theory is also described as a “quasi-qualitative” calculus.

Definition 8 Let() be a frame of discernment. A possibility measure and a necessity measure, dénoted
and N respectively, are functions frop1(2) to [0, 1] such that given any two subsetsand B of p((2), the
following equations hold wherd is the complementary set df

M(p(Q2) = 1,
e = o,
IM(AUB) = max(II(A),II(B)),
N(ANnB) = min(N(A),N(B)),
max(TI(A), TI(A)) = 1,
min(N(A), N(4)) = 0,
N(4) = 1-TI(A)

Both possibility measure and necessity measure can be derived from a more elementary assignment,
2 — [0, 1], which is referred to as possibility distribution . The relationship betwedd andr is

II(A) = max({m(w)|w € A})

which satisfiedI(A U B) = max(II(A),II(B)). The usual condition associated withis there existsvy
such thatr(wg) = 1, and in which case is said to be normal.

2.3 Representing uncertain information

In order to support the representation of uncertain information in structured news reports, we need some
further formalization. First, we assume a set of tagnames that are reserved for representing uncertain in-
formation. Second, we assume some constraints on the use of these tags so that we can ensure they are
used in a meaningful way with respect to established uncertainty formalisms including probability theory,
possibility theory and Dempster-Shafer theory of evidence.

Definition 9 The set okey uncertainty tagnamesfor this paper areprobability, possibility, and
belfunction. The set oBubsidiary uncertainty tagnamesfor this paper areprob, ness, nessitemn,

mass, andmassitem. The union of the key uncertainty tagnames and the subsidiary uncertainty tagnames
is the set ofeserved tagnames

Definition 10 The structured news repofprobability)oy, .., 0, (/probability) is probability-valid
iff eacho; € {01, .., 0, } is of the form(prob value = k)¢ (/prob) wherex € [0,1] and¢ is a textentry.

All textentries¢; between(prob value)¢;(/prob) are elements of a pre-defined set (in the background
knowledge base) containing mutually exclusive and exhaustive values that the related tagname can take.



Example 6 The following is a probability-valid news report.

(probability)
(prob value = “0.2”)8°C(/prob)
(prob value = “0.8”)12°C(/prob)
(/probability)

Definition 11 The structured news repofpossibility)oy, .., o, (/possibility) is possibility- valid
iff for eacho; € {o1,..,0,}, 0 is of the form(ness value = k)oi, .., 0}, (/ness) and for eachs’ €
{o1,..,0},}, ok is of the form(nessitem)¢(/nessitem) andx € [0, 1], and¢ is a textentry.

Example 7 The following is a possibility-valid structured news report.

(possibility)

(ness value = “0.57)
(nessitem)8°C(/nessitem)
(nessitem)10°C(/nessitem)

(/ness)

(ness value = “0.8”)
(nessitem)12°C({/nessitem)

(/ness)

(/possibility)

In possibility theory, both a possibility measui€)@nd a necessity measurg) can be assigned to subsets
of a set of possible values. In possibilistic logic (e.g. [BDP97, BDKP0O]) a weighted formua implies
that the weight: attached to formula is interpreted as a lower bound on the degree of neced&|t).

In the context of this paper, a weight attached to a subs¢t;, .., ¢ } is equally interpreted as a lower
bound on the degree of necessity thiaf, .., ¢ } is true. This also explains why we use tagname “ness”
instead of “poss”.

Definition 12 The structured news repofbelfunction)oy, .., o, (/belfunction) is belfunction-valid
iff for eacho; € {o1,..,0,} 0; is of the form(mass value = x)ot,.., 0! (/mass) and for eaChO';- €
{o},..,0.}, o} is of the form(massitem)¢(/massitem) andx € [0,1] and¢ is a textentry.

The textentries in either a possibility-valid component or a belfunction-valid component are elements of a
pre-defined set containing mutually exclusive and exhaustive values for the related tagname as in the case
for probability-valid components.

Example 8 The following is a belfunction-valid structured news report.

(belfunction)

(mass value = “0.27)
(massitem)8°C(/massitem)
(massitem)10°C(/massitem)

(/mass)

(mass value = “0.8”)
(massitem)12°C(/massitem)

(/mass)

(/belfunction)



The probability-valid, possibility-valid, and belfunction- valid structured news reports are normally part
of larger structured news reports. To describe these larger structured news reports, we use the following
definition of uncertainty-valid.

Definition 13 A structured news repottp)o; ..., (/) is uncertainty-valid iff one of the following holds
for it.

¢ is not a reserved tagname and for all € {04, ..., 0, } 0; IS uncertainty-valid.

@ is not a reserved tagname and= 1 ando; is a textentry.

v is the key uncertainty tagnameobability and{p)o;...0,, (/) is probability-valid.
¢ is the key uncertainty tagnamessibility and{p)o;...0,, (/) is possibility-valid.

S e

¢ is the key uncertainty tagnamelfunction and{y)oy...0, (/) is belfunction-valid.

Normally, we would expect that for an application, the DTD for the structured news report would exclude
a key uncertainty tag as the root of the overall structured news report. In other words, the key uncertainty
tags are roots of subtrees nested within larger structured news reports.

Definition 14 Leto be a structured news report.dfis probability-valid, possibility-valid, or belfunction-
valid, thens is anuncertainty component

We assume various integrity constraints on the use of the uncertainty components.

Definition 15 Let (probability)oy,..,o,(/probability) be an uncertainty component, and gt €
{o1,..,0,} be of the form{prob value = «;)¢;(/prob) This uncertainty component adheres to tak
probability distribution constraint iff the following two conditions hold:

(2)forall,j, if 1 <i<nandl <j<nandi# j, theng, # ¢,

Definition 16 Let (possibility)oy,..,0,(/possibility) be an uncertainty component, and gt €
{o1,..,0,} be of the formness value = x;)1}, .., 1" (/ness), and lety)¥ be of the formnessitem)p? (/nessitem)
for 1 < k < p. This uncertainty component adheres to tiezessity measure constrainin possibility

theory iff the following conditions hold:

(1) ki € [0,1]
(2)foralli,j, if 1 <i<nandl <j<nandi#j, then{¢;,.., o7} # {4}, .., 0]}

In possibility theory, it is perfectly acceptable that a possibilistic knowledge base can haye hothand

(¢, a2) Wherea; # as are two necessity measures on the same logical sentence. In thigfcase,sub-
sumeg ¢, az) whena, > as. However, we restrict our discussion in the paper so that for each subset, there
is only one necessity degree in XML. This will reduce unnecessary XML segments in XML documents.

Definition 17 Let(belfunction)oy,..,0,(/belfunction) be anuncertainty component,tete {o1,..,0,}
be of the formmass value = x;)¢}, .., ¥ (/mass), and let)F be of the formmassitem)¢’ (/massitem)
for 1 < k < p. This uncertainty component adheres to fikébelfunction distribution constraint iff the
following two conditions hold:

(1) Ei/{i =1

(2)foralli,j, if 1 <i<nandl <j<nandi#j, then{o},.., ¢/} # {¢], ... ¢}

We return to specific issues of merging uncertain information in Section 4.
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3 Fusion rules

In this paper we uséin,, .., in,} as the set of report names. When a set of reports is given as input, we
need a process ofgistration to assign each report with a report name. In this paper, we make an arbitrary
assignment. Once a structured news report has been registered, we can refer to it by name in the fusion
rules.

Definition 18 Let ¢;/../¢,, be a branch, and lef. be a report name. Aubtree variable is denoted
u//e1/../n, and atextentry variable is denoted://1/../on#. Aschema variableis either a subtree
variable or a textentry variable. Let the set of schema variables be deoted

In the following definition, we augment the usual definition for a classical logic language with notation
for schema variables which are just placeholders to be instantiated with news terms and textentries before
logical reasoning. In effect they provide the input for a fusion rule. Logical variables are the other kind
of variables that we use in fusion rules. They are just the usual classical variables. As we explain below,
after we ground the schema variables, each literal in the antecedent of a fusion rule is a condition to be
evaluated with respect to a Prolog knowledgebase, and the logical variable(s) are ground by the Prolog
knowledgebase if the condition can be evaluated to “true”.

Definition 19 Atoms: We assume the following sets of symbols((i9 a set of constant symbols; (2)
is a set of variable symbols; (3) is a set of schema variables; (#) is a set of function symbols; and (5)
P is a set of predicate symbols.

The set of simple terni§ isC U {f(ds,..,dx) | f € F anddy,..,d, € CUV U S}.
The set of schemafree tersisC U {f(d1,..,dx) | f € F anddy,..,d; € CUV}.
The set of ground ternig isC U {f(c1,..,ck) | f € Fandey,..,c, € C}.

The set of simple atorod; is {p(t1,..,tx) | p € P andty, ... tx, € T1}.

The set of schemafree atoms is {p(t1,...tx) | p € P andty, ...ty € T2}.

o g ~c w bdh e

The set of ground atoré; is {p(t1,..,tx) | p € P andty, ...ty € T3}.

We assume that iy /../¢,, is @ branch, then it is a constant symbolinSimilarly, if (¢4, .., ¢,) is a
skeleton, then it is a constant symboldnWe also assume thatdf is an atom, them is a literal, and-«
is a literal. Let£; be the literals formed fromd, £ be the literals fromA4,, and£3 be the literals from
As.
Definition 20 A fusion rule is of the following form wherey, .., ., € £ andfg € A;.
ar N..Na, = 0
We callay, .., a,, the condition literals ang’ the action atom.
We regard a fusion rule that incorporates schema variables, as a scheme for one or more classical formulae.

These formulae are obtained by grounding schema variables as we explain below. We discuss condition
literals in Section 3.1 and action literals in Section 3.2.
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Example 9 The following is a fusion rule that could be used for Example 1 whésea logical variable.

—Synonymous(in; //report/outlook#, in,//report/outlook#)

A Coherent(in;//report/outlook#,in,//report/outlook#)

A Conjunction(in;//report/outlook#, in,//report/outlook#, X)
= AddText (X, report/outlook)

Example 10 The following is a fusion rule that could be used for Example 1 in the rare case where two
distributions are identical. So the condition literal holds when the two distributions obtaineditip@ind
in, are the same.

SameDistribution(in;//report/temperature/probability,
iny//report/temperature/probability)
= AddTree(in;//report/temperature/probability, report/temperature)

Definition 21 Let® be a set of structured news reports to be merged avalid grounding for a subtree
variable u//p1/../ox iff Subtree(v1/../ ¢k, ) = w. w is avalid grounding for a textentry variable
1/ /1] ot iff Textentry(p1/../ ok, 1) = .

