
A Merging-Based Approach to Handling
Inconsistency in Locally Prioritized Software

Requirements

Kedian Mu1, Weiru Liu2, Zhi Jin3, Ruqian Lu3, Anbu Yue2, and David Bell2

1 School of Mathematical Sciences
Peking University, Beijing 100871, P.R. China

2 School of Electronics, Electrical Engineering and Computer Science
Queen’s University Belfast, BT7 1NN, UK

3 Academy of Mathematics and System Sciences
Chinese Academy of Sciences, Beijing 100080, P.R. China

Abstract. It has been widely recognized that the relative priority of re-
quirements can help developers to resolve inconsistencies and make some
necessary trade-off decisions. However, for most distributed development
such as Viewpoints-based approaches, different stakeholders may assign
different levels of priority to the same shared requirements statement
from their own perspectives. The disagreement in the local priorities as-
signed to the same shared requirements statement often puts developers
into a dilemma during inconsistency handling process. As a solution to
this problem, we present a merging-based approach to handling incon-
sistency in the Viewpoints framework in this paper. In the Viewpoints
framework, each viewpoint is a requirements collection with local prior-
itization. Informally, we transform such a requirements collection with
local prioritization into a stratified knowledge base. Moreover, the re-
lationship between viewpoints is considered as integrity constraints. By
merging these stratified knowledge bases, we then construct a merged
knowledge base with a global prioritization, which may be viewed as
an overall belief in these viewpoints. Finally, proposals for inconsistency
handling are derived from the merged result. The global prioritization
as well as the local prioritization may be used to argue these proposals
and to help developers make a reasonable trade-off decision on handling
inconsistency.

Keywords: Inconsistency, Knowledge bases merging, Requirements
engineering, Viewpoints, Local prioritization.

1 Introduction

For any complex software system, the development of requirements typically in-
volves many different stakeholders with different concerns. Then the software
requirements specifications are increasingly developed in a distributed fashion.
The Viewpoints framework [1] has been developed to represent and analyze the

Z. Zhang and J. Siekmann (Eds.): KSEM 2007, LNAI 4798, pp. 103–114, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

104 K. Mu et al.

different perspectives and their relationships during the requirements stage. A
viewpoint is a description of the system-to-be from a particular stakeholder, or
a group of stakeholders. It reflects concerns of a particular stakeholder. The re-
quirements specification of the system-to-be comprises a structured collection
of loosely coupled, locally managed, distributable viewpoints, with explicit re-
lationships between them to represent their overlaps [2]. These viewpoints may
overlap, complement, or contradict each other. Then it makes inconsistency man-
agement more necessary during the requirements stage [2,3].

It has been recognized that the relative priority of requirements can help
project managers resolve conflicts and make some necessary trade-off decisions
[4,5]. However, different stakeholders may assign different levels of priority to
the same shared requirements statement in the distributed development such
as Viewpoints-based approaches. Actually, for a shared requirements statement,
each priority given by a particular stakeholder is a measure of its relative impor-
tance only from the perspective of the stakeholder. Moreover, only these local
priorities are available in many cases. The disagreement in these local priorities
assigned to the same shared requirements statement often puts developers into
a dilemma. To make a reasonable trade-off decision on resolving inconsistency,
developers need to know global prioritization as well as local prioritization.

As a solution to this problem, we provide a merging-based approach to han-
dling inconsistency in the Viewpoints framework in this paper. Merging is viewed
as an usual way to globalization from a set of local information. Informally speak-
ing, we construct a merged requirements specification with global prioritization
by merging locally prioritized requirements collections of viewpoints based on
the merging operators presented in [6]. The relationship between viewpoints is
considered as integrity constraints during the merging process. Then we de-
rive proposals for inconsistency handling from the merged result. Moreover, the
global prioritization as well as the local priorities can be used to argue the pro-
posals and help developers make trade-off decisions.

The rest of this paper is organized as follows. Section 2 gives an introduction to
the Viewpoints framework and merging operators presented in [6], respectively.
Section 3 provides a merging-based approach to handling inconsistency in the
Viewpoints framework. Section 4 gives some comparison and discussion about
the merging-based approach. Finally, we conclude this paper in Section 5.

