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Abstract

Incidence calculus is a probabilistic logic developed
from propositional logic which associates probabilities
with sets of possible worlds rather than with formulae
directly. The probability of a formula is defined as the
probability of the set of possible worlds in which this
formula is true. This set of possible worlds is named
as the incidence set of this formula. So the task of
calculating probabilities of formulae relies on the task
of obtaining incidence sets for formulae. In this paper,
we present an approach for manipulating incidences in
extended incidence calculus in the situation that the
language set is large. We will show how to decompose
this large set into small, but coherent sets and then
how to propagate incidences among these sets. In this
way incidence sets can be calculated efficiently.

1 Introduction
1.1 Background

Unlike other pure numerical uncertainty reasoning
techniques, in incidence calculus [1], [2], numerical
uncertainty values are associated with formulae indi-
rectly through a set of possible worlds. Incidences of a
formula are those possible worlds in which the formula
is true. Incidences make incidence calculus possess
rich properties whether incidence calculus is treated
as a numerical uncertainty reasoning mechanism [4]
or as a symbolic reasoning mechanism [5], [6]. The
incidence plays an important role in linking these two
reasoning systems together [7]. So how to propagate
incidences efficiently within a propositional language
is crucial in applying incidence calculus.

Suppose that P is a set of propositions from which a
set of formulae is derived using logical connectors and
the set is denoted as L£(P). Let W be a set of possible
worlds, a subset W} of W is said to be the incidence set

of formula ¢ if each possible world w € W} supports
the truth of ¢ and Wj; is the largest of this kind.

If we use p(¢) to denote the probability of ¢, then
p(¢) is defined as

p(9) = 1(W) = Swew, u(w)

where p is the probability distribution on W and
for each w in W, p(w) is known.

So in order to obtain the probability of a formula,
we have to get the incidence set of this formula first.
In incidence calculus, some initial relations between
formulae and possible worlds are specified using an
incidence function i. i(¢) = W; means that the inci-
dence set of formula ¢ is W;. Usually, ¢ is a partial
function between L£(P) and W. That is, i is only de-
fined on a subset A of L(P). A is called the set of
azxioms.

For Example, if it is assumed that A = {A, B} and
the incidence sets of A and B are W; and W5 respec-
tively, then the incidence sets of AA B and AV B are
Wi N Wy and Wy U Wy respectively. This feature is
called truth functional in incidence calculus. That is,
the incidence set of a formula ¢ (¢ € L(A)) is deriv-
able. However, for any other formulae in £(P)\ L(A),
it is only possible to calculate the lower and upper
bounds of the incidence sets of these formulae. In [1],
a technique called the Legal Assignment Finder was
designed in which a set of inference rules were defined
to calculate the bounds based on an initial incidence
assignment. It was proved that the exhaustive appli-
cation of these rules will terminate.

1.2 Problems with incidence propagation

In [7], the original incidence calculus is extended in
three aspects, i.e., the representation of a wider range
of information by requiring fewer conditions using gen-
eralized incidence calculus theories; a new algorithm
for incidence assignments based on the numerical as-
signment; the combination rule to combine multiple
pieces of evidence. The advanced reasoning systems
is called extended incidence calculus. Extended in-



cidence calculus has the advantage of being able to
represent ignorance [4] but loses the feature of truth
functionality. So the set of inference rules for deriving
bounds of incidences in the Legal Assignment Finder
in the original incidence calculus cannot be applied
any more. The only method in extended incidence
calculus for calculating bounds of incidences is based
on logical entailment among formulae.

For instance, assume that the formulae in the set
of axioms A are assigned incidences initially, i.e., i(¢)
is known for ¢ € A, then for any formula ¢, the lower
bound of ¢, denoted as i.(¢), will be obtained based
on the following equation:

i(¢) = Upleg,peai(®) (1)

where ¢ |= ¢ means that ¢» — ¢ is a tautology for
P e A

If A is large, this method would be very inefficient.
This is the first problem that arises in extended inci-
dence calculus.

Another problem in either the original or extended
incidence calculus is that there is only one set of propo-
sitions constructed and manipulated for a given prob-
lem. Therefore any relevant statements (propositions)
will have to be included in it.

Example 1.1

Assume that we have the following sets of propo-
sitions which are associated with three different ques-
tions:

SuTzny Have a picnic
Windy = =
. Go to work
Rainy

Wear a suit
< Casual cloths >

The elements in the first set are mapped to some
elements in the second set, and the elements in the
second set are mapped to the elements in the third
set. Notation =—> between two sets means that some
kind of mapping relations is established among the
elements in the two sets. We name these three sets as
P,, P, and P; respectively.