Example 11 Consider the rule in Example 9. Fan, //report/outlook#, the valid grounding is given
by Textentry(report/outlook, in;). This is evaluated tghowers if we let in, refer to the top left
structured news report in Example 1. Similarly, the valid grounding for variahlg/ /report /outlook#
is Textentry(report/outlook, in,), which is evaluated tanclement if we letin, refer to the top right
structured news report in Example 1.

Definition 22 A schemafree fusion ruleis a fusion rule with every schema variable replaced by a valid
grounding.

Example 12 The schemafree fusion rule obtained with the fusion rule given in Example 9 and the news
reports in Example 1 is the following whexes a logical variable.

—Synonymous(showers, inclement)

A Coherent(showers, inclement)

A Conjunction(showers, inclement, X)
= AddText(X, report/outlook)

As we discuss next, fusion rules provide a bridge between structured news reports and logical reasoning
with background knowledge.

3.1 Condition literals

The condition literals in fusion rules relate the contents of structured news reports to the background knowl-
edge. There are many possible condition literals that we could define that relate one or more features from
one or more structured news reports to the background knowledge.

To illustrate, these literals may include the following kindameDate(T,T’) whereT and T’ are news
terms with equal date§ameSource(T, T') whereT andT’ are news terms that refer to the same source;
SameCity(T,T’) whereT andT’ are news terms that refer to the same cifynonymous(T,T’) whereT
andT’ are news terms that are synonyms; &dtlerent(T,T’) whereT andT’ are news terms that are
coherent.

12



Condition literal with logical variablg Instantiation of the logical query variabl

11

Interval(18C, 25C,X) 18 — 25C
Conjunction(TV1,TV3,X) TV1 and TV3
Disjunction(sun,rain, X) sun or rain

Table 1: For condition literals, the grounding for the logical variabig given on the right

Example 13 Some examples of schemafree condition literals may include the following.

SameDate(date(14Nov01),date(14.11.01))
SameDate(date(day(14),month(11),year(01)),date(14.11.01))
SameCity(city(Mumbai), city(Bombay))
Coherent(snow, sleet)

Coherent(sun, sunny)

Coherent(showers, inclement)
—Coherent(sun, rain)

—Coherent(sun, snow)
—Synonymous(showers, rain)

The condition literals are evaluated by querying the background knowledge in the form of a Prolog knowl-
edgebase. The negation is interpreted as negation-as- failure. If a condition literal incorporates logical
variables, these variables are handled by the Prolog knowledgebase. So if the condition is true, a grounding
for the variable is returned by the background knowledge. Furthermore, any grounding is used to system-
atically instantiate further occurrences of that variable in the other literals in the fusion rule.

Example 14 In the following conditionX is a logical variable, andnterval is a predicate that captures

the interval of textentries, and Zowill be ground by the prolog knowledgebase with a value that according

to the background knowledge is the interval corresponding to the textentries in the input reports. Below the
textentries are on theeport /windspeed branch of thein; andin, reports (given as the top two reports

in Example 1).

Interval(in;//report/windspeed#, in,//report/windspeed#,X)
After grounding the schema variables, we have the following.
Interval(l kph, 25 kph, X)
Then the grounding foX returned by the Prolog knowledgebasetis- 25 kph if we assume appropriate

clauses in the Prolog knowledgebase.

Further examples of condition literals that incorporate logical variables indomlgunction that for the
textentries in the argument, the query variable returns the conjunction of themjajpehction that for

the textentries in the argument, the query variable returns the disjunction of them. In Section 4, we consider
in detail condition literals for handling the uncertain information in structured news reports.

3.2 Action atoms

Action atoms specify the structure and content for a merged report. In a ground fusien &l if the
ground literals in the antecedemnt hold, then the merged report should meet the specification represented

13



by the ground aton®’. We look at this in more detail in the next section. We now define a basic set of
action atoms. A number of further definitions for action atoms are possible.

Definition 23 Theaction atomsare literals that include the following specifying how the merged report
should be constructed.

1. Initialize(p(o1, .., dn)) Wherep(dy, .., ¢, ) is a skeleton constant. The intended action is to start
the construction of the merged structured news report with the basic structure being defined by
o(é1, .-, ¢n). SO the root of the merged reportis

2. AddText(T,¢1/../n) WhereT is a textentry, andp,/../¢,, is a branch constant. The intended
action is to add the textentry as the child to the tagnamg,, in the merged report on the branch

3. AddTree(T, p1/../pn) WhereT is a news term, ang,/../ ¢, is a branch constant. The intended
action is to addr to the merged report so that the tagname for the roat bés the pareng,, on the
branchyi/../on.

The action atoms are specifications that are intended to be made to hold by producing a merged report that
satisfies the specification.

Example 15 Consider the action literal in the consequent of Example 9.
AddText(showers and inclement, report/outlook)

This specifies that the textentry should d¥®wers and inclement in the merged report for tagname
outlook on the branchreport/outlook .

Example 16 An appropriate set of fusion rules and the pair of news reports given in the top of Example 1
together with appropriate background knowledge can give the following action atoms:

Initialize(report(source,date,city, outlook, windspeed))

AddText(TV1 and TV3, report/source)

AddText(19/03/02, report/date)

AddText(London, report/city)

AddText(showers and inclement, report/outlook)

AddText(1 — 25Kph, report/windspeed)
AddTree(temperature(probability(prob(8°C,0.14), prob(12°C, 0.86))), report)

These action atoms specify the merged report given in the bottom left of Example 1. For more information
on the fusion rules used and how they were executed, see [HS04].

4 Merging uncertain information

In this section, we concentrate on merging news reports with uncertain information (uncertainty compo-
nents) of the same kind: one of probabilistic, possibilistic, or belief function information. We consider
merging pairs of homogeneous distributions in cases of probabilistic and belief function information. If we
need to merge more than two, then we apply the process by recursion. So to merge three distributions, we
merge the first two, and then merge this output with the third distribution.We leave the topic of merging
heterogeneous uncertainty components from multiple news reports until the next section.
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When merging two news reports, one with an uncertainty component and one without, we can take the
latter as a special case of the former and assign valuéno matter whether it stands for probability, or
possibility, or mass value) to the corresponding textentry (or textentries). Then, these two news reports can
be merged using one of the rules defined below.

Before proceeding to the details of fusion rules, we need to emphasize that in this paper any two uncertainty-
valid components to be merged are assumed to refer to the same issue (or topic) that is being considered.
The method to verify semantically whether two given uncertainty components are eligible for merging is
given in [HS04]. In the rest of this paper, whenever we intend to merge two such components, we assume
their eligibility has been checked and we will not repeat this prerequisite any further.

4.1 Merge probabilistic uncertainty components

We consider two simple ways of merging probability-valid uncertainty components using condition literals.
We start with merging based on taking an average probability distribution.

Definition 24 Let the following be two probability-valid uncertainty components.

(probability)oy,.., ok (/probability)
(probability)o?, .., 02 (/probability)

Let theprobability average componentbe an uncertainty component that is obtained by merging the
above uncertainty components as follows

(probability)oy,..,0s(/probability)
where eachry, € {o1,..,05} is of the form(prob value = k;)¢(/prob) and obtained by one of the
following three steps.
1. ifthereis as} € {0}, ..,0,} ando} € {07, ..,07,} whereo} is (prob value = x})¢(/prob) and
crjz- is (prob value = k?)¢(/prob), thens, = (k] + H?)/Z

2. if there is ao} € {0, ..,0,} such thato} is (prob value = x})¢(/prob), and there is n@; €
{o%,..,00,} such thats? is (prob value = x3)¢(/prob), thenk;, = x; /2.

3. if there is nooj € {07, ..,0,} such thato] is (prob value = k;)¢(/prob), and there is &7
{o1,..,02%,} such thats? is (prob value = x3)¢(/prob), thenk; = 7 /2.

Definition 25 Let the news terms andr, each denote a probability-valid uncertainty component and let
X be a logical variable. The condition literalvProbDist (7, 72, X) is such thak is evaluated tas where
73 IS the news term denoting the average uncertainty component obtained by Definition 24.

The AvProbDist  condition literal can be used as a condition in a fusion rule for merging pairs of struc-
tured news reports that each incorporate a probability-valid uncertainty component.

Example 17 Consider the following pair of uncertainty components. Let the left tend the right ber,.

(probability) (probability)
(prob value = “0.27)8°C(/prob) (prob value = “0.47)8°C(/prob)
(prob value = “0.87)12°C(/prob)  (prob value = “0.6”)12°C(/prob)
(/probability) (/probability)
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For this, AvProbDist (7, 72, X) is such tha is evaluated tars wherer; is the news term denoting the
following uncertainty component,

(probability)
(prob value = “0.37)8°C(/prob)
(prob value = “0.7”)12°C(/prob)
(/probability)

Whilst in some situations, taking the average distribution is a natural and simple choice, it does suffer
from the biases normally associated with taking the mean. More importantly, associativity does not hold,
so if we want to merge three uncertainty components, andrs to get a merged uncertainty component
(corresponding to the instantiation vf, then the merged component obtained by the following sequence
of applications of the condition literal

AvProbDist(71,72,X) AND AvProbDist(X,73,Y)

is not necessarily the same as the the merged component (corresponding to the instantigtmvtained
by the following sequence of applications of the condition literal.

AvProbDist(7y,73,X’) AND AvProbDist (X', 7o,Y’)

4.2 Merge belief functions in Dempster-Shafer theory of evidence

In this subsection, we present procedures to merge two mass functions provided by two distinct bodies of
evidence using Dempster’'s combination rule.

Definition 26 Let the following be two belfunction-valid uncertainty components

(belfunction)oy,..,o,(/belfunction)

(belfunction)o?,..,07 (/belfunction)

where

11 is of the form(mass value = x})

1 1
1. 0; € {oy,.,0,

2. 1 is of the form(massitem)¢; (/massitem)--- (massitem)¢; (/massitem)

3. 07 € {01, ..,0.} is of the form(mass value = 3

&)
~

Let thecombined belfunction componentbe an uncertainty component that is obtained by merging the
above uncertainty components as follows

(belfunction)oy,..,05(/belfunction)

where eachr), € {01, ..,0,} is of the form{mass value = k)1 (/mass) and

1 2
B YK, X Kj
Kp = ————
1—k,
and
=y 1 2
K1l = XKy, X K,
and
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1 is of the form{massitem)¢, (/massitem) - - - (massitem)¢,(/massitem)
{¢13 ) ¢z} = {¢}1 5y ¢}z} N {(b?ﬂ ) (;Siy}
o, €{ol,..,0,} is of the form(mass value = k)¢, (/mass)

¥} is of the form(massitem)¢), (/massitem)--- (nassitem)¢), (/massitem)

o7, € {0f,..,07} is of the form(mass value = x2,)1?, (/mass)

m m

¥2, is of the form(massitem)¢?, (/massitem)--- (nassitem)¢?, (/massitem)

{0 On, N {B00, s b0} =0

N o g M o nhoPE

The valuex; = Skl x k2, (thatis,X 4np—p (m1(A) x mo(B)) indicates how much of the total belief has

been committed to the emptyset while combining two pieces of uncertain information. A highedue

reflects either an inconsistency among the two sources or lower confidence in any of the possible outcomes
from both sources. We will discuss this in detail in the next section.