2 Preliminaries

2.1 Logical Representation of Viewpoints

Although heterogeneity of representation allows different viewpoints to use dif-
ferent representations to describe their requirements [2], first order logic is ap-
pealing for formal representation of requirements statements since most tools
and notations for representing requirements could be translated into formulas
of first order logic [7]. Moreover, in a logic-based framework for representing
requirements, reasoning about requirements is always based on some facts that

A Merging-Based Approach to Handling Inconsistency 105

describe a certain scenario [7]. It implies that checking the consistency of require-
ments collections only considers ground formulas1 rather than unground formu-
las. Furthermore, if we restrict the first order language to propositional case,
it may render consistency checking decidable. This gives some computational
advantages. For these reasons, we assume a classical first order language with-
out function symbols and quantifiers. This classical first order logic is the most
convenient to illustrate our approach, as will be shown in the rest of the paper.

Let LΦ0 be the language composed from a set of classical atoms Φ0 and logical
connectives {∨, ∧, ¬, →} and let � be the classical consequence relation2. Let
α ∈ LΦ0 be a classical formula and Δ ⊆ LΦ0 a set of formulas in LΦ0 . In this
paper, we call Δ a set of requirements statements (or a requirements collection)
while each formula α ∈ Δ represents a requirements statement.

An usual approach to prioritizing a requirements collection is to group re-
quirements statements into several priority categories, such as the most frequent
three-level scale of “High”, “Medium”, “Low” [8]. Let m, a natural number, be
the scale of the priority and L be

{
lm0 , · · · , lmm−1

}
, a totally ordered finite set

of m symbolic values of the priorities, i.e. lmi < lmj iff i < j. Furthermore, each
symbolic value in L could associate with a linguistic value. For example, for a
three-level priority set, we have a totally ordered set L as L = {l30, l

3
1, l

3
2} where

l30 : Low, l31 : Medium, l32 : High. For example, if we assign l32 to a requirements
statement α, it means that α is one of the most important requirements state-
ments. Prioritization over Δ is in essence to establish a prioritization function
P : Δ → L by balancing the business value of each requirements statement
against its cost and technique risk. Actually, for every Δ, prioritization provides
a priority-based partition of Δ, < Δm−1, · · · , Δ1, Δ0 >, where Δk = {α|α ∈
Δ, P (α) = lmk }, for k = m − 1, · · · , 0. We then use < Δm−1, · · · , Δ1, Δ0 > or
(Δ, P) to denote a prioritized requirements collection in this paper. Note that
different viewpoints may use different scales of the priority in the Viewpoints
framework.

In the Viewpoints framework, let V = {v1, · · · , vn}(n ≥ 2) be the set of view-
points and Li the scale of the priority used by viewpoint vi, i ∈ [1, · · · , n].
Then the requirements specification could be represented by a n + 1 tuple
< (Δ1, P1), · · · , (Δn, Pn), R >, where Δi and Pi (1 ≤ i ≤ n) are the set of
requirements statements and the prioritization mapping of viewpoint vi, respec-
tively, and R is a set of relationships for consistency checking between these
viewpoints, such as the relationships to represent their overlaps.

Because we use the classical logic as the uniform representation of viewpoints,
an individual relationship between vi and vj could be also explicitly represented
by special formulas associated with some formulas in Δi and Δj . These may
be added to the requirements set Δi ∪ Δj if necessary. For example, for the
relationship of total overlaps defined in [9], we may use a set of formulas in the
form of φ(a) ↔ ψ(a) to denote the notation ψ and φ overlap totally, where

1 There is no variable symbol appearing in the ground formula. For example,
user(John) is a ground atom, and user(x) is not a ground atom.

2 We view each ground atomic predicate formula as a propositional atom.

106 K. Mu et al.

a is a constant. For the sake of simplicity, we use Δ(vi1 ,···,vik
) to represent the

relationships among viewpoints vi1 , · · · , vik
. Moreover, we assume that we should

check the consistency of Δ(vi1 ,···,vik
) ∪ (

⋃k
j=1 Δij) if Δ(vi1 ,···,vik

) ∈ R.
It is not surprising that some stakeholders are more important than others.