Suppose that we also have the following statements
among the propositions in the three sets:

Sy: If it is a sunny day, Then I will go out to have
a picnic;

So: If it is rainy or windy, Then I will go to work;

Ss: If T go to work, Then I will have to wear a suit.

In either the original or extended incidence calcu-
lus, a set of propositions, P, is the union of P, P, P3,
P = {Sunny, Rainy, Windy, Have a picnic, Go to work,

Wear a suit} and the corresponding L£(P) can then
be formed which contains these propositions and any
other formulae produced from them using logical con-
nectors.

Assume that we observe the fact ‘it is rainy’, then
we can infer ‘Go to work’ based on sets P;, P> and S
without involving the third set Ps;. If we observe the
fact that ‘Go to work’, then we can infer ‘Wear a suit’
based on sets P», P3 and S3 without involving set P;.
This tells us that for some cases only part of L(P)
is useful for the inference. Manipulating this part of
relevant information rather than the whole set would
certainly increase the efficiency of inference.

Reconsidering these three sets, we conclude that if
we keep these three sets separately, then if a piece of
evidence is first put on Py, it can be propagated to P,
when necessary and further to Ps if required through
some mapping relations among these sets. This would
be particularly useful when P is considerably large.

Based on this analysis, it suggests that an appropri-
ate approach for propagating incidences from one set
to another is necessary in order to reduce any worth-
less inferences. However, this suggestion brings up a
number of questions:

How to form different sets for a particular problem?

How to propagate incidences from one set to an-
other?

Is the propagated message still in the form of gen-
eralized incidence calculus theories if the original in-
formation is?

These are the main concerns of this paper. We
propose that incidences can be propagated among dif-
ferent £(P)s through some proper mapping relations.
In this way, incidences can not only be calculated for
formulae within one £(P) set but also be propagated
to other different L(P) sets.

The paper is organized as follows. Section 2 intro-
duces the basics of extended incidence calculus. Sec-
tion 3 structures the problem with incidence propa-
gation. Section 4 discusses the methods for efficient
propagation of incidences. Section 5 analyses the ap-
proach proposed in the paper. Finally, in section 6,
we summarize the paper.

2 Basics of Extended Incidence Calcu-
lus

We will refer to the following relevant definitions in
the rest of the paper. More details can be found in

[7].

Definition 1 Propositional Language



Let P = {q1,¢>,-.
tions:

- qn} be a finite set of proposi-

o Aset At ={6; =g Ng5N...Nq,} is called the
basic element set of P where q; is either q or
—qi-

e L(P) is called the language set of P by applying
logical connectors \,V,— and — on propositions
in P. Each formula ¢ in L(P) can be equivalently
rewritten as the disjunction of elements in At and
L(P) is finite if the formulae are written in this
way.

Definition 2 Generalized Incidence Calculus Theo-
ries

A quintuple < W, u, P, A,i > is called a generalized
incidence calculus theory where

e W is a finite set of possible worlds and p is the
discrete probability distribution on V.

o A is a subset of L(P) which is closed under oper-
ator A.

e i is a mapping function from A to VW which must
satisfy the following three conditions:

i(true) =W

i(false) = {}

i A1) =i(¢) Ni(t)
It is assumed that true is an axiom in any generalized
incidence calculus theory and included in A. In the

case that a formula ¢ is a tautology, ¢ should be an
axiom and be included in A as well.

Definition 3 Lower and Upper Bounds of Incidences

For a formula ¢ € L(P)\ A, it is only possible
to obtain the lower and upper bounds for it using the
following equations:

ix(p) = Upzp,peai(9)
" (0) = Nyg,peai(P)
It is easy to see that for any ¢ € A, i.(¢¥) = i(¥).

Definition 4 Lower and Upper Bounds of Probabili-
ties

For a formula ¢ € L(P), we define the lower and
upper bounds of its probability as

P«() = nlix(p))
P(p) = p(i*(p))
When p.(¢) = p*(p) for each ¢ € A, we define

(@) = p«(@) and p(p) is called the probability of .

To see how to make inference in extended incidence
calculus, we look at an example.

Example 2.1 (from [3])

A person has four coats: two are blue
with single-breasted, one is grey and double-
breasted and one is grey and single-breasted.
To choose which colour of coat to wear, this
person tosses a (fair) coin. Once the colour
is chosen, which specific coat is wore is de-
termined by a mysterious procedure. What
is the probability of the person wearing a
single-breasted coat?

