
Finding the Most Descriptive Substructures in
Graphs with Numeric Labels

Michael Davis, Weiru Liu, and Paul Miller

Centre for Secure Information Technologies (CSIT),
School of Electronics, Electrical Engineering and Computer Science,

Queen’s University, Belfast, United Kingdom
{mdavis05, w.liu}@qub.ac.uk, p.miller@ecit.qub.ac.uk

Abstract. Many graph datasets are labelled with numeric attributes.
Frequent substructure discovery algorithms usually ignore these attri-
butes; in this paper we show that they can be used to improve discrim-
ination and search performance. Our thesis is that the most descrip-
tive substructures are those which are normative both in terms of their
structure and in terms of their numeric values. We propose an outlier-
detection step during substructure discovery to prune anomalous vertices
and edges, which gives more weight to the most descriptive substructures.
Our experiments on a real-world access control database returns similar
substructures to Subdue with 30% fewer graph isomorphism tests.

Keywords: graph mining, frequent substructure discovery, numeric at-
tributes, outlier detection

1 Introduction

A common task in graph mining is to discover frequently-occurring substructures
for concept learning, clustering or anomaly detection. In this paper, we consider
how numeric attributes can be combined with structural data, to refine the
search for the most descriptive substructures.

Frequent substructures are defined as those which pass some minimum sup-
port threshold [7, 10, 14] or in information-theoretic terms, as the patterns which
can be used to maximally compress the input graph [3]. To count the frequency
of each pattern, discovery algorithms compare subgraphs for identity, or Graph
Isomorphism (GI). As GI is computationally complex to decide [5], discovery al-
gorithms attempt to minimise the number of GI tests by sorting candidate sub-
structures by their canonical labels [7, 10], by organising discovered subgraphs
into spanning trees [1, 14] or by performing a heuristic search [3].

Substructure discovery algorithms typically operate on unweighted, labelled
graphs, where labels represent discrete attributes of vertices or edges. However,
many graph datasets also contain numeric labels or weights, representing at-
tributes such as size, distance, time, frequency or amount. We propose that the
best substructures are not only frequent, but also have the most normative nu-
meric attributes. By excluding substructures containing numeric anomalies, we

(a) Single large graph (b) Simple
transaction

(c) Forward
edges

Fig. 1: Graph of Access Control Transactions on a University Campus

prune unlikely candidates early, focussing computational resources on the most
descriptive patterns. In our experiments, we were able to discover the most de-
scriptive substructures with a 30% reduction in the number of GI tests required,
compared to Subdue.

One application of our research is to discover “suspicious” behaviour in secure
buildings, such as airports, hospitals and power stations. Our experimental data
is from the building access control system for a university campus, represented by
the graph in Fig. 1a. Vertices represent door sensors and directed edges represent
movements between pairs of sensors. The density of transactions is higher in
areas with greater security requirements, viz. laboratories for laser, radiation
and medical research. As we are interested in paths taken by individuals through
the network, we reorganised the graph as a transaction database, where each
subgraph represents the movement of an individual within a given day (Fig. 1b–
1c). We score each subgraph based on its structural elements and its numeric
timing values [4]. Our method shows greater discrimination than scoring based
on frequent substructures without numeric attributes.

This paper is organised as follows: Sect. 2 describes the main approaches to
substructure discovery in graphs. In Sect. 3, we explain our method of using
numeric anomalies to narrow the search for normative substructures. Sect. 4
outlines our experimental method and datasets; the results are presented in
Sect. 5. In Sect. 6 we present our conclusions.

2 Related Work

Frequent substructure discovery algorithms attempt to find the subgraphs which
occur most frequently in a graph database or in a single large graph. Early
approaches were based on Apriori-style itemset mining: AGM [7] and FSG [10]
generate candidate substructures by growing them one vertex or one edge at
a time, respectively. Frequent substructures are those which exceed a specified
minimum support threshold. The main weakness is that candidate generation is
expensive, as canonical labels must be calculated for a large number of redundant
candidates.

gSpan [14] avoids candidate generation. Canonical labels are determined by
the minimum representation of vertex orderings as discovered by a Depth-First
Search (DFS). These labels are organised into a hierarchical spanning tree. Fre-
quent structures are discovered by traversing this tree, checking for substruc-
tures which exceed minimum support. CloseGraph [15] and SPIN [6] improve on
gSpan by mining only “closed” or “maximal” frequent subgraphs, i.e. frequent
substructures which are not part of any larger frequent substructure. [1] gener-
alises the canonical form found in gSpan and demonstrates that canonical labels
based on Breadth-First Search (BFS) are equally valid.