Let LV be a r-level priority set used in prioritizing viewpoints. Then prioritizing
viewpoints is to establish a prioritization mapping PV : V �→ LV . In the rest of
this paper, we use (V, PV) to denote a set of prioritized viewpoints.

A logical contradiction is any situation in which some fact α and its negation
¬α can be simultaneously derived from the same set of formulas Δ. Some works
about inconsistency handling in requirements engineering [7,10] refer to the log-
ical contradiction as the inconsistency. In this paper, we only consider this type
of inconsistency in requirements engineering.

Now we give an example to illustrate this representation.

Example 1. Consider the following scenario in eliciting demands about an user
interface of a game system. Just for convenience, we assume that the three-level
priority set is adopted to prioritize viewpoints as well as requirements of each
viewpoint. Alice is a delegate of players of an earlier game system. She gives
three requirements as follows:

(a1) The style (sty) of user interface should be more fashionable(FAS) than that
of the earlier system.;

(a2) The user interface should provide flexible (FLE) choice of settings(set) to
players;

(a3) The elements(ele) of user interface should be familiar(FAM) to all the
players.

Then she assigns the level of high and the level of medium to (a1-2) and (a3),
respectively.

Bob is a delegate of potential players of the system-to-be. He gives three
demands as follows:

(b1) The style of user interface should be very fashionable;
(b2) The user interface should provide flexible choice of settings to players;
(b3) The elements of user interface should be unexpected (UNE) to all players.

He assigns the level of high to (b1) and (b2). (b3) is viewed as a requirements
statement with the level of medium.

John is a consultant in the user interface of game systems. He gives the same
demands as Alice. The main difference between Alice and John is that he assigns
the level of low to the third. In addition, Bob is one of the most important
stakeholders. Alice and John are two important stakeholders. Their priorities
are High, Medium, and Medium, respectively. Obviously, the three stakeholders
should reach agreement on the user interface.

Let vA be the viewpoint of Alice, then PV (vA) = l31 and

ΔA = {FAS(sty), FLE(set), FAM(ele)}.

PA(FAS(sty)) = l32, PA(FLE(set)) = l32, PA(FAM(ele)) = l31.

(ΔA, PA) =< {FAS(sty),FLE(set)}, {FAM(ele)}, ∅ > .

A Merging-Based Approach to Handling Inconsistency 107

Let vB be the viewpoint of Bob, then PV (vB) = l32 and

ΔB = {FAS(sty), FLE(set), UNE(ele)}.

PB(FAS(sty)) = l32, PB(FLE(set)) = l32, PB(UNE(ele)) = l31.

(ΔB , PB) =< {FAS(sty), FLE(set)}, {UNE(ele)}, ∅ > .

Let vJ be the viewpoint of John, then PV (vJ) = l31 and

ΔJ = {FAS(sty), FLE(set), FAM(ele)}.

PJ (FAS(sty)) = l32, PJ(FLE(set)) = l32, PJ(FAM(ele)) = l30.

(ΔJ , PJ) =< {FAS(sty), FLE(set)}, ∅, {FAM(ele)} > .

Obviously, R = {Δ(vA,vB ,vJ)} and Δ(vA,vB ,vJ) = {FAM(ele) ↔ ¬UNE(ele)}.
Then the partial requirements specification comprising viewpoints {vA, vB , vJ}
is < (ΔA, PA), (ΔB , PB), (ΔJ , PJ), R >. Moreover, we can conclude that

ΔA ∪ ΔB ∪ ΔJ ∪ Δ(vA,vB ,vJ) � UNE(ele) ∧ ¬UNE(ele).

We will come back to this example in section 3.

2.2 Knowledge Bases Merging

Merging is an usual approach to fusing a set of heterogeneous information. The
gist of knowledge base merging is to derive an overall belief set from a collection
of knowledge bases. A flat knowledge base K is a set of formulas in LΦ0 . An
interpretation is a total function from Φ0 to {0, 1}, denoted by a bit vector
whenever a strict total order on Φ0 is specified. Ω is the set of all possible
interpretations. An interpretation ω is a model of a formula ϕ, denoted ω |= ϕ,
iff ω(ϕ) = 1. Then K is consistent iff there exists at least one model of K.

