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Abstract Dempster's rule of evidence combination is
computational expensive. This paper presents a parallel
approach to evidence combination on a qualitative Markov
tree. Binarization algorithm transforms a qualitative
Markov tree into a binary tree based on the computational
workload in nodes for an exact implementation of evidence
combination. A binary tree is then partitioned into clusters
with each cluster being assigned to a processor in a parallel
environment. The parallel implementation improves the
computational efficiency of evidence combination.
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I. Introduction
 Research work on improving the efficiency of belief

combination in the Dempster-Shafer theory of evidence (DS
theory) [1] started as earlier as in 1981 when Barnett
proposed a linear algorithm for a special type of belief
functions in [2]. Since then, many researchers have
investigated various algorithms ([3, 4, 5, 6, 7, 8, 9, 10, 11],
etc.) in two main categories, exact implementations of
Dempster’s combination rule or its approximations. Among
exact implementations, the Shenoy-Shafer architecture for
computing multiple marginals of the joint belief function in
qualitative Markov trees using local computation has been
popular. The term Markov trees, borrowed from probability
theory and first used in [12] as qualitative Markov trees,
means a tree of variables in which a separation implies
probabilistic conditional independence given the separation
variable [13]. As proved in [8], with this method, the
exponential computational complexity in the size of total
number of variables is reduced to the size of the largest
node in a tree, a node with the largest number of variables.
The major technique supporting the method is local
computation, which was initiated for propagating
probabilities in Bayesian causal trees by Pearl [14].  Local
computation refers to a computation which involves only a
small number of nodes in a large tree (or network). The
basic idea of local computation is message passing among
neighbouring nodes in a qualitative Markov tree to compute
marginals of the joint belief distribution without actually
calculating the joint belief distribution.

The efficiency of evidence combination in a qualitative
Markov tree with local computation, however, depends on
the sizes of nodes. If a node in a qualitative Markov tree has
many neighbours, even local computation can become very
inefficient.

In this paper, we present a parallel approach to evidence
combination on a qualitative Markov tree. The binarization

algorithm transforms a qualitative Markov tree into a binary
tree, based on the amount of combinations at each sub-tree.
The partitioning algorithm then partitions the binary tree
into a set of clusters with the intention that each cluster will
be assigned to a processor in a parallel processing
environment.

The remainder of the paper is organised as follows.
Section 2 introduces the basics of DS theory and belief
propagation in qualitative Markov trees using local
computation. Section 3 proposes a binarization algorithm
for transforming a qualitative Markov tree into a binary join
tree and a partitioning algorithm for clustering the binary
tree for parallel processing. Section 4 provides a theoretical
analysis on how much efficiency can be achieved by
parallel implementation. Finally conclusions and
discussions are given in section 5.

II. DS Theory and Qualitative Markov Trees
A. Basics of DS Theory

In DS theory [1], a piece of information is described as a
mass function on a set of mutually exclusive and exhaustive
elements, known as a frame of discernment (or simply a
frame), denoted as Θ. A mass function m: 2Θ → [0,1],
represents the distribution of a unit of belief over a frame,
Θ, satisfying the following two conditions: m(Φ) = 0 and
ΣA⊆Θ  m(A)=1.  A belief function over Θ is a function Bel:
2Θ → [0,1], satisfying Bel(A)= ΣB⊆ A m(B). When several
belief functions are obtained through distinct sources based
on the same frame of discernment, a new belief function
representing the consensus of them can be produced.
Assume that Bel1 and Bel2 are two such obtained belief
functions on the same frame Θ, the combined impact of
them is calculated using the Dempster’s rule of
combination, Bel = Bel1 ⊕  Bel2. The computational
complexity of combining two belief functions over a frame
is exponential to the size of the initial frame.