Definition 27 Let the news terms; and , each denote a belfunction-valid component andXldte a
logical variable. The condition literabempster (71, 72, X) is such thak is evaluated ta; wherers is the
news term denoting the combined belfunction component obtained by Definition 26.

TheDempster condition literal can be used as a condition in a fusion rule for merging pairs of structured
news reports that each incorporate a belfunction-valid uncertainty component.

Example 18 Consider the following belfunction-valid components.

(belfunction) (belfunction)

(mass value = “0.27) (mass value = “0.47)
(massitem)8°C(/massitem) (massitem)8°C(/massitem)
(massitem)10°C(/massitem) (massitem)10°C(/massitem)

(/mass) (/mass)

(mass value = “0.8”) (mass value = “0.6”)
(massitem)12°C(/massitem) (massitem)12°C(/massitem)

(/mass) (/mass)

(/belfunction) (/belfunction)

For this, Dempster(7y, 72, X) is such thatX is evaluated tor; wherer; is the news term denoting the
following uncertainty component,

(belfunction)

(mass value = “0.147)
(massitem)8°C(/massitem)
(massitem)10°C(/massitem)

(/mass)

(mass value = “0.86”)
(massitem)12°C(/massitem)

(/mass)

(/belfunction)

Both sources have a higher confidence in the chéi@c} than in{8°C, 10°C}, so the combined result

gives a higher confidence in the choice preferred by both of them and a lower confidence in the less
preferred one. This is due to the fact that both sources are in agreement with each other. Therefore, when
multiple sources are not in conflict, applying fusion rules will produce a more complete and comprehensive
solution than individual sources.
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4.3 Detection of inconsistency among sources

Dempster's rule is known to generate counterintuitive results from two almost conflicting pieces of evidence
[DP88a, Sme88]. We illustrate this in the next example.

Example 19 If two belfunction-valid uncertainty components are as below, with corresponding frame of
discernment a8} = {¢15 ¢27 ¢37 ¢47 ¢5}

(belfunction)
(mass value = “0.9”)
(massitem)¢;(/massitem)
(massitem)¢p,(/massitem)

(/mass)

(mass value = “0.1”)
(massitem)¢ps(/massitem)

(/mass)

(mass value = “0.0”)
(massitem)o,(/massitem)

(belfunction)

(mass value = “0.0”)
(massitem)¢;(/massitem)
(massitem)¢,(/massitem)

(/mass)

(mass value = “0.1”)
(massitem)¢s(/massitem)

(/mass)

(mass value = “0.97)
(massitem)g,(/massitem)

(/mass)

(/belfunction)

(/mass)

(/belfunction)
then the condition literabempster(1, 72, X) will result in an uncertainty component as follows.

(belfunction)
(mass value = “0.0”)
(massitem)o, (/massitem)
(massitem)py(/massitem)

(/mass)

(mass value = “1.07)
(massitem)¢ps(/massitem)

(/mass)

(mass value = “0.0”)
(massitem)p,(/massitem)

(/mass)

(/belfunction)

which confirms the outcomg with full degree of belief that is hardly supported by either of the sources.

The degree of conflict among the two sources in this example is well indicated by the mass value assigned
to the empty set during the combination, whicl.i89 out of 1.0. However, not all high degrees of belief
in the empty set forecast a conflict between two sources, when using Dempster’s combination rule. For
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instance, if two sources provide the following two mass distributions to the same frame of discernment,

(belfunction) (belfunction)
(mass value = “0.2”) (mass value = “0.2”)
(massitem)¢,(/massitem) (massitem)¢; (/massitem)
(/mass) (/mass)
(mass value = “0.27) (mass value = “0.27)
(massitem)¢p,(/massitem) (massitem)¢,(/massitem)
(/mass) (/mass)
(mass value = “0.2”) (mass value = “0.2”)
(massitem)¢ps(/massitem) (massitem)¢s(/massitem)
(/mass) (/mass)
(mass value = “0.27) (mass value = “0.27)
(massitem)o,(/massitem) (massitem)¢,(/massitem)
(/mass) (/mass)
(mass value = “0.2”) (mass value = “0.2”)
(massitem)¢s(/massitem) (massitem)gs(/massitem)
(/mass) (/mass)
(/belfunction) (/belfunction)

thenDempster (71, 72, X) will produce a merged uncertainty component that assig&8 to the emptyset.
Therefore, these two pieces of uncertain information may be wrongly considered as inconsistent if we use
this value only to make a judgement. The fact is that these two sources are not inconsistent or conflicting
but both have lower confidence in each possible solution they predict.

We can view the situation in Example 19 in terms of probability theory: The above two mass functions
are actually probability distributions, since they both assign mass values to singletons as in the case in
probabilities. Therefore, Dempster’s rule can be used to combine two probability distributions when they
are from independent sources. To do so, we use the following definition to convert a probability-valid
component into a belfunction-valid component.

Definition 28 Let news term be a probability-valid componefiprobability)oy, .., 0, (/probability)
and eachy; € {01, .., 0, } is of the form{prob value = k)¢ (/prob) wherex € [0, 1] and¢ is a textentry.
Thent’ is a news term denoting a belfunction-valid compor{eaifunction)oy, .., o, (/belfunction)
and eacho} € {o},..,00,} is of the form(mass value = k) (massitem)¢(/massitem)(/mass) where
k € [0,1] and¢ is a textentrys’ is thebelfunction conversionof 7.

Any pair of probability-valid components, after being converted into belfunction-valid components, can
be combined by Dempster’s combination rule. The definition below detects whether this pair implies any
potentially contradictory imformation.

Definition 29 Let news terms; and 7» be two belfunction-valid component that are converted from
two probability-valid news terms. If the mass assigned to the empty set, denotedbppempster
(11,72, X) satisfiesk > ¢ thenn; and =, are said to bepotentially inconsistent wheree is a pre-
defined threshold if0, 1] such as0.8. If 7, and 7, are potentially inconsistent, then the condition literal
PotentialDempsterInconsistency(7, 72, €) holds.

Since there does not exist an “absolute meaningful threshold” to measure the inconsistency of two mass
functions [ASO01], the choice of is largely subjective. In general, the closeis to 1.0, the greater the
inconsistency becomes. Therefore, the choice of the threshold watu®efinition 29 is sensitive and
crucial to the detection of any potential inconsistency, and is application specific. If this value is too high,
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the above definition will fail to identify some contradictory opinions. For example, if we 880.9, two
conflicting mass functions:; andmsy below.

mi({¢1}) = 0.1 mi1({¢2}) = 0.8 m1({¢s}) = 0.1
ma({¢1}) = 0.1 ma({2}) = 0.1 ma({¢s}) = 0.8

are not regarded as conflicting based on Definition 29. On the other hansd siét too low, it rings a false
alarm too frequently.

It should be noted that most of the papers in the literature on DS theory refer the amount of mass assigned
to the emptyset athe degree of conflict between the two mass functionfellowing Shafer’s original
wordings [Sha76]. And most papers use examples similar to Example 19 to illustrate what a conflict should
look like. A conflict between two sourcesherefore can be interpreted@se source strongly supports one
hypothesis and the other strongly supports another hypothesis, and the two hypotheses are not compatible

To make sure that an inconsistency among a pair of probability-valid components actually forecast a con-
flict, when
PotentialDempsterInconsistency(ry, 2, €)

holds, we deploy the following definition to double check that the pair indeed has rather different prefer-
ences (in terms of high probabilities).

Definition 30 Let(probability)oy,..,0k(/probability)and(probability)o?,..,02,(/probability)

be two probability-valid components and be denoted,gnd . Let news terms; andr; be belfunction-
valid components that are converted from them respectively and they are potentially inconsistent (i.e.
PotentialDempsterInconsistency(7;, 74, €) holds). The two probability-valid components aren-

flicting if the following conditions hold
1. 30} € {oi,..,0,} of the form(prob value = k;)¢;(/prob), s.t. if 307 € {o7,.., 07} of the
form (prob value = x3)¢3(/prob) and¢; = ¢7, then|k; — k7| > €, otherwises; > €.
2. 30} € {0%,..,02,} of the form(prob value = r?)¢?(/prob), s.t. if Jo;, € {o},..,0L} of the
form (prob value = kj )¢} (/prob) and¢? = ¢}, then|x? — k| > €, otherwisex? > ¢'.
where¢! # ¢? and the threshold’ € [0, 1] is pre-defined, such a&6. If 7, and m» are conflicting

according to this definition, then the following condition literal holds.
ProbabilisticDempsterInconsistency(ry, T2,€’)
The valugx} —m? , such a$).7, denotes the length of the interval (or the distance of the two values defining

the interval) for an outcome. This interval implies the conflict in suppordihgor equallyqsf) from the
two sources. In other words, one source suppgytstrongly and another very weakly.

Once again, the choice of the threshold is subject to individual applications. Some applications may require
more precise predictions, hence a small interval value would be essential to guarantee the detection of
conflicts.

The above two definitions can help to detect whether there is a conflict among a pair of sources, only when
both uncertainty components in the two news reports are probability-valid. Since the mass value assigned
to the empty set itself can only detecpassible inconsistent paiwe provide the following additional
definition to further clarify if these two sources are conflicting or not.
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Definition 31 Let news terms; andr, be belfunction-valid componentsDémpster (71, 72, X) detects a
possible conflict among, andr, (i.e. PotentialDempsterInconsistency(7, 72, €) holds), and if the
following conditions hold for all the uncertainty componem}mndaf- in 71 and T, respectively,

ol is of the form(mass value = })}(/mass) and k! <€

o7 is of the form(mass value = 7)17(/mass) and &7 < ¢

then the two sources are said to bet in conflict wherec’ is a pre-defined threshold 0, 1] such as).3.
In this case, the condition literdlempsterInconsistency(7i, 72, €’) does not hold. Otherwise, the pair
is said to be conflicting, and so the condition litebeilmpsterInconsistency(m, 72, €') does hold.