A stratified knowledge base is a finite set K of formulas in LΦ0 with a total
pre-order relation � on K. Intuitively, if ϕ � ψ then ϕ is regarded as more
preferred than ψ. From the pre-order relation � on K, K can be stratified as
K = (S1, · · · , Sn), where Si contains all the minimal propositions of set

⋃n
j=i Sj

w.r.t �. Each Si is called a stratum of K and is non-empty. We denote
⋃

K =⋃n
j=1 Sj . A prioritized knowledge profile E is a multi-set of stratified knowledge

bases, i.e. E = {K1, · · · , Kn}.
Many model-based as well as syntax-based merging operators have been pre-

sented to merge either flat or stratified knowledge bases. Informally, syntax-based
operators aim to pick some formula in the union of the original bases. It may re-
sult in lossing of some implicit beliefs during merging. In contrast, model-based
merging operators aim to select some interpretations that are the closest to the
original bases. They retain all the original knowledge and may also introduce ad-
ditional formulas. Most merging operators just generate a flat base as the result.
At present, only the merging operators presented in [6] can be used to construct
a stratified merged knowledge base. In this paper, we adopt the syntax-based
operators presented in [6] to merge inconsistent requirements collections.

108 K. Mu et al.

Given a stratified knowledge base K, its models are defined as minimal inter-
pretations with regard to a total pre-order relation �X on interpretations that
is induced from K by an ordering strategy X . The three widely used ordering
strategies are the best out ordering [11], the maxsat ordering [12] and the lex-
imin ordering [11]. In this paper, we use the maxsat ordering, though it is not
obligatory.

Definition 1 (Maxsat Ordering [12]). Given K=(S1, · · · , Sn). Let rMO(ω)=
min{i : ω |= Si}, for ω ∈ Ω. By convention, min{∅} = +∞. Then the maxsat
ordering �maxsat on Ω is defined as: ω �maxsat ω′ iff rMO(ω) ≤ rMO(ω′).

Given a stratified knowledge base K, from the pre-order relation �maxsat induced
from K on Ω, the interpretations in Ω can also be stratified as ΩK,maxsat =
(Ω1, · · · , Ωm).

Yue et al. [6] argued that if the knowledge bases are designed independently,
then only the relative preference between interpretations induced from a knowl-
edge base by some ordering strategy is meaningful in a merging process.

Definition 2 (Relative Preference Relation [6]). Let{ΩK1,X1 , · · · , ΩKn,Xn}
be a multi-set. A binary relative preference relation R ⊆ Ω × Ω is defined as:
R(ω, ω′) iff |{ΩKi,Xi s.t. ω ≺i ω′}| > |{ΩKi,Xi s.t. ω′ ≺i ω}|, where ≺i is the
strict partial order relation induced from ΩKi,Xi .

R(ω, ω′) means that more knowledge bases prefer ω than ω′.

Definition 3 (Undominated Set [6]). Let R be a relative preference relation
over Ω and let Q be a subset of Ω. Q is called an undominated set of Ω, if
∀ω ∈ Q, ∀ω′ ∈ Ω \ Q, R(ω′, ω) does not hold. Q is a minimal undominated set
of Ω if for any undominated set P of Ω, P ⊂ Q does not hold.

We denote the set of minimal undominated sets of Ω w.r.t R as UR
Ω . Then we

can stratify the interpretations as follows:

Definition 4 (Stratification of Ω Obtained from R [6]). Let R be a relative
preference relation. A stratification of interpretations Ω = (Ω1, · · · , Ωn) can be
obtained from R such that Ωi = ∪Q, where Q ∈ UR

Ω−∪i−1
j=1Ωj

.

Definition 5 (Maxsat-Dominated Construction [6]). Let Ω=(Ω1, · · · , Ωn)
be a stratification of interpretation and S be a set of propositions. A stratified
knowledge base Kmaxsat,Ω

S = (S1, · · · , Sm) is a maxsat-dominated construction

from S w.r.t Ω if
m⋃

i=1
Si ⊆ S and ΩKmaxsat,Ω

S ,maxsat = Ω.

Yue et al. [6] has also shown how to construct a maxsat-dominated construction
as a stratified merged result from the original bases based on the stratification
of Ω obtained from R.

Proposition 1. Let Ω = (Ω1, · · · , Ωn) be a stratification of interpretation and
S be a set of propositions. If there exists a stratified knowledge base K s.t.