Subdue [3] represents another class of frequent substructure discovery al-
gorithm, based on information theory. Rather than searching for substructures
with minimum support, Subdue looks for the substructures which can be used
to best compress the input graph based on the Minimum Description Length
(MDL) principle. Complexity is managed with a heuristic: candidate substruc-
tures are discovered using a greedy beam search (a limited-length queue of the
best few patterns which have been found so far). The disadvantage of the greedy
search strategy is that some interesting patterns could be missed.

AGM, FSG and gSpan are designed to work on graph transaction databases.
Subdue has fewer restrictions on the input graphs: it can also search efficiently
in single large graphs.

Numeric labels The above algorithms are designed to work on graphs with dis-
crete labels. There have been a few efforts to incorporate numeric attributes into
frequent substructure discovery. [8] extends gSpan by including edge weights into
the support calculation, pruning low-weighted substructures from the search.
This approach cannot be generalised to other numeric attributes, where a high
numeric value does not necessarily indicate greater significance. [12] discusses
three ways in which Subdue can handle numeric attributes: exact match (treat
numeric attributes as if they are discrete); tolerance match (two numeric values
are considered equal if their difference is less than some threshold); and differ-
ence match (two numeric values are considered equal if they are drawn from
the same Gaussian PDF). The authors propose binning numeric values into dis-
crete ranges; two values are considered equal if they fall into the same range. As
each numeric attribute is treated separately, correlations between attributes are
ignored during discovery.

3 Frequent Substructure Discovery and Numeric
Attributes

It is desirable to prune infrequent substructures as early as possible in the dis-
covery process, to reduce expensive and redundant search operations. We define
the most descriptive substructures as those which are normative both in terms
of their structure and in terms of their numeric attributes. The corollary is that
vertices or edges containing numeric outliers are abnormal and can therefore be
pruned early in the discovery process.

We define a graph as having an arbitrary number of discrete and numeric
labels on its vertices and edges:

Definition 1. Let L be the set of graph labels, comprising vertex labels LV and
edge labels LE. L is partitioned into discrete labels LD and numeric labels LN ,
LD ∩ LN = ∅. Thus L = LV ∪ LE = LD ∪ LN . Let AD be the set of discrete
attribute values and AN ⊂ R be the set of numeric attribute values.

Definition 2. A labelled graph G is a tuple 〈V,E,LV ,LE〉. V is a set of ver-
tices and E is a set of edges: E ⊆ {〈v, w〉 : v, w ∈ V × V }. If the tuple 〈v, w〉 is
ordered, the edge is directed, otherwise it is undirected.

Definition 3. The label-to-value mapping function for vertices is denoted as:

LV : V × (LV ∩ LD)→ AD

V × (LV ∩ LN)→ AN

The label-to-value mapping function for edges LE is denoted in a similar manner:

LE : E × (LE ∩ LD)→ AD

E × (LE ∩ LN)→ AN

For a weighted graph, the edge weight function W(e) is treated as a special case
of numeric edge attributes: ∀e ∈ E :W(e) = LE(e, “weight”).

Vertices and edges will be considered equal by the graph isomorphism test if
they share the same discrete labels, and their numeric attributes are “normal”.
We determine normality by means of a numeric outlier function:

Definition 4. We define a numeric outlier function O on a dataset D as:

O : D → R ∀d ∈ D : O(d) =

{
q0 if d is “normal” w.r.t. D
q otherwise

where q0 is some constant value and q 6= q0 is a value measuring the degree of
outlierness.