This definition rules out a possible wrong conclusion of contradiction among two sources due to lower
mass values initially assigned which have produced a high mass value to the empty set, as illustrated in
Example 19.

In this section, we have defined the following predicates which can be used as extra conditions to restrict
the application of th@empster predicate given in Definition 27 in fusion rules.

PotentialDempsterInconsistency
ProbabilisticDempsterInconsistency
DempsterInconsistency

For example for a particular fusion, and for news termmandr,, we haveDempster (71, 72, 73) holding,
but also the negated literals

—PotentialDempsterInconsistency(7, 72,0.8)

and
—DempsterInconsistency(7, 72,0.3)

not holding, then the fusion rule would fail. In other word®éftentialDempsterInconsistency(, 72,0.8)
andDempsterInconsistency(7, 72, 0.3) hold, then these would cause the fusion rule to fail, and hence
merging based on Dempster-Shafer theory in this fusion rule would be blocked.

4.4 Merge possibility distributions in possibility theory
4.4.1 From necessity measures to possibility distributions

A possibility-valid uncertainty component usually specifies a partial necessity measure. Below we first
recover the possibility distribution associated with this necessity measure using the minimum specificity
principle.

Let a possibility-valid uncertainty component be
(possibility)oy, .., 0,(/possibility)
whereo; € {01, ..,0,} is of the form
(ness value = k;)1;(/ness)
andq; is of the form

(nessitem)¢;, (/nessitem) - - (nessitem)¢; (/nessitem)
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We denote the frame associated with a possibility-valid uncertainty component as {¢1, .., ¢, },

and also lety); = {¢i,,..,¢;, } in order to make the subsequent description simpler. In this way, a
possibility-valid uncertainty component can be viewed as consisting of a finite set of weighted subsets
of Q, {(¥i,k:),1 = 1,..,p}, wheres, is interpreted as a lower bound on the degree of neced&ity; ).

This representation is consistent with notations in [DP87] and analogous with notations in possibilistic
knowledge bases using possibilistic logic (e.g., [BDP97, BDKPO0O]), where uncertain knowledge is repre-
sented as a set of weighted formulééy;, a;),i = 1,..,n}. A subset); and formulap; are thought to be
equivalent ifp; if defined as

p; = Vg, where g; stands for “¢; is true”,¢; € ¢
Therefore, when one of the elements/inis definitely true, formula; is definitely true as well.

There is normally a family of possibility distributions associated with a given possibility-valid uncertainty
component, with each of the distributions satisfying the condition

1 — max{m(¢)|p € P;} > r;

That is, a necessity measuheé derived from such a compatible possibility distributisrguarantes that
N(wz) Z Ki.

A common method to select one of the compatible possibility distributions is to useitiraum speci-
ficity principle [DP87]. Let{n;,j = 1,..,m} be all the possibility distributions that are compatible with
{(¥i, k), = 1,..,p}. A possibility distributionm; € {m;,5 = 1,..,m} is said to be the least spe-
cific possibility distribution amond;,j = 1,..,m} if Ar, € {r;,5 = 1,..,m},m # m such that

Vo, mi(¢) = mi(6).

The minimum specificity principle allocates the greatest possibility degrees in agreement with the con-
straintsN (v;) > k;. This possibility distribution always exists and is defined as ([DP87, BDP97])

Vo € Q,7m(¢) = min{l — r;|¢ € ¢} (1)
Each value] — &; for ¢ € v;, specifies a maximum degree of possibility thatan take given that at least

k; amount of necessity has been allocated to its opponent]Eg;) < 1 — ;. Among several possible
maximum degrees of possibility far, the operatomin selects the lowerest degree of possibility.

When¢ appears in all specified subsets (each with a necessity degrisedpsolutely possible and shall
have the maximum degree of possiblity

Vo € Q,m(¢) = { Ti"{l — Kil¢ € ¥} whenJy;such thate & v o

otherwise

and it can further be rewritten as

Vo € Q,m(¢) = { 1 —max{k;|¢ & 1;} whenI¢;such thatep & 1, -

1 otherwise

Definition 32 Let a possibility-valid uncertainty component be
(possibility)ou, .., 0,(/possibility)
where

1.0, € {01, ..,0,} is in the form{poss value = k;)1;(/poss)
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2.1, is of the form(nessitem)¢;, (/nessitem) - - - (nessitem)¢; (/nessitem)
and the set of weighted subsetg {8, x;),i = 1, .., p}.

Let the possibility distribution obtained from using the minimum specificity principte b& — [0, 1],
where

foreach¢ € Q,7(¢) =1—v
where

L max{k1, ke, ...k} G &Y, j=1,2,..,t (wherep >t >0)
10 otherwise

Example 20 Consider the following two possibility-valid components with associated frame of discern-
mentQ = {¢1, g2, #3, P4 }.

(possibility) (possibility)

(ness value = “0.2”) (ness value = “0.2”)
(nessitem)¢;(/nessitem) (nessitem)¢;(/nessitem)
(nessitem)¢y(/nessitem) (nessitem)¢y(/nessitem)

(/ness) (/ness)

(ness value = “0.3”) (ness value = “0.3”)
(nessitem)ps(/nessitem) (nessitem)¢p,(/nessitem)

(/ness) (nessitem)¢s(/nessitem)

(/possibility) (/ness)
(/possibility)

m andm, below are obtained from the left and right possibility-valid components respectively.
7T1((f)1) = 0.77 71'1((]52) = 0.7, 7T1((]53> = 0.8, ™1 (¢4) =0.7

7'('2(@51) = 077 7T2(¢2) = 1,7T2(¢3) = 0.8,71'2(@54) = 07

4.4.2 Inconsistency within a possibility-valid component

A possibility distribution is not normal if ¢, 7(¢) < 1. The valuel — maxgcqm(¢) is calledthe degree of
inconsistencyof the original possibility-valid component. In this situation, conditionM(‘A) > 0 then
II(A) = 17, is no longer valid.

For instance, in Example 20, the possibility-valid component on the left is inconsistenVsinegp) < 1,
whilst the right one is consistent, becadse maxgcqn(m2(¢)) = 0.

Proposition 1 Let{(v;,a;), i = 1, .., p} be weighted subsets @fand specified in a possibility-valid com-
ponent with respect to frame of discernm@niThis possibility-valid componenté®nsistentiff N;v; = 0.

The degree of inconsistency of a possibility-valid component may not be the only merit to judge the quality
of a source, as illustrated by the following example.
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Example 21 Consider the following two possibility-valid components with associated frame of discern-

mentQ) = {¢1, g2, #3, 4, G5, Y6 }-

(possibility) (possibility)

(ness value = “0.27)
(nessitem)¢;(/nessitem)
(nessitem)¢py(/nessitem)

(/ness)

(ness value = “0.37)
(nessitem)¢ps(/nessitem)
(nessitem)p,(/nessitem)

(/ness)

(ness value = “0.2”)
(nessitem)¢s(/nessitem)

(/ness)
(ness value = “0.3”)
(nessitem)¢pe(/nessitem)
(/ness)
(/possibility)

(ness value = “0.27)
(nessitem)¢;(/nessitem)
(nessitem)¢(/nessitem)

(/ness)

(ness value = “0.3”)
(nessitem)¢p,(/nessitem)
(nessitem)¢ps(/nessitem)

(/ness)

(ness value = “0.3”)
(nessitem)¢y(/nessitem)
(nessitem)¢,(/nessitem)

(/ness)

(ness value = “0.3”)
(nessitem)¢,(/nessitem)
(nessitem)¢s(/nessitem)

(/ness)

(/possibility)

The two possibility distributions from these two possibility-valid components using Equations (1) are

7('1((;51) = 07, 7T1(¢2) = 07, ’/T1(¢3) = 07, ’/T1((,Z54) = 07, 71'1((255) = 07, 7T1(¢)6) = 07
and
7T2(¢1) = 0.7, ﬂz(qf)g) = 0.7, 71'2((]53) = 0.7, 7T2((]54) = 0.7, 7T2(¢5) = 0.7, 7T2(¢)6) =0.7

The degrees of inconsistencies of the two possibility-valid components are thelsaimesco (71 (¢)) =
0.3 and1 —maxgcq(m2(¢)) = 0.3. However, if we examine the structure of the weighted subsgts? in
detail, we will find that the right possibility-valid component is more coherent than the left one, since there
is a significant overlap among subs&&in this component. While any two subsets in the first component
have no common elements. This observation leads to the following two definitions.
Definition 33 Let a possibility-valid uncertainty component be
(possibility)oy, .., 0,(/possibility)
where
1.0, € {01, ..,0,} is in the form({ness value = k;)1);(/ness)
2.4; is of the form(nessitem)¢;, (/nessitem) - - - (nessitem); (/nessitem)

and the corresponding set of weighted subset§(be, «;),i = i, .., p}.

This component is said to lieconsistent but with good quality, if there exists at least ong;, called a
separable elementsuch that

P p
( () %) #0 and (Vi =0
i=1,i#j i=1

There can be several separable eleméntsatisfying this definition given a possibility-valid component.
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Definition 34 Let a possibility-valid uncertainty component be
(possibility)oy, .., 0,(/possibility)
where
1.0, € {o1,..,0,} isin the form(ness value = k;)¥;(/ness)
2.1, is of the form(nessitem)¢;, (/nessitem) - - - (nessitem)¢; (/nessitem)
and the corresponding set of weighted subset§(g, ;),: = 1, .., p}.
This component is said to lieconsistent with lower quality, if for every pair(v;, ¥;), 1; N1; = 0, when

by # ;.

The possibility distributionr associated with an inconsistent possibility-valid component can be normal-
ized by one of the three normalization rules as reviewed in [BDP97]:

__ 79
Ty (¢) - maX{Tr((bi)} (4)
o ={ Ly S0z
s (¢) = 7(¢) + (1 — max{m (i) }) (6)

All these rules satisfy the minimal requirements for a normalized possibility distribution:

e o, 7Tm(¢) =1

e if mis normal, thenr,, =7

o Vo, ¢, if mp, (¢) <, (¢) iff 7(d) < m(¢')

The first normalization rule is most common and is consistent with the normalization procedure in proba-
bility theory.

The degree of possibility of every elementina pre-defined set, is increased both in the first and the third
rules. While in the second rule, only the current most possible elements are assigned with the maximum
possibility. We harness the second rule with Definition (33) and assign the maximum possibility to the
elements that have appeared in all but one subset in a possibility-valid component.