A Merging-Based Approach to Handling Inconsistency 109

ΩK,maxsat = Ω and
⋃

K ⊆ S, then Kmaxsat,Ω
S = (S1, · · · , Sn) is a maxsat-

dominated construction from S w.r.t Ω, where Si = {ϕ ∈ S|∀ω ∈ Ωi, ω |=

ϕ} −
i−1⋃

j=1
Sj and Si �= ∅.

Actually, if there is an integrity constraint μ during the merging process, then
we only need to use Ωμ instead of Ω in the definitions above, where Ωμ is the
set of all the models of μ.

3 A Merging-Based Approach to Handling Inconsistent
Requirements with Local Prioritization

We start this section with consideration of Example 1. Intuitively, developers
should persuade someone to abandon some requirements statements so as to
retain more important requirements from a global perspective. Consider the
local priorities of the two requirements involved in the inconsistency:

PA(FAM(ele)) = l31, PJ (FAM(ele)) = l30, PB(UNE(ele)) = l31.

As a shared requirements statement, FAM(ele) has two different priorities given
by Alice and John, respectively. To determine whether UNE(ele) is more im-
portant than FAM(ele) from a global perspective, it is necessary to derive a
merged requirements collection with global prioritization based on the require-
ments collections with local prioritization.

3.1 Merging an Ordered Knowledge Profile

Merging provides a promising way to extract an overall view from distributed
viewpoints. Intuitively, each of viewpoints involved in inconsistencies may be
viewed as a stratified knowledge base. The knowledge profile consisting of these
knowledge bases should be ordered since some viewpoints are more important
than others.

An ordered knowledge profile is a finite set E of knowledge bases with a total
pre-order relation ≤E on E. Intuitively, if Ki ≤E Kj then Ki is regarded as more
important than Kj. From the pre-order relation ≤E on E, E can be stratified
as E = (T1, · · · , Tm), where Ti contains all the minimal knowledge bases of

set
m⋃

j=i

Tj with regard to ≤E . Generally, the pre-order relation on E should be

considered during the merging process. Actually, as mentioned in [6], only the
relative preference relation over interpretations is meaningful in the merging
process. Consequently, we will integrate the pre-order relationship over a profile
into the relative preference relation defined in Definition 1.

Definition 6 (Level Vector Function). Let E = (T1, · · · , Tm) be an ordered
knowledge profile. Level vector function s is a mapping from E to {0, 1}m such
that ∀K ∈ E, if K ∈ Ei (1 ≤ i ≤ m), then s(K) = (a1, · · · , am), where ai = 1
and aj = 0 for all j ∈ [1, m], j �= i.

110 K. Mu et al.

Given a total ordering relation ≤s on Nm as follows: ∀(a1, · · · , am), (b1, · · · , bm) ∈
{0, 1}m, (a1, · · · , am) ≤s (b1, · · · , bm) iff ai = bi for all i, or ∃i s.t ai > bi and
aj = bj for all j < i. Further, (a1, · · · , am) <s (b1, · · · , bm) iff (a1, · · · , am) ≤s

(b1, · · · , bm) and (b1, · · · , bm) �≤s (a1, · · · , am). Obviously,Ki ≤E Kj iff s(Ki) ≤s

s(Kj). It means s(K) gives a numerical measure of the relative importance of
K w.r.t ≤E.

Then we give an alternative definition of relative preference relation over
interpretations as follows:

Definition 7 (Relative Preference Relation). Let E = {K1, · · · , Kn} be an
ordered knowledge profile and {ΩK1,X1 , · · · , ΩKn,Xn} be a multi-set. A binary
relative preference relation Rs ⊆ Ω × Ω is defined as

Rs(ω, ω′) iff
∑

ΩKi,Xi
s.t. ω≺iω′

s(Ki) <s

∑

ΩKj,Xj
s.t. ω′≺jω

s(Kj),

where ≺i is the strict partial order relation induced from ΩKi,Xi .

Essentially, by introducing level vector function s, Rs considers ≤E as well as
≺i for each i. In the rest of this paper, we adopt Rs instead of R to construct a
stratified merged knowledge base from an ordered knowledge profile.