To solve this problem in extended incidence calcu-
lus, we need to construct a generalized incidence cal-
culus theory first. We let a set of propositions P be
P = {grey,double} where grey stands for ‘The coat
is grey’ and double stands for ‘The coat is double-
breasted’ and let W = {w;,ws} where w; for blue
coats and wsy for grey coats. Then we have

= {greyAdouble, ~grey Adouble, grey A—double,
—grey A ~double}

It is possible to derive that w; supports formula
—grey A —double and wy supports formula (grey A
—double) V (grey A double). Therefore, we get a gen-
eralized incidence calculus theory as < W, u, P, A,i >
where

p(wr) = p(ws) = 0.5

A = {—grey A —double, (grey A —double) V
double)}

i(—grey A —~double) = {w}

i((grey A ~double) V (grey A double)) = {w,}

So

(grey A

ix(—double) = i(~grey A ~double)
i*(~double) = W \ i.(double) = W and
D« (mdouble) = 0.5 p«(—double) = 1
The answer to the question is that the probability of
the person wearing a single-breasted coat lies between
0.5 and 1.

3 Structuring the Problem

In a real world problem specification, propositions
may be divided into different sets rather than in one
set. For instance, when we are concerned with a ship’s
location, we can form a set of propositions regard-
ing its locations. When we are concerned with the
ship’s activities, we can form another set of proposi-
tions for its activities [8]. These two sets may or may



not be used at the same time, so putting them to-
gether to form a large set causes great computational
problem in most of the time. It is more reasonable
to keep these two sets separately and then propagate
incidences from one set to another. For example, we
know that a ship’s activity very much related to its lo-
cation. When we know the incidences of its locations,
we could get the incidences of its activities through
relations on what location related to which activity.

If we form a single set P, difficulties arise when P is
large. Assume that a set P consists of n propositions,
let m = 2", then £(P) contains

ppmymm=b o mhom g
1! 2! m!
formulae.

If a set of axioms A has [ elements, then it involves
[ steps of implication checking for ¢ € L(P)\ A in
order to obtain its bounds of incidences. However, if
there are t tautologies (in set S) in L(P), then the
final set of axioms would be (A U S)" which is closed
under A. When | (AUS)" |is large, the computational
complexity is certainly a big problem for the system
inference. If it is possible to split P into small, but self-
contained sets, among which mapping relations can
be established, the inference procedure could be more
efficient.

In summary, the problem with incidence propaga-
tion can be regarded as the problem of incidence prop-
agation between sets. The problem then can be stated
formally as follows.

Statement of the Problem. We are given two
(or more) sets of propositions, the elements of which
have some mapping relations and we know the inci-
dences of some formulae in one set. We wish to cal-
culate the incidences (or bounds) of formulae in an-
other set through the mapping relations among ele-
ments provided.

4 The Incidence Propagation Method

Definition 5 Let P, and P> be two sets of proposi-
tions, At; and Ats be the two basic element sets. A
function T' is called a mapping function between Aty
and At if for each element 6; in Aty, there is a sub-
set B of Aty such that when §; is true then formula
Y = VB (Br € B) is valid and B is the smallest
set of this kind. We denote the mapping relation as
[': Aty — Aty and ['(0;) = B. Further, for a for-
mula ¢ = VI; where ¢ € L(P), we define T'($) as
I(¢) =U(B; | T'(4;) = B)).

To simplify the statement, we use By to denote a
subset B of At> when ¢ = Vf; where 8, € B. It
is possible that different § maps into the same subset
B, but none of the elements is allowed to map to the
empty set.

Usually, we require that P; and P, have no overlap
(no common propositions), so At; and Ats have no
overlap as well. For instance, we can form a set of
propositions, P;, about the weather this week, we can
also form a set of propositions, P», on going out for
a picnic party this week. P, and P3; have no overlap
but can be linked together by a mapping relation if we
want to choose a good day to be out.

Proposition 1 Let ¢ and ¢ be two formulae in
L(Py), given a mapping relation between Aty and Ats,
we have

L(¢1 A d2) CT(¢1) NL(2)
This Proposition can be proved as follows.
PROOF

Assume that ¢; A¢s is valid, then there exist ¢} and
¢ that ¢1 = @] V (¢1 A ¢2) and ¢2 = ¢5 V (1 A ¢2)
hold. So we have

D(¢1) = D(6}) UT(1 A )

T(g2) = T(¢h) UT (61 A 62)

and

[(¢1) NT(g2) = (D(é}) N T(#4)) UT(61 A 6)

Therefore, I'(¢1 A ¢2) C T'(¢1) NT(¢2).

When ¢; A ¢ is false, the above relation still holds.
QED

Based on this proposition, we have the following
theorem.

