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Abstract. Dempster Shafer theory of evidence (DS theory) and possibility the-
ory are two main formalisms in modelling and reasoning with uncertain infor-
mation. These two theories are inter-related as already observed and discussed in
many papers (e.g. [DP82,DP88b]). One aspect that is common to the two theories
is how to quantitatively measure the degree of conflict (or inconsistency) between
pieces of uncertain information. In DS theory, traditionally this is judged by the
combined mass value assigned to the emptyset. Recently, two new approaches to
measuring the conflict among belief functions are proposed in [JGB01,Liu06].
The former provides a distance-based method to quantify how close a pair of be-
liefs is while the latter deploys a pair of values to reveal the degree of conflict of
two belief functions. On the other hand, in possibility theory, this is done through
measuring the degree of inconsistency of merged information. However, this mea-
sure is not sufficient when pairs of uncertain information have the same degree
of inconsistency. At present, there are no other alternatives that can further differ-
entiate them, except an initiative based on coherence-intervals ([HL05a,HL05b]).
In this paper, we investigate how the two new approaches developed in DS theory
can be used to measure the conflict among possibilistic uncertain information. We
also examine how the reliability of a source can be assessed in order to weaken a
source when a conflict arises.

1 Introduction

Pieces of uncertain information that come from different sources often do not agree
with each other completely. There can be many reasons for this, such as, inaccuracy
in sensor data reading, nature errors occurred in experiments, reliabilities of sources,
etc. When inconsistent information needs to be merged, assessing the degree of conflict
among information plays a crucial role in deciding which combination mode would be
best suited [DP94].

In possibility theory, the well established method is to measure the degree of in-
consistency between two pieces of uncertain information. This measure is not enough
when multiple pairs of uncertain information have the same degree of inconsistency.
We need to further identify subsets of sources that contain information more “close”
to each other. Currently, there are no approaches to fulfilling this objective, except a
coherence-interval based scenario proposed in [HL05a,HL05b]. More robust methods
are needed to measure the conflict among pieces of information more effectively.



Two fundamental functions defined in possibility theory are possibility measures
and necessity measures. In the context of Dempster-Shafer theory of evidence (DS the-
ory for short), these two measures are special cases of plausibility and belief functions.
Naturally, DS theory faces the same question as how conflict should be measured among
belief functions. Recently, two different approaches were proposed to quantitatively
judge how conflict a pair of uncertain information is [JGB01,Liu06]. One approach
calculates the distance between two belief functions and another evaluates a pair of val-
ues consisting of the difference between betting commitments and a combined mass
assigned to the emptyset. Both methods provide a better measure about the conflict
among belief functions then the traditionally used approach in DS theory, that is, the
use of the mass value assigned to the emptyset after combination.

In this paper, we take the advantage that possibility and necessity measures are
special cases of plausibility and belief functions and investigate the effect of applying
the two new approaches introduced above in DS theory to possibilistic uncertain infor-
mation. Properties and potential applications of this investigation are explored too. In
addition, we look at the issues of assessing the reliability of sources to assist resolving
conflict through weakening the opinion from less reliable sources.

We will proceed as follows: in Section 2, we review the basics in possibility theory
and DS theory. In Section 3, we present the relationships and properties between the two
theories. In Section 4, we investigate how the approaches for inconsistent assessment in
DS theory can be applied to possibilistic uncertain information. In Section 5, we exam-
ine how individual agent’s judgement can be assessed, in order to discount or discarded
some sources in a highly conflict situation. Finally in Section 6, we summarize the main
contributions of the paper.

2 Brief review of DS theory and possibility theory

2.1 Basics of Dempster-Shafer theory

Let Ω be a finite set containing mutually exclusive and exhaustive solutions to a ques-
tion. Ω is called theframe of discernment.