Example 2. Consider an ordered knowledge profile E = (K1, K2), where K1 =
({p}, {¬p}) and K2 = ({¬p}, {p}). The set of interpretations is Ω = {ω1 =
1, ω2 = 0}. Then rMO,K1(ω1) = 1, rMO,K1(ω2) = 2; rMO,K2 (ω1)=2, rMO,K2(ω2)
= 1. So, ω1 ≺K1,maxsat ω2 and ω2 ≺K2,maxsat ω1. If we do not consider ≤E, nei-
ther R(ω1, ω2) nor R(ω2, ω1) holds. Then Ω = ({ω1, ω2}) signifies that there
is no meaningful merged result. In contrast, if we consider ≤E on E, then
s(K1) = (1, 0) and s(K2) = (0, 1). So, Rs(ω1, ω2) holds. The stratification of
interpretations is Ω = ({ω1}, {ω2}). We get a maxsat-dominated construction
K = ({p}, {¬p}). It is an intuitive result of merging.

3.2 Handling Inconsistent Requirements Collections with Local
Prioritization

The gist of this paper is to provide a merging-based approach to handling incon-
sistent viewpoints, as shown in figure 1. Informally speaking, we first transform
each requirements collection with a local prioritization involved in inconsistencies
to a stratified knowledge base (SKB). The relationship between corresponding
viewpoints is viewed as an integrity constraint during the merging process. Then
we construct a stratified merged knowledge base based on the merging operators
presented in [6]. The merged result can be considered as a overall view of these
viewpoints. Moreover, the ordering relation over the merged knowledge base
could be viewed as a global prioritization on the merged requirements collec-
tion. Finally, we derive proposal candidates for handling inconsistency from the
stratified merged knowledge base. The global prioritization as well as the local
prioritization may be used to argue these proposals and help developers make
some trade-off decisions. If a proposal is acceptable to all the viewpoints involved
in inconsistencies, the viewpoints will be modified according to the proposal.

A Merging-Based Approach to Handling Inconsistency 111

(Δm, Pm)

...

(Δ1, P1)...
(Δi, Pi)

�

�

�

SKB Km

...

SKB K1...
SKB Ki ⊕

Merging

Stratified
Merged
Knowledge
Base
K�

���

�
���� � � Proposals

�

�

�

Fig. 1. A Merging-base Approach to Handling Inconsistency

From Viewpoints To Stratified Knowledge Bases: Let (Δi, Pi) be a re-
quirements collection of viewpoint vi (1 ≤ i ≤ n). Then a stratified knowledge
base induced by (Δi, Pi), denoted Ki, is defined as follows:

• Ki = Δi; A total pre-order relationship �i on Ki is presented as:

∀α, β ∈ Ki, α �i β iff Pi(α) ≥ Pi(β).

• Ki is stratified as Ki = (Si1 , · · · , Sim), where Si1 , · · · , Sim is given by deleting
all ∅ from Δm−1

i , · · · , Δ0
i .

Constructing A Stratified Merged Knowledge Base: Suppose that vi1 ,· · ·,
vik

are the viewpoints involved in inconsistency. Let E = {Ki1 , · · · , Kik
} be

a knowledge profile, where Kil
is the stratified knowledge base induced by

(Δil
, Pil

) for all 1 ≤ il ≤ ik. Let Ω be the set of interpretations. Then we

• define an ordering relation ≤E on E s.t. Kil
≤E Kij iff PV (vil

) ≥ PV (vij);
• compute the level vector function s based on stratification of E w.r.t ≤E.
• consider Δ(vi1 ,···,vik

) as an integrity constraint μ and compute Ωμ = {ω ∈
Ω, ω |= μ};

• find Ωu
Kil

,maxsat for all il.
• based on {Ωu

Ki1 ,maxsat, · · · , Ωu
Kik

,maxsat}, construct stratification of inter-
pretations Ωu = (Ωu

1 , · · · , Ωu
m) by using relative preference relation Rs over

Ωu.
• get a maxsat-dominated construction K based on Proposition 1.

Deriving A Proposal Candidate To Handling Inconsistency: The pref-
erence relation on the maxsat-dominated construction K describes the relative
importance of requirements from a global perspective. Then it naturally derives
proposals that the requirements with lower global priorities should be abandoned
so as to resolve the inconsistencies. However, these proposals are just recommen-
dations. Stakeholders will make further trade-off decisions based on the global
prioritization as well as the local prioritization.