The value of q0 and the range of O will depend on the specific choice of outlier
detection function. In Sect. 4, we use Local Outlier Factors (LOF) [2]. LOF
is well-suited to unsupervised learning, as it makes no assumptions about the
underlying distribution of the data and can cope with clusters of different sizes
and densities. LOF calculates an outlier score based on both the distance from
and the relative density of the local neighbourhood. Samples belonging to a
dense cluster or deep within a sparse cluster have LOF(d) u 1. Outliers have
LOF values several times larger. Thus LOF satisfies the property given in Def. 4:
LOF(d) u 1 for normal values of d and LOF(d) � 1 for anomalous values. For
a more detailed discussion of the choice of outlier function, see our previous
work [4] and the comments at the end of Sect. 6.

In order to calculate numeric outliers over the graph, we partition the vertices
and edges into similar disjoint sets or equivalence classes:

V =
⋃
i

Vi E =
⋃
i

Ei

Definition 5. Two vertices are said to be equivalent if their discrete attributes
are the same:

∀v ∈ Vi ∀w ∈ Vi ∀l ∈ (LV ∩ LD) : LV (v, l) = LV (w, l)

Two edges 〈v, w〉 and 〈x, y〉 are equivalent if their discrete attributes are the same
and v is equivalent to x and w is equivalent to y. In the case of an undirected
graph, 〈v, w〉 equivalent to 〈x, y〉 =⇒ 〈v, w〉 equivalent to 〈y, x〉.

Note that our approach is similar to the algorithms discussed in Sect. 2, in that
frequent substructures will not contain vertices or edges with infrequent values
for discrete attributes, by definition. However, we may sometimes wish to treat a
discrete (enumerated) attribute as numeric: see the discussion of “Day of Week”
in Sect. 4 for an example.

Using Defs. 4–5, we can calculate outlier values on the numeric attributes of ver-
tices and edges across all equivalence classes,O(LV (Vi, L

N)) andO(LE(Ei, L
N)).

This now brings us to the definition of each vertex and edge as normal or anoma-
lous:

Definition 6. A vertex v ∈ Vi is normal if O(LV (v, LN)) u q0, anomalous
otherwise. An edge e ∈ Ei is normal if O(LE(e, LN)) u q0, anomalous otherwise.

Alg. 1 shows how our approach can be integrated with the substructure discovery
process for Subdue [3]. An initial set of parent substructures is initialised to each
of the disjoint single-vertex instance sets, P = {V1, . . . , Vn}. Anomalous vertices
(as defined by Def. 6) are excluded. We execute Alg. 1 once for each member of
P : for all I ∈ P do ExpandSubstructures(G, I). All possible expansions of the
instances gi ∈ I are evaluated. In line 5, candidate substructures with anomalous
vertices and edges are pruned. The algorithm returns a set of child substructures
C. At the end of the first iteration, the substructures in C are evaluated using
the MDL principle as usual [3]. For the next iteration, P is initialised to C.

Algorithm 1 (Subdue) ExpandSubstructures(G, I)

Require: Graph G = 〈V,E,LV ,LE〉, Parent instances I = {g1, . . . , gn} , ∀i∀j : gi is
isomorphic to gj

1: Child substructures C ← ∅
2: for all gi ∈ I do
3: for all v ∈ Vgi do . Find all possible edge expansions
4: for all e = 〈v, w〉 : e ∈ E and e /∈ Egi do
5: if e is normal and w is normal by Def. 6 then . Prune anomalies
6: Create child substructure as copy of gi
7: if w /∈ Vchild then add w to child
8: Add e to child
9: Find Ic ∈ C : child is isomorphic to gc ∈ Ic

10: if not exist Ic then add Ic ← ∅ to C
11: Add new child instance to Ic ∈ C

12: return C

Alg. 1 can be adapted to FSG-style substructure discovery by applying it to
the initial step of generating all 1-subgraphs and 2-subgraphs. In this case, each
|Ii| : Ii ∈ C is evaluated against the minimum support parameter. The approach
can be applied to gSpan and similar algorithms which use spanning trees, by
incorporating the anomaly score into the calculation of minimum support.

4 Experiments

Our experiments measured the effect of pruning numeric outliers during sub-
structure discovery on: the number of graph isomorphism tests required; the
computation time for substructure discovery; and the effect on the accuracy and
meaningfulness of the discovered substructures.