B. Qualitative Markov Trees
Qualitative Markov trees: We use graph-oriented
terminology and notation for qualitative Markov trees here.
Let a pair {V, E} be a graph, with V a finite set of nodes (or
variables) and E a set of unordered pairs of distinct nodes in
V.  A qualitative Markov tree is a graph which has no
cycles, and any variable in two nodes should be in any node
in the path linking them. Elements in V are denoted using
capital letters, such as A, B, S, and subsets of V are denoted
with lower cases, such as, x, y, z.
Variables and Configurations: Let x be a node in a
qualitative Markov tree representing a set of variables and
Θx be the frame corresponding to x. Elements of Θx are



referred to as configurations of x, denoted by bold-faced
lower case, such as, g, f, h.
Projection and Extension: Let g and h be two sets of
variables, h ⊆  g, and g is a configuration of g. The
projection of g to Θh, denoted by g↓h is a configuration of h.
Let G be a non-empty subset of Θg, the projection of G to h,
denoted by G↓h, is obtained by G↓h = {g ↓h g ∈  G}. If g and
h are two sets of variables, h ⊂  g, and H is a subset of Θh,
then the extension of H to g, denoted by H↑g, is H × Θg-h.
Marginalization: If m is a mass function on g, and h ⊆  g, h
≠ Φ, the marginal of m on h, denoted by m↓h, is a mass
function on h defined by
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On the other hand, if m is a mass function on h, and h ⊆  g, h
≠ Φ, the marginal of m on g, denoted by m↑g, is a mass
function on g defined by
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Belief propagation: Let {V, E} be a qualitative Markov
tree on which a set of belief functions are assigned to its
nodes. Given a node x, Vx={i|(i,x)∈ E} denotes the set of
neighbours of x, a set of nodes that are directly linked with
x. Belx represents the initial belief function assigned to node
x. To propagate initial belief functions to obtain the final
marginal on a designated node (containing a set of
variables), the propagation scheme starts with the leaves of
a qualitative Markov tree and moves step by step towards
the targeted node. Each time a node x sends a message
Mx→i, referring to the belief function sent by x to i, to each
of its neighbours,
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For a leaf node x with only one neighbour i, Mx→i is reduced

to iix
x

ix BelM
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received the messages from all of its neighbours, the
marginal Bel↓y for y is obtained as
Bel↓y=Bely⊕ (⊕ {Mi→y|i∈ Vy}). As stated in [13], a qualitative
Markov tree can always be re-constructed as a rooted one.
In this paper, we concentrate on rooted qualitative Markov
trees. Let node r be the root of a Markov tree, x be a node.
Let Chx= {k|k∈ Vx, k is a child node of x} be the set of
children of x, and Px= {p} be the parent of x.  The belief
propagation scheme can be carried out in two phases to
calculate the combined beliefs on any node [7]:

Phase I. Propagate messages up the tree: starting at
leaf nodes, messages are sent up step by step.
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The maximum number of belief functions accumulated

in a non-leaf, non-root node in this phase is 1+ |Chx|, if this
node has an initial belief function and every of its child
node sends a message to it. Therefore the number of
combinations is (1+ |Chx|) –1, i.e. |Chx|. For a leaf node, no
combinations are involved. For the root node, there are
maximum 1+ |Chr| belief functions accumulated. Since the
root will not send any messages up, Phase I stops here.

After computing the marginal of the root, messages are then
sent back down the tree. Therefore, we will count the total
number of combinations in the root in the next phase.

Phase II. Propagate messages down the tree: starting
at the root node, messages are sent back down step by step.
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For a non-root, non-leaf node x, the maximum number of

belief functions accumulated for propagating down to its
child node k is 1+ |Px| + (|Chx|-1), so the number of
combinations is |Chx| (with |Px|=1), if we have stored every
Mj→x in Phase I. The maximum total number of
combinations in x is |Chx|×|Chx|. Its final marginal is
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If the marginal of the joint for x from Equation (2) is
reserved before it is projected to node k, then it can be
incorporated into Equation (3) to replace all the messages
except Mk→x.  Equation (3) can be rewritten as
Bel↓x=(Mx→k)↑x⊕ Mk→x. Therefore, there is only one extra
combination to obtain the final marginal for a node.

Because a root has maximum 1+ |Chr| belief functions,
the maximum number of combinations for propagating a
message down a branch is |Chr|-1 (the message from a
branch to which the message is being sent will not be
combined with the rest). The maximum total number of
combinations is (|Chr|-1)×|Chr|. The root needs one
combination for its final marginal. A leaf node also needs
one combination for its final marginal. The total number of
combinations in a qualitative Markov tree is the sum of
numbers of combinations of all the nodes.