112 K. Mu et al.

We give an example to illustrate how to apply the merging-based approach
to handling inconsistent requirements collections with a local prioritization.

Example 3. Consider Example 1 again. We may get the following stratified
knowledge bases induced by vA, vB , and vJ respectively:

KA = ({FAS(sty), FLE(set)}, {FAM(ele)});
KB = ({FAS(sty), FLE(set)}, {UNE(ele)});
KJ = ({FAS(sty), FLE(set)}, {FAM(ele)}).

Then E = ({KB}, {KA, KJ}) and s(KB) = (1, 0), s(KA) = s(KJ) = (0, 1).
The integrity constraint is μ = {FAM(ele) ↔ ¬UNE(ele)}. We denote each
model by a bit vector consists of truth values of (FAM(ele), UNE(ele), FAS(sty),
FLE(set)). Then Ωμ = {ω1 = 0100, ω2 = 0101, ω3 = 0110, ω4 = 0111, ω5 =
1000, ω6 = 1001, ω7 = 1010, ω8 = 1011}. rMO is given in table 1.

Table 1. Ranks of interpretations given by the maxsat ordering strategy

ω KA KB KJ

0100 +∞ 2 +∞
0101 +∞ 2 +∞
0110 +∞ 2 +∞
0111 1 1 1
1000 2 +∞ 2
1001 2 +∞ 2
1010 2 +∞ 2
1011 1 1 1

Then we can get

Ωμ
KA,maxsat = ({ω8, ω4}, {ω5, ω6, ω7}, {ω1, ω2, ω3});

Ωμ
KB ,maxsat = ({ω8, ω4}, {ω1, ω2, ω3}, {ω5, ω6, ω7});

Ωμ
KJ ,maxsat = ({ω8, ω4}, {ω5, ω6, ω7}, {ω1, ω2, ω3}).

Furthermore, we get a stratification of Ωμ based on the relative preference re-
lation Rs on Ωμ as Ωμ = ({ω8, ω4}, {ω1, ω2, ω3}, {ω5, ω6, ω7}). According to
Proposition 1, we get a maxsat-dominated stratified construction

K = ({FAS(sty), FLE(set)}, {UNE(ele)}, {FAM(ele)}).

This merged result implies that FAM(ele) is less important than UNE(ele) from
a global perspective.

The proposal for handling inconsistency derived from this result of merging,
denoted π, is that the developer had better persuade Alice and John to aban-
don their shared demand about elements of user interface. If the proposal π is
acceptable to the three stakeholders, then

Δπ
A = ΔA − {FAM(ele)}, Δπ

B = ΔB, Δπ
J = ΔJ − {FAM(ele)},

A Merging-Based Approach to Handling Inconsistency 113

where Δπ
i is the modification of Δi by performing π. The inconsistency disap-

pears in Δπ
A ∪ Δπ

B ∪ Δπ
J ∪ Δ(vA,vB ,vJ).

4 Discussion and Comparison

The disagreement in the local prioritization over shared requirements often leads
inconsistency handling to a dilemma. It may be viewed as a promising way to
identify appropriate proposals for handling inconsistency from a global perspec-
tive. But this does not mean that the global prioritization is more crucial than
the local prioritization. We argue that both the global prioritization and the local
prioritization play important roles in resolving inconsistencies. For example, the
proposal π in Example 3 is considered appropriate to handling the inconsistency
from a global perspective. Obviously, John maybe accept the proposal, since for
the demand to be abandoned, PJ{FAM(ele)} = Low. But we can’t assure that
Alice agrees to abandon the shared demand since PA{FAM(ele)} = Medium.
In summary, the local prioritization has an impact on the acceptance of merged
result to viewpoints. How to identify appropriate common proposals for inconsis-
tency handling based on the local prioritization as well as the merged preference
is still one of issues in our future work.

On the other hand, we adopt the syntax-based merging operators presented
in [6] during merging process. The syntax-based merging operator aims to pick
out some formulas from original knowledge bases. Then the merged result can
be explained clearly. But it is possible that we can not get a stratified merged
requirements collection in some case. However, introducing model-based merging
operators also leads to a problem of how to explain additional formulas in the
merged result in terms of viewpoints demands. It seems to be a dilemma.