Synthetic Datasets Our experimental setup included Erdős-Rényi random
graphs and R-MAT random graphs with up to 10,000 vertices. For the R-MAT
graphs, we added edges with mean degree 4 and probabilities that an edge is
placed in one of the four quadrants of the graph as 〈0.57, 0.19, 0.19, 0.05〉, to
ensure that the random graphs exhibited clustering/community properties. The
baseline version of each random graph structure had no numeric attributes. We
created multiple copies of each structure with between 1 and 100 numeric at-
tributes on each edge (we could equally have chosen to add attributes to vertices
or to both vertices and edges). For “normal” edges, each attribute was selected
from a PDF normally distributed across equivalent edges to create a multivari-
ate Gaussian feature vector. We perturbed 1% of edges to simulate the fact that
these edges were produced by a different process.

Access Control System Dataset Fig. 1a shows the patterns of movement of
students and staff on a large university campus. Each vertex represents a door

sensor; directed edges represent movements between pairs of sensors. There are
approximately 6,500 users, 800 sensors and 900,000 transactions. We are in-
terested in finding patterns representing “suspicious” behaviour, particularly
in high-security areas such as laboratories for laser, radiation and medical re-
search [4].

As we are interested in paths taken by individuals through the network, we
organised the graph as a transaction database. Each graph transaction represents
the movement of an individual within a given 24-hour period. Fig. 1b shows an
example of a typical graph transaction. Sometimes users may fail to swipe in
at a particular sensor (for example, if someone holds open the lift door). This
creates missing edges in the graph. We compensated for these missing edges by
including forward edges from each sensor to all subsequent sensors visited by the
user (Fig. 1c).

Fig. 2: Numeric edge labels

Next, we added numeric attributes to the edges.
The attributes for a single path segment in the
database are shown in Fig. 2. Absolute time is the
time of day (seconds since midnight) when the user
presented their ID card to a door sensor at the end
of a path segment. Elapsed time is the difference
in seconds between the absolute time at the current
sensor and the absolute time at the previous sensor.
Day of Week (DoW) could have been represented as
a discrete attribute, but by combining it with the
other attributes in multi-dimensional space, the ef-
fect is to cluster different patterns of behaviour on
different days. Weekend patterns are quite differ-
ent from weekday patterns, perhaps representing
the movements of security staff or cleaners as well
as weekend workers. The experimental results show
that we achieved greater discrimination by combin-
ing DoW and elapsed time than by treating either attribute in isolation.

The distribution of each attribute cannot be represented by a single Gaussian:
the PDF is not uniform between attributes, nor even between the same attribute
across non-equivalent edges. Usually, there will be a mixture of distributions
representing different underlying processes: some people work in a lab and stay
for many hours; others may go in simply to speak to a colleague for a few minutes.
The advantage of a density-based approach to outlier detection is that we do not
have to make any assumptions about the underlying distribution of the data.

Fig. 3 shows the distributions of the numeric attributes from Fig. 2. Fig. 3a
shows absolute time. The most common process is that people enter the building
between 8–9am, but there are at least two other processes whereby people enter
later in the day. Fig. 3c shows that the primary distribution for elapsed time on
this path segment is power-law: most people pass between the two sensors in a
matter of seconds. But there is a secondary process at around 7–9 hours.

(a) Absolute time (b) LOFs for Absolute time

(c) Elapsed time (d) LOFs for Elapsed time

(e) Absolute time vs. Elapsed time (f) LOFs for Absolute vs. Elapsed time

Fig. 3: Examples of the distribution of numeric attributes across a specific edge
in the graph. The figures on the left show the empirical distributions of two
numeric attributes (one and two dimensions). The figures on the right show the
corresponding distribution of Local Outlier Factors (LOF).

We can discriminate between normal and anomalous values for either of these
attributes: Figs. 3b and 3d show the corresponding LOF scores. Normal timing
values produce a LOF score close to 1 (Def. 4). Anomalous timing values produce
LOF scores in the range 2–5.

However, we can gain more information by considering the correlations be-
tween attributes. A two-dimensional feature vector combining absolute and elapsed
time is shown in Fig. 3e. Fig. 3f shows the corresponding LOF scores. By calcu-
lating LOFs across a multidimensional feature vector containing all the numeric
attributes, we can detect outliers with greater discrimination than if we consid-
ered each attribute in isolation.