Fig 1(a) presents a rooted qualitative Markov tree with
maximum number of combinations in each node when an
initial belief function is assigned to each node and a final
marginal is required for every node. (x:↑ t1,↓ t2, 1) indicates
that in node x, there are t1 combinations when x sends a
message to its parent, there are t2 combinations when it
sends messages to all of its children, and there is one extra
combination to obtain the final marginal for x. When t1 or t2

is zero, we have omitted it from the graph.

III. Binarization and Partitioning Algorithms
When binarizing a qualitative Markov tree, for each non-

leaf node x with more than two children, we repeatedly
merge two of its children to get a new one with these two
children carrying the least amount of computation, until x
has only two children left. Such a binary tree should have
almost balanced workloads among its branches.

Although a new affiliated node is added whenever two
branches are merged, these newly created nodes will only
calculate and store some intermediate results of
combinations and no computation is required to calculate
their own marginals. In the algorithm below, comb(x)
represents the total number of combinations in node x, and
comb(Tx) is the total number of combinations in sub-tree Tx

with x as the root.

Algorithm: Binarization of a Qualitative Markov Tree (BQMT)   



Input: a qualitative Markov tree with a designated root r.
x←r.
Procedure Binarization (x):
1.If x is a leaf node and x=r Then comb(x) ←0,  comb(Tx) ←0.

Terminate the Procedure. (The tree has only one level, the root is
also a leaf.)

2.If x is a leaf node and x≠r Then comb(x) ←1, comb(Tx) ←1.
Terminate the Procedure. (The tree has more than one level.)

3.For each child node ci ∈ Chx do Binarization (ci).
4.Sort Chx in ascending order, where Chx={c1, …, ck} satisfying

comb(Tci) ≤ comb(Tcj) if cj is after ci in the ordered set Chx.
5.l←1.
6.While |Chx| > 2 do

6.1 Select c1, c2, the first two elements in Chx;
6.2 Create a new node xl to connect c1 and c2, replace sub-trees

Tc1 and Tc2 with the new sub-tree Txl with xl as the root;
6.3. comb(xl) ← 3,

 comb(Txl) ← comb(xl) + comb(Tc1) + comb(Tc2);
6.4. Remove c1 and c2 from Chx, insert xl into Chx in sorted

order;
6.5. l=l +1.

7. If |Chx| =1 Then
7.1 If x is the root Then comb(x) ← 1 Else comb(x) ← 3;
7.2 comb(Tx) ←  comb(x) + comb(Tc1).

    Else
7.3 If x is the root Then comb(x) ← 3 Else comb(x) ← 7;
7.4 comb(Tx) ←  comb(x) + comb(Tc1) + comb(Tc2).

Return (Tr
): A binary tree with the same root

For each newly added node, the maximum number of
belief functions accumulated in it is |Chxl| (it has no initial
belief function) instead of 1+ |Chxl|, so, the maximum
number of combinations is (↑1,↓2,0)=3. Applying this
algorithm to the tree in Fig.1(a), we get a balanced binarised
tree as in Fig.1(b) where bold-faced nodes are added nodes.

Below is a partitioning algorithm that partitions a binary
tree into clusters and assigns each cluster to a processor. As
an example, the tree in Fig.1(b) is partitioned into four
clusters as illustrated with shade.

Algorithm: Partitioning a binary tree
Input: r – the binary tree with the root r, N – the number of
processors provided
1. Create two empty queues S and St (S is the working queue, St is

the temporary queue);
2. S  ← {r}, counter m  ← 1;
3.While m < N and queue S is not empty, do
    3.1 Select the first element v in S and let S ← S/{v};
    3.2 If v has no children, Then St  ← St ∪  {v}; m=m+1;
          Else
          3.2.1 If v has one child, Then
                         p ← v
                        While p has one child, do p ← the child of p
                        Let CL and CR be the children of node p;
                        If |comb(TcL)-comb(TcR)| < δ (δ is a threshold

saying that both branches have almost the same
workload)

                        Then
          Disconnect TcR from Tp;