5 Conclusions

Identifying appropriate actions or proposals for handling inconsistency is still a
big problem in requirements engineering. The relative priority of requirements is
considered as a useful clue to resolving conflicts and making trade-off decisions.
However, in distributed development of requirements specifications such as the
Viewpoints framework, the disagreement in local priorities of shared require-
ments statements often leads inconsistency handling to a dilemma.

The main contribution of this paper is to provide a merging-based approach
to handling inconsistency in locally prioritized software requirements. Given an
inconsistency, each viewpoint involved in the inconsistency is transformed into
a stratified knowledge base, whilst the relationship between these viewpoints
is considered as an integrity constraint. Based on the merging operators pre-
sented in [6], we construct a stratified merged knowledge base as an overall
view of these inconsistent viewpoints. The ordering relationship over this strat-
ified merged knowledge base could be considered as a global prioritization over
the requirements specification. Generally, the requirements with lower merged
preference may be considered as requirements to be abandoned. Then we may

114 K. Mu et al.

derive some proposals for handling the inconsistency from the merged result.
The global prioritization as well as the local prioritization may be used to argue
these proposals and help developers identifying acceptable common proposals.

Acknowledgements

This work was partly supported by the National Natural Science Fund for Distin-
guished Young Scholars of China under Grant No. 60625204, the Key Project of
National Natural Science Foundation of China under Grant No. 60496324, the
National Key Research and Development Program of China under Grant No.
2002CB312004, the National 863 High-tech Project of China under Grant No.
2006AA01Z155, the Knowledge Innovation Program of the Chinese Academy of
Sciences, and the NSFC and the British Royal Society China-UK Joint Project.

References

1. Finkelsetin, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: View-
points: A framework for integrating multiple perspectives in system development.
International Journal of Software Engineering and Knowledge Engineering 2, 31–58
(1992)

2. Nuseibeh, B., Kramer, J., Finkelstein, A.: Viewpoints: meaningful relationships
are difficult? In: Proceedings of the 25th International Conference on Software
Engineering, pp. 676–681. IEEE CS Press, Los Alamitos (2003)

3. Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency
handling in multiperspective specifications. IEEE Transactions on Software Engi-
neering 20, 569–578 (1994)

4. Wiegers, K.: First things first:prioritizing requirements. Software Development 7,
48–53 (1999)

5. Davis, A.: Just Enough Requirements Management: Where Software Development
Meets Marking. Dorset House, New York (2005)

6. Yue, A., Liu, W., Hunter, A.: Approaches to constructiing a stratified merged
knowledge base. In: ECSQARU 2007. LNCS, Springer, Heidelberg (2007)

7. Hunter, A., Nuseibeh, B.: Managing inconsistent specification. ACM Transactions
on Software Engineering and Methodology 7, 335–367 (1998)

8. Wiegers, K.: Software Requirements, 2nd edn. Microsoft Press, Redmond (2003)
9. Spanoudakis, G., Finkelstein, A., Till, D.: Overlaps in requirements engineering.

Automated Software Engineering 6, 171–198 (1999)
10. Gervasi, V., Zowghi, D.: Reasoning about inconsistencies in natural language re-

quirements. ACM Transactions on Software Engineering and Methodologies 14,
277–330 (2005)

11. Benferhat, S., Cayrol, C., Dobois, D., Lang, J., Prade, H.: Inconsistency manage-
ment and prioritized syntax-based entailment. In: Proceedings of IJCAI 1993, pp.
640–647. Morgan Kaufmann, San Francisco (1993)

12. Brewka, G.: A rank-based description language for qualitative preferences. In: Proc.
of ECAI 2004, pp. 303–307. IOS Press, Amsterdam (2004)

	Introduction
	Preliminaries
	Logical Representation of Viewpoints
	Knowledge Bases Merging

	A Merging-Based Approach to Handling Inconsistent Requirements with Local Prioritization
	Merging an Ordered Knowledge Profile
	Handling Inconsistent Requirements Collections with Local Prioritization

	Discussion and Comparison
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