1 ¢ € (NE_, ¥i), i # vj,9; is a separable element
_ s.t.if3¢; € (N, i), i # i, ¢y is a separable element 7
Ty (d)) = thenﬂ(¢) > W((bl) (7)

7m(¢) otherwise

When there are several elememis.., ¢; satisfying Equation (7) and they all have the same degree of
possibility distribution, e.g7(¢;) = m(¢;), then we arbitrarily chose one of them to normalize.

In this paper, we assume that all the possibility-valid components are edhsistenbr inconsistent but

with good quality and leave thénconsistent but with lower-qualityossibility-valid components to future
papers where we will examine how to normalize such a distribution and how to discount it ((BDP97]) when
there are more (reliable) sources available.
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4.4.3 Merging possibility distributions

With two possibility-valid uncertainty components, there will be corresponding possibility distributions
associated with them respectively. In this subsection, we discuss how to merge two (or more) possibility
distributions.

The two basic combination rules in possibility theory aredtyjunction and thedisjunction of possibility
distributions ([BDP97]) whem possibility distributions are given on the same frame of discernment.

Vo, Tem (¢) = mini_y (mi(¢)) (8
Vo, Tam (¢) = max;_y (mi(¢)) 9)

The conjunction rule uses the minimum operation, so that the most specific source will determine the
merged possibility distribution. The conjunction rule is useful and produces sensible results only when all

the sources are taken as equally and fully reliable and these sources are highly in agreement with each
other. Since otherwise, any information prefered by some sources but not by the others will be rejected.
Therefore, the conjunction rule can lead to a new possibility distribution that is not normal, even though

all the original possibility distributions are normal. When this happens, the merged possibility distribution
expresses an inconsistency among the sources. Furthermore, it suggests that some sources (at least one) is
wrong when all the degrees of possibility,, (¢) are significantly smaller thah

On the other hand, the disjunction rule uses the maximum operation, so the least specific source will
determinerg,,. This operation takes the most optimistic view from all the sources and does not reject any
suggestion from every source. A set of sources that should not be merged by the conjunction rule can be
merged with the disjunction rule to generate the maximum coverage of the information provided by all the
sources.

Here, any possibility-valid component thatiig€onsistent but with good quality normalized using Equa-
tion (7) before being merged with other possibility-valid components. Therefore, all the possibility-valid
components are normal when applying conjunctive or disjunctive operations.

Definition 35 Let the following be two possibility-valid uncertainty components

(possibility)oy,..,0,(/possibility)

1
2

(possibility)o?,..,07(/possibility)
where
1. o} € {o},..,0,} isin the form(ness value = x; )1} (/ness)
2. ¢} is of the form(nessitem)¢; (/nessitem)- .- (nessitem)¢; (/nessitem)
3. {(¥},K}),i=1,..,p}is the set of weighted subsets with respeditp, .., o,
4. 0% € {of,..,07} isin the form(ness value = 7)1 (/ness)

5. 47 is of the form(nessitem)$? (/nessitem)- - <nessitem>¢3y (/nessitem)
6. {(¢2,x7),7 = 1,..,q} is the set of weighted subsets with respediotp, .., o

7. w1 andm, are the corresponding possibility distributions of the components respectively
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Let theconjunctively merged uncertainty component be as follows.
(possibility)oy,..,05(/possibility)
where eactvy, € {01, ..,0,} Iis of the form
(ness value = kyj)1)(/ness)

and _
K =1 —max{m(})|$ € Y}

wherer is the merged possibility distribution with the conjunctive operation

(@) = min(my(¢), 72(¢))

andv is of the form
(nessitem)¢;(/nessitem)- - - (nessitem)¢,(/nessitem)
and

b ={d1, b2} € (91,02, U} U{PT, 03, ¥}

Although it is possible to generate the necessity measure for all subsets once the merged possibility distri-
bution is known, we only consider the degree of necessity of those subsets which have been specified in the
original possibility-valid components. This will provide a consistent structure with the input news reports.

Definition 36 Letthe news terms andr; each denote a possibility-valid component andlbe a logical
variable. The condition literatonjunctivePossibility(ry, 72, X) is such thak is evaluated tas where
73 IS the news term denoting the conjunctively merged possibility component obtained by Definition 35.

TheConjunctivePossibility condition literal can be used as a condition in a fusion rule for merging
pairs of structured news reports that each incorporate a possibility-valid uncertainty component.

Example 22 Consider the following two possibility-valid components with related frAme {¢1, ¢2, @3, P4, P5}.

(possibility) (possibility)

(ness value = “0.4”) (ness value = “0.3”)
(nessitem)o;(/nessitem) (nessitem)¢;(/nessitem)
(nessitem)¢(/nessitem) (nessitem)¢,(/nessitem)

(/ness) (/ness)

(ness value = “0.5”) (ness value = “0.5”)
(nessitem)¢py(/nessitem) (nessitem)¢;(/nessitem)
(nessitem)¢s(/nessitem) (nessitem)¢py(/nessitem)
(nessitem)¢,(/nessitem) (nessitem)¢ps(/nessitem)

(/ness) (/ness)

(ness value = “0.4”) (ness value = “0.47)
(nessitem)¢s(/nessitem) (nessitem)¢;(/nessitem)

(/ness) (nessitem)¢,(/nessitem)

(/possibility) (/ness)
(/possibility)

For ConjunctivePossibility(ry, 72, X), the logical variableX is evaluated ta; wherers is the news
term denoting the following uncertainty component in the merged news report.
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(possibility)

(ness value = “0.47)
(nessitem)¢,(/nessitem)
(nessitem)¢,(/nessitem)

(/ness)

(ness value = “0.5”)
(nessitem)¢y(/nessitem)
(nessitem)¢ps(/nessitem)
(nessitem)¢p,(/nessitem)

(/ness)
(ness value = “0.47)
(nessitem)¢y(/nessitem)
(/ness)
(ness value = “0.5”)

(nessitem)¢;(/nessitem)
(nessitem)¢py(/nessitem)
(nessitem)¢ps(/nessitem)
(/ness)
(ness value = “0.47)
(nessitem)¢;(/nessitem)
(nessitem)¢,(/nessitem)

(/ness)

(/possibility)

In this combination procedure, the merged possibility distributigiis not explicitly calculated. However,

in practice, this distribution will be calculated and stored in the background knowledgebase. This message
serves two purposes, it will be used to check any inconsistencies among multiple sources and it will be
used to merge with other types of uncertain information, e.g., belfunction components, when heterogeneous
uncertainty components are involved.

Here, we consider the first role of the merged possibility distribution and leave the second to the next
section.

In the above example, the merged possibility distributiagives

m(¢1) = 0.5,7(¢2) = 0.6, 7(¢3) = 0.6, 7(¢4) = 0.5,7(¢p5) = 0.5

which is not normal, since all the values are strictly less tha@nalthough both of the original possibility
distribution are normal.

The definition below aims to detect this inconsistency.

Definition 37 Let the news terms, and, each denote a possibility-valid component andilée a log-

ical variable. If the merged possibility distributian by ConjunctivePossibility(1, 72,X), satisfies
Vo, m(¢) < 1thenr; andr, are said to bepotentially inconsistent If 7; andr are potentially inconsis-
tent, then the condition literdlotentialPossibilityInconsistency(7y, 72, X) holds.

Instead of normalizing any merge results, the conflict information presented in the merged results will
be used to detect potential inconsistencies among sourceBothetialPossibilityInconsistency
predicate is used as an extra condition to restrict the application @bihjpunctivePossibility predi-

cate defined in Definition 36 in fusion rules. When it is true, alternative merging operations, especially the
disjunctive operation, will be applied to merge the input news reports.
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Definition 38 Let the following be two possibility-valid uncertainty components

(possibility)oy,..,0,(/possibility)
(possibility)o?,..,07(/possibility)

where
1. o} € {o},..,0,} isin the form(ness value = x; )1} (/ness)
2. 1} is of the form(nessitem)¢; (/nessitem)--- (nessitem)¢! (/nessitem)
3. {(¥},K}),i=1,..,p}is the set of weighted subsets with respedtd, .., o,
4, 0]2 € {07,..,02} isin the form(ness value = n?)z/}?(/ness)

5. ¢7 is of the form(nessitem)? (/nessitem)- - <nessitem>¢§y (/nessitem)
6. {(v2,x7),7 = 1,..,q} is the set of weighted subsets with respediotp, .., o
7. m andm, are the corresponding possibility distributions of the components respectively
Let thedisjunctively merged uncertainty component be as follows.
(possibility)oy,..,0s(/possibility)
where eactr), € {01, ..,0,} is of the form
(ness value = kj)1)(/ness)

and _
Kk =1 —max{m(})|$ € Y}

wherer is the merged possibility distribution with the disjunctive operation

m(¢) = max(m1 (), m2(¢))

andv is of the form
(nessitem)¢(/nessitem) - - (nessitem)¢.(/nessitem)

where

’(/} = {¢17 "7¢Z} € {1/&;1/}%’ 71/111)} U {w%/w%a ’wg} U {,(/}11 U¢J2|Z = 17'-ap1j = 11 7q}

Definition 39 Let the news terms andr; each denote a possibility-valid component andlbe a logical
variable. The condition literabis junctivePossibility(7y, 72, X) is such thak is evaluated tas where
73 IS the news term denoting the disjunctively merged possibility component obtained by Definition 38.
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When applyingdisjunctivePossibility(r, 72, X) to the two possibility-valid components in Exam-
ple 22, the merged possibility-valid component is:

(possibility)

(ness value = “0.47)
(nessitem)¢;(/nessitem)
(nessitem)¢,(/nessitem)

(/ness)

(ness value = “0.0”)
(nessitem)¢(/nessitem)
(nessitem)¢ps(/nessitem)
(nessitem)¢,(/nessitem)

(/ness)
(ness value = “0.0”)
(nessitem)¢y(/nessitem)
(/ness)
(ness value = “0.47)

(nessitem)¢;(/nessitem)
(nessitem)¢py(/nessitem)
(nessitem)¢ps(/nessitem)

(/ness)

(ness value = “0.0”)
(nessitem)¢,(/nessitem)
(nessitem)¢,(/nessitem)

(/ness)

(ness value = “0.4”)
(nessitem)¢;(/nessitem)
(nessitem)¢,(/nessitem)
(nessitem)¢,(/nessitem)

(/ness)

(ness value = “0.5”)
(nessitem)¢;(/nessitem)
(nessitem)¢y(/nessitem)
(nessitem)¢s(/nessitem)
(nessitem)¢,(/nessitem)

(/ness)

(/possibility)

and the merged possibility distribution is:

7T(¢1) = 1.0,7T(¢2) = 1.0,7T(¢3) = 0.6, 7T(¢4) = O.6,7T(¢5) =05

When using the disjunctive operator, suchnasx, there can be many subsets that have the degree of
necessity measure withO in the merged XML document, as demonstrated above. These segments will
unnecessarily expand the XML code. If we revise the calculatiof), af Definition 38 as

kp =1 —max{m(¢)|¢ € ¥} >0
then the merged XML document will overcome this problem.