5 Results

Fig. 4: Effect of numeric attributes
on frequent substructure discovery
(R-MAT random graphs)

Synthetic Datasets The experi-
ments on random single large graphs
were repeated 10 times for each com-
bination of no. of vertices, no. of
unique vertex labels and no. of nu-
meric attributes, and the results aver-
aged. The results for graphs with 500
and 1,000 vertices and 26 unique la-
bels are shown in Fig. 4. On synthetic
graphs, we measured an average 66%
reduction in the number of GI tests re-
quired when using numeric outliers to
prune the graph, compared to Subdue
without numeric attributes. The num-
ber of GI tests was always directly
proportional to discovery time.

The time taken to calculate the
numeric outliers was trivial compared
to the time to discover substructures:
in the order of 0.2 seconds for a graph with 10,000 vertices and 100 numeric
attributes. The complexity of LOF is polynomial, but the size of the numeric
datasets across each edge remain small in relation to the size of the graph. In
graphs up to 10,000 vertices, the power-law distribution ensures that the ma-
jority of edge datasets have no more than a few hundred elements, so LOF’s
O(n2m) complexity is acceptable.

We found that graphs with 10,000 vertices and 26 unique labels were not
tractable without using numeric attributes, as there were millions of instances
of each pattern, requiring more memory to process than was available in our
experimental setup. However, we were able to process the 10,000 vertex graphs
with numeric attributes, as we had to consider an order of magnitude fewer
instances at each iteration. This suggests that our method could be useful when
processing Very Large Graphs.

(a) Number of GI tests required (b) Frequency of top 10 substructures

Fig. 5: Effect of pruning numeric anomalies on frequent substructure discovery

Access Control System Dataset The results on the real-world graph trans-
action database are shown in Fig. 5. Fig. 5a shows the number of GI tests
for datasets of 2,000–10,000 vertices. In the real-world data, numeric attributes
vary in their ability to discriminate between normal and anomalous patterns, but
combining attributes gives the best performance overall. Absolute and elapsed
time are both good discriminators, but day of week is very poor. However, if
we combine day of week with elapsed time, we get a slightly better result than
using elapsed time on its own; and the best results were achieved by combin-
ing all three attributes. The benefit of our approach increased with increasing
size of database, as we were able to prune more anomalous substructures. In the
dataset with 10,000 vertices, representing around three months’ transactions, we
achieved a performance improvement of around 30%.

Next, we wanted to validate that the discovered substructures are meaningful.
Fig. 5b compares the ten best substructures discovered by Subdue (with no
numeric attributes) to the substructures discovered when we added attributes.
Our approach discovered the same substructures as Subdue, but fewer instances
of each. The relative order of the top ten substructures was changed slightly.
Where there is a large difference in relative frequency (e.g. 1st–3rd substructures),
the ordering was unchanged: these substructures are robust against the removal
of anomalous edges. In cases where the relative frequencies were very similar,
the order was sometimes transposed (e.g. 4th and 5th substructures exchanged
places). This is because greater weight is given to substructures with normal
numeric values.

To investigate this effect further, we compared our method of pruning anoma-
lous edges to random removal of edges from the graph. We conducted experi-
ments where we randomly deleted 10%–90% of the edges in the graph before
searching for frequent substructures. The results are shown in Fig. 6.

Fig. 6a shows the effect on performance. It is necessary to remove around
45% of the graph in order to reduce the number of GI tests by a similar amount
as our approach.

(a) Number of GI tests required (b) Frequency of top 10 substructures

Fig. 6: Effect of randomly removing graph edges on frequent substructure dis-
covery

Fig. 6b shows the frequency counts of the top 10 substructures. Substructures
with edges randomly removed are shown in grey; substructures discovered by
our approach are superimposed in black. Randomly removing edges increases
the entropy of the graph: the shape of the curve becomes flatter as more of the
graph is removed. Substructure 1 is quite distinct; even with 90% edge removal,
it remains the most descriptive pattern. Substructures 2–3 are also quite robust;
discrimination is lost at around 70% edge removal. However, discrimination be-
tween substructures 4–10 diminishes after 20% edge removal and by 50% edge
removal, the order is random. These results show that randomly deleting graph
edges does not preserve the meaningfulness of the output.