Theorem 1 Let P, and P> be two sets of propositions
and T' be a mapping relation between the two corre-
sponding basic element sets Aty and Aty. Given an
incidence function iy on a set of axioms A; C L(P),
a set of axioms Ao can be constructed as

A= {1 | 6 € A, T(@) = By}

A function iy is then defined on As as

i2(¥) = Ur(p)=B,1(9)

Then iy is an incidence function on Ay after we
add that iz(true) =W and i2(false) = {}.

PROOF To prove that i is an incidence function,
we only need to prove that i, is closed under A, that
is i (¢1) Niz(Y2) = i2(th1 At2).

Agsume that 11, ¥» and 11 A1) are all in As.

For w € 'LQ('(pl) N ’iQ(’(ﬁQ), we have



w e i2(1/11) N i2(1/12) =

3(}51,11) S Zl(¢1),r(¢1) = B¢,1) and

32, w € i1 (¢2), L(¢2) = By,) =
YNi1(g2) =

(

( ,
(Fo1, p2)w € i1(p1
(Fo1, P2)w € i1(d1 A $2) =
(FY)w € ir(d1 A p2),

F((bl A ¢2) = Bd)adj |: 1/)171/} ': 17[]2 =
(F)w € ia(Y), Y |= 1 Ap2 =
(FP)w € iz(h1 A tha)

So ia (1 A the) Cia(thr) Niz(th2).
On the other hand, from w € i2(¢1 A 1)2), we have

w e iz(i/ll /\1/12) =

()L ($) = By, ays = By, w € i1(¢) =
(3p)T(¢) = By C By,

B’J/’ - Bdizaw € i1(¢)7w € Z2(1711) =

w € iz (1), w € iy(Yhs) =

w € iz(h1) Niz(12)

So 7:2(1/11 A ’(/}2) 2 12(1/}1) N 22(1112) Therefore, it is
straightforward to say that is(¢1 A 12) = i2(x01) N
i2(1h2).

QED

This theorem tells us that, when we know a piece of
evidence about one language set in the form of a gen-
eralized incidence calculus theory, we can propagate
this evidence onto another set through the mapping
relations to form another generalized incidence calcu-
lus theory.

5 Analysing the approach

There are the following problems arising along with
the establishment of the approach.

e Under which circumstances is the efficiency im-
proved and what kind of worthless inferences are
discarded.

e How meaningful is it to spit a whole set of propo-
sitions into a number of small sets and is it always
possible?

To answer these questions, we look at the example
in Section 1.2 again.

Example 5.1

Assume that there are three sets Py, P, and P; as
defined in Example 1.2. A set P is the union of Py, P>
and P;. Given a set of possible worlds W, suppose that
the statement ‘It is rainy’ is supported by a subset

W1 of W, then there is one axiom in the axiom set
A initially. However, in extended incidence calculus,
it is required that any formula which is a tautology
should also be included in the axiom set. For this
specific example, there are 7 formulae in £(P) which
are regarded as tautologies as listed below, so they
should all be included into set A and their incidence
sets are W.

r1: RainyV Windy — Go to work

ro: Go to work — Wear a suit

r3: Sunny — Have a picnic

ry: (RainyV Windy — Go to work) A (Go to work
— Wear a suit)

rs: (RainyV Windy — Go to work) A (Sunny —
Have a picnic)

re: (Go to work — Wear a suit) A (Sunny — Have
a picnic)

r7: (RainyV Windy — Go to work) A (Go to work
— Wear a suit) A (Sunny — Have a picnic)

The size of A is then increased from 1 to at least
15 after we extend A to be closed under A. We denote
this extended set as A% (T stands for true) which is
the set generated from 4 by adding tautologies into
the set and then extend this set to be closed under A.

Therefore, the final set of axioms is A% = {Rainy,
T1,...,T7, Rainy Ary, ..., Rainy Arg, }. To obtain the
bounds of incidence sets for a formula ¢, it should
involve | A% | steps implication checking between ¢
and an axiom . For instance, if we let ¢ =‘Go to
work’, the lower bound of ¢ is then calculated based on
equation (1) and i.(¢) = Uygi(yp) = Wi. Although
it is required to carry out | A%} | steps checking, in fact
only the checking between axiom ‘Rainy Ar;’ and ¢ is
necessary and essential. All other steps are worthless
to try.

However, if P is split into P;, P>, P3 as stated in
Section 1.2, a piece of evidence is propagated from
Py to P, via the statements, then | A% | —1 steps
of worthless checking would be avoided. In another
word, if | L(P) [> X; | L(P;) |, then splitting P into
small sets would certainly increase the efficiency.