Both the conjunctive and disjunctive operations are associative. When there are more than two possibility-
valid components available, we will merge two of them first and then merge the merged result with the
third one and so on, until all the components have been considered.

Since inconsistency may appear at any stage when using the conjunctive operation, especially if two con-
flicting sources are merged before consistent sources are combined, we will leave the study of how to
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prioritize a list of sources for combination, e.g., based on the reliability of a source in the past, or the de-
gree of consistency of two sources, to a future paper. A starting point for this would be measuring the degree
of inconsistency ([Hun02c, Hun03, KLMO03]) and further measuring the quality of uncertainty components
when they have the same degree of inconsistency [HLO4c].

5 Merging heterogeneous uncertainty components

In the previous section, we have provided predicates for use in conditions of fusion rules for merging infor-
mation in homogeneous news reports with either probability distributions, or mass functions, or possibility
measures respectively. Since structured news reports can come from various sources for various purposes,
individual structured news reports may use different mechanisms to represent uncertainty information. In
this section, we discuss how to merge two structured news reports with the uncertainty components in two
different forms.

5.1 Merging possibility with beliefs

This subsection particularly focuses on how to merge belfunction-valid components with possibility-valid
components. Since probability distributions can be regarded as special cases of mass functions, fusion rules
for merging possibility-valid components and belfunction-valid components will equally apply to merging
probability-valid and possibility-valid news reports.

5.1.1 Relationship between DS theory and possibility theory

In [Sha76] Chapter 10, a belief function is called@sonant functionif its focal elements are nested.
That is, if 51, 52 ,.., S, are the focal elements with; ., containing more elements th&f, thenS; C
Se C .. C S,. Let Bel be a consonant function, adel be its corresponding plausibility functioBel and
Pl have the following properties:

Bel(AN B) = min(Bel(A), Bel(B)) for all A, B C p(f2).
PI(AU B) = max(Pl(A), PI(B)) for all A, B C p(1).

These two properties are exactly the requirements of necessity and possibility measures in possibility the-
ory. Therefore, necessity and possibility measures are special cases of belief and plausibility functions.

Shafer further defined a function, calledntour function f : Q — [0, 1], for a consonant function through
equation
f(¢) = Pl({¢})
For a subserl C ,
Pl(A) = maxgea f(o) (20)

Equation (10) matches the definition of possibility measures from a possibility distribution. So a contour
function is a possibility distribution.

Now, we look at the properties of the corresponding plausibility function of a consonant function.

Proposition 2 Let Bel be a consonant function. Let and P! be its corresponding mass and plausibility
functions respectively. Let the set of focal elementd ped,,.., A,, with A; C A;4+1. Then the following
properties hold:
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1. Pi({¢}) =1,forall ¢ € 4,

Pi({¢;, }) = Pl({¢;, }) forany¢;,, ¢;, € A; \ A;—1 wherei > 1

3. Pi({#}) > Pl({¢;}),for¢, € A;\ Ai—1 and¢,; € A1 \ A; wherei > 1
4. Pl({¢}) =0foranye & A,

Proof
Let us first prove thaPl({¢}) = 1, forall ¢ € A;.

Since the set of focal elements are nested4ani the smallest among all the focal elementsnA; = A,
for all the other focal element4;. This leads to

Pl{¢}) =3{m(A){o}NA;i # 0,6 € Ar}
=YX{m(A)]i=1,2,..,p}
=1
Next, we provePl({¢;, }) = Pl({¢:,}) forany¢;,, ¢, € A; \ A;—1 wherei > 1.

In fact, for allg; € A; \ A;_1, we have

Pl({¢;}) =X{m(As)|{¢;} N As # 0}
= X{m(A;)|s >=i,since{¢p;} N Ay =0, for ¢t < i}
Therefore, for any;,, ¢;, € A; \ A;—1, we havePl({¢;,}) = Pl({¢s,}) = Z{m(4s)|s =14,i+ 1,..,p}.
Now, we prove the third property.

Leto, € A; \ A;—1, similar to the above calculation, we have

Pl({¢i}) = X{m(As){¢1} N As # 0}
= X{m(As)|s >=1i,since{¢} N A, =0,fort < i}
=3{m(As)ls=1,i+1,..,p}
and for anyp; € 4,41 \ A;, we equally have

Pi({¢;}) =I{m(A,){¢;} N A, # 0}
=Y{m(Ay)|s >=1i+1,since{p,;} N A; = 0, for t <i}
=YX{m(As)|ls=1i+1,i+2,.,p}
These two equations lead to
Pl({#}) = m(A;) + Pl({;}) for ¢y € A; \ Aj—1 and ¢j € A;p1 \ 4;
which saysPi({¢;}) > Pi({¢;}) sincem(4;) > 0.

Finally, for any¢ ¢ A,, we have

Pl({¢}) =2{m(As){s} N As # 0}
=0 (since {¢p} NA; =0, fort=1,..,p)

End
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Example 23 Let Bel be a consonant function and be its mass function with the following assignment.

(belfunction)

(mass value = “0.3”)
(massitem)o, (/massitem)
(massitem)py(/massitem)

(/mass)

(mass value = “0.27)
(massitem)o, (/massitem)
(massitem)py(/massitem)
(massitem)ps(/massitem)

(/mass)

(mass value = “0.17)
(massitem)¢;(/massitem)
(massitem)p,(/massitem)
(massitem)ps(/massitem)
(massitem)p,(/massitem)
(massitem)ope(/massitem)

(/mass)

(mass value = “0.3”)
(massitem)¢,(/massitem
massitem)¢,(/massitem
ma331tem 3(/massitem

)

( )
( )
+(/massitem)
( )
( )
( )

¢
)
.
¢

s(/massitem
s(/massitem
o(/massitem

massitem

(massitem
(/mass)
(mass value = “0.17)

(massitem)¢;(/massitem)

massitem)¢,(/massitemn)

massitem)¢s;(/massitemn)

massitem)¢,(/massitem)

)

)

)

( ) B2
( )03 (
( )da(
(mass1tem)¢6</massitem
( )Ps
( )P

) P11

)
)¢
)¢
)¢
)¢
)¢

g (/massitem
o(/massitem

<mass1tem 11(/massitem)

(/mass)
(/belfunction)

Thefocal EIementS aml - {¢1)¢2}1A2 = {¢17¢27¢3}1A3 = {¢15¢2a¢3a¢47¢6}"44 = {¢17¢27¢35¢4a¢6a¢87¢9}'
andA5 = {qsla¢2a¢37¢47¢67¢87¢9a¢11}'

From this mass assignment, the degree of plausibility on each singleton set can be calculated as follows.

Pl({¢1}) = Pl({¢2}) =

Pi({¢s}) = 0.7
Pl({¢4}) = Pl({¢6}) = 0.5
Pl({¢s}) = Pl({¢9}) = 0.4

Pi({¢11}) =0.1

And for any other element in the frame of discernment, its degree of plausibility is
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This proposition reveals several interesting points in relation to the values of plausibility function on single-
ton sets. First of all, it says that all the elements in the smallest focal element set must have the maximum
degree of plausibility value. So any elementwith value Pi({¢}) = 1, declares thap must be in the
smallest focal element. Secondly, for any two elementnde; if they have the same degree of plausibil-

ity, thatisPI({¢;}) = Pl({¢;}), then these two elements always appear together in any focal element set.
Thirdly, all those elements with positivBl values are partitioned into subsets based on their degrees of
plausibility, with the elements having the maximum degree in the innermost layer, and the elements having
the lowest degree in the outmost layer.

We now investigate how to recover a mass function from a consonant function without exhausting all the
subsets of a frame of discernment.

Proposition 3 ? Let Bel be a consonant function anil be its plausibility function wherél({¢}) is
known for eachp whenPIi({¢}) > 0 for frame of discernmerf®. Let By, Ba,.., B, be disjoint subsets
of Q such thatPl({¢;}) = Pl({¢;}) when bothy,, ¢, € B;, andPl({¢;}) > Pl({¢;}) if ¢; € B, and
¢; € Biy1, then the following properties hold:

1. LetA; = U{B,|j = 1,..,i} fori = 1,2,..,p, then subsets!,, A,, .., A,, are nested and are focal
elements oBel

2. Letm(A) = Pl({¢;}) — Pl({¢,}) where¢, € B, and¢; € B,y fori = 1,..,p — 1. Let
m(A,) = Pl({¢}) where¢ € B,. Thenm is the corresponding mass function on focal elemeints

Proof
It is easy to prove that subsets are nested, sincé; C A;; is true based on the construction of eath

Also,
Pl({¢i}) = Pl({¢;}) when ¢;, ¢; € (Ait1 \ Ai) =
and
Pi({¢:}) > Pl({¢;}) when ¢; € B = A; \ A;_1and ¢; € Bi11 = A1\ A;

Furthermore Pl({¢}) = 0 for any other¢ ¢ A,, andPl({¢;}) = 1for ¢, € A; = Bs, because (1)
Pl({#:}) must have the highest degree of plausibility, and (2Pif{¢:}) < 1 then there exists a focal
element4,; such thatd; N A; = () which contradicts with the assumption th2a¢! is consonant.