                             comb(Tp) = comb(Tp)- comb(TcR);
          comb(Tv) = comb(Tv)- comb(TcR);

                             S ← S ∪  {v, CR}, m=m+1;
      Else

                             Let w be the root of p’s bigger child subtree;
                             Disconnect Tw from Tp;

          comb(Tv) = comb(Tv)- comb(Tw);
                             comb(Tp) = comb(Tp)- comb(Tw);
                             While |comb(Tv) - comb(Tw)| > δ, do
                                 Reconnect Tw to Tp;
                                 comb(Tp) = comb(Tp) + comb(Tw);
                                 comb(Tv) = comb(Tv)+ comb(Tw);
                                 p  ← w;
                                 Let w be the root of p’s bigger child subtree;
                                 Disconnect Tw from Tp;
                                 comb(Tp) = comb(Tp)- comb(Tw);
                                 comb(Tv) = comb(Tv)- comb(Tw);
                         S ← S ∪  {v, w}, m=m+1;

   3.2.2 Else
      Let CL and CR be the children of node v;
      If |comb(TcL) - comb(TcR)| < δ, Then

 Disconnect TcR from Tv;
 comb(Tv) = comb(Tv)- comb(TcR);
 S ← S ∪  {v, CR}, m=m+1;

      Else
 Let w be the root of v’s bigger child subtree;
 Disconnect Tw from Tv;
 comb(Tv) = comb(Tv)- comb(Tw);
 While |comb(Tv) - comb(Tw)| > δ, do

                                 If v was w's parent node, Then
                                      Reconnect Tw to Tv;

comb(Tv) = comb(Tv)+ comb(Tw);
                                 Else
                                      p  ← w's parent node, reconnect Tw to Tp;
                                      comb(Tp) = comb(Tp) + comb(Tw);
                                      comb(Tv) = comb(Tv)+ comb(Tw);
                                  p  ← w;
                                  Let w be the root of p’s bigger child subtree;
                                  Disconnect Tw from Tp;
                                  comb(Tp)=comb(Tp)-comb(Tw);

  comb(Tv)=comb(Tv)-comb(Tw);
  S← S ∪  {v, w}, m=m+1;

4. S ← S ∪  St;
5. Each element of S leads a cluster; assign each cluster to a

processor.

IV. Theoretical Analysis
The parallel approach presented in this paper is currently

being tested in a parallel machine with at most six
processors. To illustrate the improvement of evidence
combination on a qualitative Markov tree by our parallel
technique, we have applied our algorithms to two examples
(Fig.1(a) and Fig.2(a)) from [7]. The four-processor
schedules produced by our approach are given in Fig.1(c)
and Fig.2(c) respectively. The results show a completion
time of 31 against 57 by the originally sequential scheme
for the first example, and 24 against 55 for the second one.
To map the communication cost on sending a message
between two processors, we have the assumption as
Maheshwari and Shen suggested in [15], which one
communication for per data sample takes two time units.
The configuration of our parallel machine allows
communications for the send processor and receive
processor take place simultaneously.



V. Conclusions and Discussions

In this paper, we proposed a computational workload-
based algorithm to transform a qualitative Markov tree into
a binary tree and an algorithm for partitioning the tree into
clusers for parallel processing. Our parallel approach
especially favors a Markov tree with many nodes that have
more than three children nodes.

Other algorithms that binarizing a qualitative Markov
tree into a binary tree exist (e.g. [8], [13], [16], etc.).
However, our algorithm is more comprehensive because it
assesses the amount of computation at each sub-tree before
merging two sub-trees together. As a result, our binary tree
is a balanced one. If there are many processors available to
process some nodes (sub-trees) in parallel, a balanced tree
provides a good structure to partition it into clusters so as to
assign workloads to processors evenly. The detailed
comparisons may be referred to [17].

The binarization algorithm in our approach is also similar
to the binarization procedure in [15] in the sense that the
latter considers workloads on sub-trees as well when
merging two sub-trees (units of a parallel program). The
difference between them is that our algorithm needs to
consider the amount of computation being carried out in
added nodes (which may affect the total workload of a sub-
tree with this added node as the root), in relation to local
computation. While the algorithm in [16] does not support
local computation by using added nodes for message
passing only.
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