6 Conclusions

In this paper, we have presented a method of using numeric outliers to refine
the search for frequent substructures in graphs. Our thesis is that the “best”
substructures are those which are not only the most frequent, but which are
also normative in terms of their numeric attributes. In our experiments, we find
similar substructures to Subdue, with around 30% fewer graph isomorphism
tests. Where discovered substructures are of similar frequency, we are better able
to discriminate between them, because we give greater weight to substructures
with normal numeric attributes.

Future Work We used LOF to calculate numeric outlier scores for each edge
in the graph, as it fulfils the conditions of Def. 4. In a sparse graph, the size of
the numeric datasets across each edge remain small in relation to the size of the
graph, so LOF’s O(n2m) complexity is acceptable. This would not be the case
for very large or very dense graphs. This could be addressed by replacing LOF
with an approximation algorithm such as aLOCI [11] or PINN [13], which has
sub-quadratic complexity, O(mn log n).

Our experiments tested graphs with up to 100 numeric attributes. As we
project into a very high dimensional space, the numeric feature vectors become
very sparsely distributed and LOF’s ability to discriminate between normal and
anomalous values is diminished. However, not all attributes are of equal impor-
tance to all clusters. For high-dimensional data, we could amend our approach
to detect numeric anomalies in subspaces rather than in full space by choosing
only locally-relevant attributes on which to calculate our outlier score [9].

A variant of Subdue allows inexact substructure matching. A match cost pa-
rameter specifies how many vertices or edges can be different before we consider
two substructures to be distinct. It would be possible to extend our approach to
inexact matching by increasing the tolerance for numeric outliers (for example,
only discarding outlier vertices or edges when their LOF score exceeds 2) or by
only pruning substructures when some percentage of its vertices or edges are
outliers.

References

1. Borgelt, C.: Canonical forms for frequent graph mining. In: 30th Annual Conf.
German Classification Society (GfKl 2006). pp. 337–349. Springer (2006)

2. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: Identifying density-based
local outliers. SIGMOD Rec. 29(2), 93–104 (2000)

3. Cook, D.J., Holder, L.B.: Graph-based data mining. IEEE Intelligent Systems 15,
32–41 (March 2000)

4. Davis, M., Liu, W., Miller, P., Redpath, G.: Detecting anomalies in graphs with
numeric labels. In: CIKM 2011. pp. 1197–1202. ACM (2011)

5. Fortin, S.: The graph isomorphism problem. Tech. rep., Univ. of Alberta (1996)
6. Huan, J., Wang, W., Prins, J., Yang, J.: SPIN: Mining maximal frequent subgraphs

from graph databases. In: KDD 2004. pp. 581–586. ACM (2004)
7. Inokuchi, A., Washio, T., Motoda, H.: An Apriori-based algorithm for mining fre-

quent substructures from graph data. In: PKDD 2000. pp. 13–23. Springer (2000)
8. Jiang, C., Coenen, F., Zito, M.: Frequent sub-graph mining on edge weighted

graphs. In: DaWaC 2010. Springer (2010)
9. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: A survey

on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Transactions on Knowledge Discovery in Data 3(1), 1:1–1:58 (March 2009)

10. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: ICDM 2001. pp.
313–320. IEEE (2001)

11. Papadimitriou, S., Kitagawa, H., Gibbons, P., Faloutsos, C.: Loci: fast outlier detec-
tion using the local correlation integral. In: Data Engineering, 2003. Proceedings.
19th International Conference on. pp. 315 – 326 (march 2003)

12. Romero, O.E., Holder, L.B., Gonzalez, J.A.: A new approach for handling numeric
ranges for graph-based knowledge discovery. In: DMIN 2011. pp. 40–46 (2011)

13. de Vries, T., Chawla, S., Houle, M.: Finding local anomalies in very high dimen-
sional space. In: ICDM 2010. pp. 128–137. IEEE (2010)

14. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: ICDM
2002. pp. 721–724. IEEE (2002)

15. Yan, X., Han, J.: CloseGraph: Mining closed frequent graph patterns. In: KDD
2003. pp. 286–295. ACM (2003)