Set || A||]A}] Goal Time

P 1 15 Go to Work | 2460
P,P 1 1 Go to Work 90

Table 1: The test result for Example 1.1

Table 1 shows that when there is only one set P,
it takes 2460 (secs) to infer the lower bound of Go to
work while it only takes 90 (secs) to get the result if
P is split.

Therefore for the first question above, the answer
would be as follows.



Principle 1:Assume that Q1 and Qs are two basic
questions' for which Py and P, contain the answers
(propositions) for them respectively. If there are
some logical implications between elements in P, and
Ps, then keeping Py and Py as two sets of
propositions would increase the efficiency and ignore
meaningless inferences.

This analysis also partially answers Question 2
above. That is, splitting a big set of propositions into
smaller sets makes each of the relevant questions more
obvious. To see whether it is always possible to make
such division and whether such splitting is meaningful,
we again reexamine the example in Section 2.

In Example 2.1, there are two propositions in set P,
that is grey, double which can be put into two separate
sets of propositions providing the answers for ques-
tions ‘What colour is the coat?’ and ‘Is the coat dou-
ble breasted?’ respectively. However, there is no obvi-
ous implications between the elements in the two sets.
For instance, the colour of a coat doesn’t tell whether
the coat is single-breasted or double-breasted. That
is, when we generate the language set £L(P) based on
P = {grey,double}, we don’t get any extra tautolo-
gies. So given a set of axioms A, it is not necessary
to extend the set before making any inferences. In
this case, keeping P as a whole is more meaningful
than splitting it into two but not quite coherent sets.
Therefore the answer to the second question is stated
in Principle 2.

Principle 2:Assume that Q1 and Q2 are two basic
questions for which Py and P> contain the answers
(propositions) for them respectively. If there are no
explicit logical implications between elements in Py
and Py, then constructing a set P = P; U P as the
set of propositions will not affect the efficiency of
inference in general.

6 Conclusion

In [4], it is proved that extended incidence calculus
is equivalent to the Dempster-Shafer (DS) theory of
evidence in representing evidence. That is, any infor-
mation which can be represented in one theory can
also be represented in the other. A frame of discern-
ment in DS theory can be taken as a set of proposi-
tions in extended incidence calculus. Therefore, the
system structure designed in [8] for DS theory could
be partially adopted for the approach we proposed in

1By basic questions, we mean that a question cannot be fur-
ther divided into two or more sub-questions.

this paper. However, a set of propositions in extended
incidence calculus is not necessarily to be a frame of
discernment all the time. Therefore, a fully imple-
mentation of the approach here is an extension of the
system in [8].

Incidence calculus provides a mechanism for uncer-
tainty reasoning by encoding probabilities on formu-
lae indirectly. To obtain the probabilities or even the
bounds of probabilities on formulae, it is necessary
to calculate the incidence sets of these formulae first.
This step could be very inefficient when a set of pos-
sible worlds is large or when a set of axioms is large.
The main concern in this paper is to reduce the com-
putational complexity by splitting a large language set
into a number of small, but coherent sets and then
propagate incidences from one set to another.

Future work is planned to further investigate the
nature of splitting and to implement an automatic rea-
soning system based on the research.

References

[1] A. Bundy, Incidence calculus: a mechanism for
probabilistic reasoning, J. Automated Reasoning,
Vol. 1, No.1, pp. 263-283, 1985

[2] A. Bundy, Incidence calculus. The Encyclopedia of
Artificial Intelligence., pp. 663-668, 1992.

[3] Fagin,R. and J. Halpern, Uncertainty, belief and
probability, IJCAI-89, pp. 1161-1167, 1989

[4] Liu,W. and A.Bundy, A comprehensive compari-
son between generalized incidence calculus and DS
theory, The Int. J. of Human-Computer Studies,
Vol. 40, pp, 1009-1032, 1994

[5] Liu,W., A.Bundy and D.Robertson, On the rela-
tions between incidence calculus and ATMS, 2nd
European conference on symbolic and quantitative
approaches to reasoning and uncertainty. Lecture
Notes in Computer Science 747:248-256 Springer.

[6] Liu,W. and A.Bundy, Constructing probabilistic
ATMS using incidence calculus., To appear Inter-
national Journal of Approzimate Reasoning, 1996.

[7] Liu,W., Extended incidence calculus and its com-
parison with related theories. PhD thesis. Dept.
of Artificial Intelligence, University of Edinburgh.
1995.

[8] Lowrance, J.D., Garvey,T.D. and Strat,T.M.,
A framework for evidential reasoning systems.
AAAI-86, 896-903, 1986