Therefore, all the properties in Proposition 2 are truefbon A;, so A; are the focal elements.
Next, to prove thatn is the corresponding mass function, we need to provelthat( A;) =
Based on the definition of:, we have

m(A,) = Pl({¢;}) when ¢; € B,

and
m(Ap-1) = Pl({¢:}) — Pl({$;}) = Pl({¢:}) — m(Ap) for ¢; € B, 1 and ¢; € B,

So
Pl({¢i}) = m(Ap) + m(Ap-1) for ¢; € By

which leads to

m(Ap—2) = Pl({:}) — PI({¢;}) = PI({i}) — (m(Ap) + m(Ap-1)) for ¢; € B, 5 and ¢; € By

2Whilst Propositions 2 and 3 may be regarded as established facts, we have added proofs to make the paper self-contained.
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This procedure can be repeated for4l| until
m(Ay) = Pl({¢i}) — Pl({¢;}) = Pl({¢i}) — (¥;m(A4;)) for ¢; € Brand j =2,..,p
which gives
Pl({¢i}) = m(A1) + {(E;m(A4)))F = 2,...p} = Ei_ym(A)
SincePl({¢;}) = 1 for ¢; € By, we eventually havé = 3_ m(A4;).
End

Looking at Example 23 again, it is not difficult to see thiat = {¢1, 92}, Ba = {¢3}, Bs = {04, d6},
B4 = {¢87¢9} andB5 = {¢11}. AISO,AZ' = Uij, andm(AZ) = Pl({¢l}) — Pl({¢]}) WhereQSi S Bz
and¢; € B;y; for 1 < i < n. For example,

m(As) = Pl({¢a}) — Pl({és}) = 0.5 — 0.4 = 0.1

Lemma 1 Letw be a possibility distribution on frame of discernméhand is normal. LetB,, Bs,.., B,
be disjoint subsets &b such thatr(¢;) = 7(¢;) when bothy,, ¢, € B;, andn(¢;) > n(¢;) if ¢; € B;
and¢; € B;11, then the following properties hold:

1. LetA4, = U{B,|j =1,..,i}fori =1,2,..,p, then subsetd,, A,, .., A, are nested

2. Letm(A;) = w(¢;) — m(¢;) whereg € B; and¢; € B, fori =1,..,p— 1. Letm(4,) = 7(¢)
where¢ € B,. Thenm is a mass function on focal elements

3. LetBel be the belief function correspondingto defined above, theBel is a consonant function

This Lemma can be easily proved based on Proposition 3 and the fact that a normal possibility distribution
is a contour functiory(¢) = Pi({¢}). This Lemma says that from any possibility distributiorvhich is
normal, it is possible to recover its corresponding mass function.

The nature of Lemma 1 was first observed in [DP82] where the relationship between the possibility theory
and belief functions was discussed. This relationship was further referred to in several papers subsequently
([DP88b, DP98h, DNP0O0]). Here we state the Lemma again to make the paper self-contained.
Definition 40 Let the following be a possibility-valid component

(possibility)oy, .., 0,(/possibility)

where

1. 0; € {01, ..,0p} isin the form(ness value = k;)1;(/ness)

2. 1); is of the form(nessitem)@;, (/nessiten) - - - (nessitem)¢; (/nessitem)

Let the corresponding possibility distribution obtained by Definition 32 ladnich is normal. For alk) €
whenr(¢) > 0, let By, Bs,.., B,, be disjoint subsets such that¢;) = 7(¢;) when bothy;, ¢; € B;, and
F(¢i) > W(¢j) if (bz (S Bi and¢j S Bi+1.

Let the converted belfunction-valid component be

(belfunction)oy,..,0,,(/belfunction)
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where eachr;, € {0}, ..,0,,} is of the form
(mass value = k) )1} (/mass)
andq;, is of the form
(messitem)¢y, (/messitem) - -- (messitem)¢y, (/messitem)

where
{Ghys - bh,} = JBj for j=1,2, .k

and
o 7(¢;) —m(¢p;) where ¢, € By and ¢; € B11 when k <n
k (i) where ¢; € B, whenk =n

Definition 41 Let the news term be a possibility-valid component andbe its corresponding possibility
distribution which is normal. LeX be a logical variable. The condition liter@bssibilityBelfunction(r, X)
is such thatX is evaluated ta”’ wherer’ is the news term denoting a belfunction-valid component obtained
by Definition 40.

Example 24 Let  be the news term denoting the possibility-valid component on the right-hand side of
Example 20 and let; be its corresponding possibility distribution with details

7T2(¢1) = 077 Tl'g(d)g) = 1.0,7T2(¢3) = 0.8,7T2(¢4) = 07

then we have

Pl({¢1}) = 0.7, PI({¢2}) = 1.0, PI({¢3}) = 0.8, PI({¢4}) = 0.7

since a possibility distribution is a contour function (of a consonant function) which defines plausibility
values on singletons. Therefore, the disjoint subsets for this consonant function are

By = {¢2}, B = {¢3}, B3 = {1, ¢4}
and the corresponding focal elements are
Al = Bl,AQ = B1 UBQ,Ag = B1 UB2U33

The condition literaPossibilityBelfunction(7, X) generates a belfunction-valid component denoted
by X as below which defines a mass functiorwith m(A4;) = 0.2, m(Az) = 0.1, m(As) = 0.7:

(belfunction)
(mass value = “0.2”)
(massitem)¢,(/massitem)
(/mass)
(mass value = “0.17)

(massitem)¢,(/massitem)
(massitem)¢ps(/massitem)

(/mass)

(mass value = “0.77)
(massitem)¢;(/massitem)
(massitem)¢,(/massitem)
(massitem)¢ps(/massitem)
(massitem)¢p,(/massitem)

(/mass)

(/belfunction)
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5.2 Merging multiple heterogeneous uncertainty components

Following the discussion above regarding belief functions and possibility/necessity measures and the con-
version of a possibility distribution into a mass function, as well as the view we take in this paper that a
probability distribution is a special case of mass function, we are ready to demonstrate the merging of mul-
tiple structured news reports with heterogeneous forms of uncertainty representations. The umbrella for this
unified approach to merging is the Dempster’'s combination rule, used after non-mass function uncertainty
components are converted into mass function components. We will also show how this merge process can
be efficiently performed when one of the news reports to be merged has a probability-valid component.

Example 25 Let the three structured news reports with uncertainty components be as shown below and be
denoted by new terms, m, and 73 respectively.

(probability)
(prob value = “0.4”)¢, (/prob)
(prob value = “0.5”)¢,(/prob)
(prob value = “0.1”)¢3(/prob)
(/probability)
(belfunction) (possibility)

(mass value = “0.47) (ness value = “0.6”)
(massitem)o,(/massitem) (nessitem)¢;(/nessitem)
(massitem)¢p,(/massitem) (nessitem)¢p,(/nessitem)

(/mass) (/ness)

(mass value = “0.6”) (ness value = “0.6”)
(massitem)¢ps(/massitem) (nessitem)¢;(/nessitem)

(/mass) (nessitem)¢,(/nessitem)

(/belfunction) (/ness)
(/ness value = “1.0”)
(nessitem)¢;(/nessitem)
(nessitem)¢ps(/nessitem)
(/ness)
(/possibility)

We first convert news term into a belfunction-valid component, denotedy We then merge it with
belfunction-valid component, usingDempster(7;, 72, X) resulting in an uncertainty component as fol-
lows, denoted as;.

(belfunction)
(mass value = “0.381")
(massitem)¢;(/massitem)

(/mass)

(mass value = “0.476”)
(massitem)¢p,(/massitem)

(/mass)

(mass value = “0.143")
(massitem)¢ps(/massitem)

(/mass)

(/belfunction)

Based on Definition 40, the belfunction-valid component converted from the possibility-valid component
73, denoted asy, is derived as
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(belfunction)

(mass value = “0.6”)
(massitem)¢,(/massitem)

(/mass)

(mass value = “0.4”)

(massitem)¢;(/massitem)
(massitem)¢ps(/massitem)

(/mass)

(/belfunction)

Finally, mergings with 74 by Dempster(75, 74, X ), we obtain the merged belfunction-valid component
that carries the impact of all the uncertain information.

(belfunction)
(mass value = “0.8695”)
(massitem)¢,(/massitem)

(/mass)

(mass value = “0.1305”)
(massitem)¢ps(/massitem)

(/mass)

(/belfunction)

This final output strongly suggests that is the most likely outcome after considering all three news
reports. Since Dempster’s rule is associative, any sequence of merging would produce the same result as
we have obtained above.

It should be noted that if there is a probability-valid component among multiple heterogeneous uncertainty
components, the final outcome will have degrees of uncertainty on singleton sets rather than on subsets, as
proved in [Sha76].

Let Bel; be a belfunction-valid component where every focal elemer@fcontains only a single ele-
ment, it is in fact a probability-valid component. LBkl, be a belief function andl, be its plausibility
function. The combination of these two belief functions results in a belfunction-valid component that is a
probability-valid component and it can be obtained by the following simple equation [Sha76]:

Bel({¢}) = kBel1({¢}) Pl2({¢}) (11)
where
k= (SpeaBeli({0}) Pla({6})) ™
Equation (11) can be rewritten as
Bel({¢}) = kmi({¢}) Pl2({¢}) (12)
sincem; ({¢}) = Bel;({¢}) whenBel; has focal elements with only singleton sets.
When a probability-valid component is to be merged with a belfunction-valid component (or a converted

one from a possibility-valid component), we use the following rule, instead of condition tetigkter (7, 72, X),
to merge them to simplify the calculation.

Definition 42 Let the following be a probability-valid and a belfunction-valid uncertainty components
respectively.
(probability)oy, .., Ué(/probability>
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(belfunction)oy, .., UZ(/belfunction>

where

1. 0} € {o1,..,0,} is of the form(prob value = x;)¢; (/prob), and¢; € .
2. 0% € {0}, ..,02} is of the form(mass value = x3)¢; (/mass)

3. ¢7 is of the form(massitem)? (/massitem)- - (massitem>¢§y (/massitem)

Let thecombined belfunction-valid componentbe
(belfunction)oy,..,05(/belfunction)

where eactry, € {01, ..,0,} is of the form(mass value = )¢y (/mass) and

367 € {¢7, ,gb[l)} such that ¢; = ¢y,

and
ki = ke PL({¢})
wherePl is the plausibility function for the belfunction-valid component with

Pl({¢}) = ©{rj|¢ € {¢],, ... ¢} }} foreach¢ € Q,

and

k= (S{siPI{$:})|¢i € {1}, .. o1}~

It is meaningful to calculate thosBel({¢}) only when{¢} is a focal element imn,. Otherwise {¢} is
not a focal element in the combined belief function. We have incorporated this fact in the above definition
to further reduce the calculation.

To differentiate this combination procedure from that in Definition 26, we name the following condition
literal BayesianMerge.

Definition 43 Let the news term; denote a probability-valid component and news tesgrdenote a
belfunction-valid component. L&t be a logical variable. The condition liter@hyesianMerge(ry, 72, X)

is such thatX is evaluated ta- wherer is the news term denoting a belfunction-valid component obtained
by Definition 42.

If a number of news terms have been selected for answering a user’s query each with an uncertainty valid
component as we have defined in previous sections, news terms with homogeneous uncertainty valid com-
ponents are merged using appropriate fusion rules first before heterogeneous uncertainty components are
merged. This is especially so for possibility-valid components, since a converted belfunction-valid com-
ponent from a merged (either conjunctive or disjunctive) possibility distribution is not guaranted to be
the same as the combined belfunction-valid component from two converted belfunction-valid components.
That is, in general

ConjunctiveMerge(T;, T2, X) A PossibilityBelfunction(X, X')

is not equivalent to

PossibilityBelfunction(ry, X1) A PossibilityBelfunction(7a, X2) A Dempster(Xy, Xo, X7)
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Therefore, it is highly possible that three heterogeneous news terms would be the last to be merged, as
illustrated in Example 25.

During a multiple-step merge process, a higher degree of conflict among homogeneous news terms will
be resolved using other techniques. For example, if the numerical values are highly conflicting, then we

could use priorities over sources or to eliminate or discount on less reliable ones, or we could use some
other background knowledge to resolve the conflict before proceeding. However, these are not the topics
being addressed in this paper and we shall leave them to later papers following proposals for aggregation
in [HS04].

6 Discussion

The approach of fusion rules suggests an implementation based on existing automated reasoning technol-
ogy and on XML programming technology. Once information is in the form of XML documents, a number

of technologies for managing and manipulating information in XML are available. We have developed a
prototype implementation in Java for executing fusion rules that are marked up in FusionRuleML and con-
structing the merged reports [HS03, HS04]. Background knowledge is handled in a Prolog system and is
queried by the Java implementation.

The extension of the fusion rules approach to modelling and reasoning with uncertain information on tex-
tentries in this paper provides a general framework to represent evidence and knowledge with uncertainty.
With the increasing use of XML for modelling variety types of data for e-science, there is potentially a wide
range of applications of the framework beyond news reports. For instance, the framework has been used to
represent a large number of pieces of evidence as input for an efficient algorithm on evidence combination
[LHAO3].

To summarize, we have made the following novel contributions in the paper:

¢ Aunified modelling method is presented in this paper for representing uncertain information in three
types of uncertainty formalism, together with conversions among them. This method enables users
to encode these types of uncertainty conveniently.

e Merging procedures (or predicates) are defined to merge multiple news reports involving either the
same type of uncertainty formalisms or heterogenous ones. Although the relationship between belief
functions, especially consonant belief functions and possibility theory has been discussed in many
research papers, the combination (or merging process) of these two types of uncertain information
in practice does not seem to have been reported. This paper presents a tool to model them and
convert one type to another to facilitate the merging process. From this point of view, this is a new
contribution of the paper.

e Inconsistency detection methods are proposed to detect potential contradictions of merging. The
detection of inconsistencies among mass functions is a derivation of the well known perception in
DS theory that the mass value assigned to the empty set before normalization represents the degree
of conflict (inconsistency). We adopt this perception in the paper and use an extra predicate to detect
potential conflicts whem:(0) is large. Then an additional predicate is developed to veto any wrong
conclusions about a potential inconsistency. These two additional predicates are a new contribution
to conflict detection in DS theory.

The merging of uncertain information on subtrees as well as on different levels of granularities of concepts
are both discussed in [HLO4a, HLO4b]. The combination of dependent sources of evidence and the dis-
counting of less reliable sources when inconsistencies exist will be studied in future papers. At present, we
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assume that evidence has always been given on a set of mutually exclusive and exhaustive values. Assign-
ing and reasoning with evidence on elements that are not mutually exclusive will also be examined in the
future.

We also need to investigate confluence issues for merging uncertain information using fusion rules. Merging
operators for uncertainty measures are not always associative and sources of information can be conflicting.
This lack of confluence is in some sense incompatible with declarative programming (while a strong point
of rule programming is that, ideally, rules should be considered independent of one another). One approach
we are exploring to address this is to analyse the nature of the inconsistency arising in the different sources,
and using this analysis to prioritise the sources to be merged.

Another issue for further investigation is our approach to merging several uncertainty components with

different uncertainty measures. For this, we have suggested merging separately the possibility-valid com-
ponents and belfunction-valid compnents, and then turning the resulting possibility-valid component into a

belfunction-valid one so as to be able to perform a last merging step. The rational here is to apply the most
suitable merging operators, given multiple uncertainty components, in order to preserve the consistency
within each theory. It is also because that although a possibility-valid component can be converted into a
consonant function, and two such converted belief functions can be combined with Dempster's combina-
tion rule, the combined result is no longer a consonant function [DP82]. On the other hand, if we merge

the original possibility-valid components as they are, the merged result (after normalization) is a consonant
function.

However it may be possible to compare the resulting uncertainty measure above with the one obtained
by turning every possibility-valid component into a belfunction-valid one during a preliminary step, then
merging all the belfunction-valid components using Dempster’s rule. One issue is whether in practice, these
two sequences of merging would be much different.

In [NJO2], a probabilistic XML model was presented to deal with information with uncertainty that was in
the form of probabilities. Using this model, we can construct an XML report as in Figure 1. Two types of
probability assignments are distinguished, mutually exclusive or not mutually exclusive. For the first type,
probabilities are assigned to single atoms where only one of these atoms can be true, and the total sum of
probability values is less than or equal to 1 (as ferecipitation)). For the second type, two single

atoms can be compatible, so the total sum of probabilities can be greater than 1{(ads fers)).

This model allows probabilities to be assigned to multiple granularities. When this occurs, the probability
of an element is true is conditioned upon the existence of its parent (with probability), and so on until up
to the root of the tree. For example, if we would like to know the probabilityuafny in London, we have

Prob(precipitation = sunny A cityName = London)

= Prob(precipitation = sunny) * Prob(cityName = London)
*Prob(precipitation = sunny A cityName = London | city) % Prob(city | cities)
*Prob(cities | report) % Prob(report)

=0.1%1.0%07%x1.0%1.0%1.0=0.07

Therefore, the probability associated with a textentry (at any level) is treated as the conditional probability
under its parent. A query is answered by tracing the relevant branches with the textentries specified by the
query, and calculating probabilities using the conditional probabilities along these branches. These derived
probabilties are then either multiplied or added depending on whether the “and” or the “or” operation are
used in the original query. For instance, the query “London is either sunny or rain on 19/3/02” is evaluated
as:
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(report)
(source)TV1(/source)
(date)19/3/02(/date)
(cities)

(city Prob = “0.77)
(cityName)London(/cityName)
(precipitation)

(Dist type = “mutually — exclusive”)
(Val Prob = “0.1”)sunny(/Val)
(Val Prob = “0.7”)rain(/Val)
(/Dist)
(/precipitation)

(/city)

(city Prob = “0.4”)
(cityName)GreaterLondon(/cityName)
(precipitation)

(Dist type = “mutually — exclusive”)
(Val Prob = “0.2”)sunny(/Val)
(Val Prob = “0.6”)rain(/Val)
(/Dist)
(/precipitation)
(/city)
(/cities)
(/report)

Figure 1: An XML report using the framework in ProTDB [NJO0Z2].
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Prob(cityName = London A ((precipitation = sunny) V (precipitation = rain)))

= Prob(cityName = London) * Prob(precipitation = sunny)
*Prob(cityName = London A precipitation = sunny | city) x Prob(city | cities)
«Prob(cities | report) x Prob(report)

+Prob(cityName = London) * Prob(precipitation = rain)

*Prob(cityName = London A precipitation = rain | city) * Prob(city | cities)
*Prob(cities | report) * Prob(report)

= (1.0%0.1%0.7 % #1.0 % 1.0 % 1.0) + (1.0 % 0.7 % 0.7 % 1.0 % 1.0 % 1.0) = 0.07 + 0.49 = 0.56.

The main advantage of this model is that it allows probabilities to be assigned to multiple granularities
and provides a means to calculate the joint probability from them. However, it does not merge multiple
probabilistic XML on the same issue. On the contrary, our uncertainty XML model focuses on multiple
XML datasets and provides a set of means to merge opinions with uncertainty from different sources. We
have not yet in this paper considered uncertainties at non-leaf level. In this sense, the research in [NJO2]
and ours is complementary to each other. However, since we allow uncertain information to be specified in
a variety of forms other than just probabilities, dealing with multiple granular uncertainty information will
not be as straightforward as in the case for probabilities only. We will focus on this issue in a forthcoming
paper.

Our logic-based approach differs from other logic-based approaches for handling inconsistent information
such as belief revision theory (e.g. [Gar88, DP98a, KM91, LS98]) and knowledgebase merging (e.g. [KP98,
BKMS92]). These proposals are too simplistic in certain respects for handling news reports. Each of them
has one or more of the following weaknesses: (1) One-dimensional preference ordering over sources of
information — for news reports we require finer-grained preference orderings; (2) Primacy of updates in
belief revision — for news reports, the newest reports are not necessarily the best reports; and (3) Weak
merging based on a meet operator — this causes unnecessary loss of information. Furthermore, none of
these proposals incorporate actions on inconsistency or context-dependent rules specifying the information
that is to be incorporated in the merged information, nor do they offer a route for specifying how merged
reports should be composed.

Other logic-based approaches to fusion of knowledge include the KRAFT system and the use of Belnap’s
four-valued logic. The KRAFT system uses constraints to check whether information from heterogeneous
sources can be merged [PH@9, HGOO]. If knowledge satisfies the constraints, then the knowledge can be
used. Failure to satisfy a constraint can be viewed as an inconsistency, but there are no actions on inconsis-
tency. In contrast, Belnap’s four-valued logic uses the values “true”, “false”, “unknown” and “inconsistent”

to label logical combinations of information (see for example [LSS00]). However, this approach does not

provide actions in case of inconsistency.

Merging information is also an important topic in database systems. A number of proposals have been
made for approaches based in schema integration (e.g. [PM98]), the use of global schema (e.g. [GM99]),
and conceptual modelling for information integration based on description logics [@&d, CGL98a,

FS99, PSB 99, BCVBO1]. These differ from our approach in that they do not seek an automated approach
that uses domain knowledge for identifying and acting on inconsistencies. Heterogeneous and federated
database systems also could be relevant in merging multiple news reports, but they do not identify and act
on inconsistency in a context-sensitive way [SL90, Mot96, CMO01], though there is increasing interest in
bringing domain knowledge into the process (e.g. [Cho98, SO99]).

Our approach also goes beyond other technologies for handling news reports. The approach of wrap-
pers offers a practical way of defining how heterogeneous information can be merged (see for example
[HGNY97, Coh98, SA99]). However, there is little consideration of problems of conflicts arising between
sources. Our approach therefore goes beyond these in terms of formalizing reasoning with inconsistent
information and using this to analyse the nature of the news report and for formalizing how we can act on
inconsistency.
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