A basic belief assignment (bba) [Sme04] is a mappingm : 2Ω → [0, 1] that satisfies∑
A⊆Ω m(A) = 1. In Shafer’s original definition which he calledthe basic probability

assignment[Sha76], conditionm(∅) = 0 is required. Recently, some of the papers on
Dempster-Shafer theory, especially since the establishment of the Transferable Belief
Model (TBM) [SK94], conditionm(∅) = 0 is often omitted. A bba withm(∅) = 0 is
called a normalized bba and is known as amass function.

m(A) defines the amount of belief to the subsetA exactly, not including any subsets
in A. The total belief in a subsetA is the sum of all the mass assigned to all subsets of
A. This function is known asa belief functionand is defined asBel : 2Ω → [0, 1].

Bel(A) = ΣB⊆Am(B)

Whenm(A) > 0, A is referred to as afocal elementof the belief function.
A plausibility function, denotedPl, is defined as follows, wherePl : 2Ω → [0, 1].

Pl(A) = 1−Bel(Ā) = ΣB∩A 6=∅ m(B)
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whereĀ is the complementary set ofA.
Two pieces of evidence expressed in bbas from distinct sources are usually com-

bined using Dempster’s combination rule. The rule is stated as follows.

Definition 1. Letm1 andm2 be two bbas, and letm1 ⊕m2 be the combined bba.

m1 ⊕m2(C) =
ΣA∩B=C (m1(A)×m2(B))

1−ΣA∩B=∅ (m1(A)×m2(B))

Whenm1⊕m2(∅) = ΣA∩B=∅ (m1(A)×m2(B)) = 1, the two pieces of evidence
are totally contradict with each other and cannot be combined with the rule.

Definition 2. [Sme04] Letm be a bba onΩ. Its associated pignistic probability func-
tion BetPm : Ω → [0, 1] is defined as

BetPm(ω) =
∑

A⊆Ω,ω∈A

1
|A|

m(A)
1−m(∅) , m(∅) 6= 1 (1)

where|A| is the cardinality of subsetA.

The transformation fromm to BetPm is called thepignistic transformation. When an
initial bba givesm(∅) = 0, m(A)

1−m(∅) is reduced tom(A). ValueBetPm(A) is referred
to as thebetting commitment toA.

2.2 Possibility theory

Possibility theory is another popular choice for representing uncertain information
([DP88a,BDP97], etc). At the semantic level, a basic function in possibility theory is a
possibility distributiondenoted asπ which assigns each possible world in the frame of
discernmentΩ a value in[0, 1] (or a set of graded values).

From a possibility distribution, two measures are derived, a possibility measure (de-
moted asΠ) and a necessity measure (denoted asN ). The former estimates to what
extent the true event is believed to be in the subset and the latter evaluates the degree of
necessity that the subset is true. The relationships betweenπ, Π andN are as follows.

Π(A) = max({π(ω)|ω ∈ A}) and N(A) = 1−Π(Ā) (2)

Π(2Ω) = 1 and Π(∅) = 0 (3)

Π(A ∪B) = max(Π(A), Π(B)) and N(A ∩B) = min(N(A), N(B)) (4)

The usual condition associated withπ is that there existsω0 ∈ Ω such thatπ(ω0) =
1, and in which caseπ is said to be normal. It is not always possible to obtain a pos-
sibility distribution from a piece of evidence. Most of the time, uncertain information
is expressed as a set of weighted subsets (or a set of weighted formulas in possibilistic
logic). A weighted subset(A,α) is interpreted as that the necessity degree ofA is at
least toα, that is,N(A) ≥ α.

A piece of possibilistic uncertain information usually specifies a partial necessity
measure. LetΩ = {ω1, .., ωn}, and also letAi = {ωi1 , .., ωix} in order to make
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the subsequent description simpler. In this way, a set of weighted subsets constructed
from a piece of uncertain information is defined as{(Ai, αi), i = 1, .., p}, whereαi

is the lower bound on the degree of necessityN(Ai). In the following, we call a set
of weighted subsets apossibilistic information base (PIB for short)and denote such a
base asK.

There is normally a family of possibility distributions associated with a given set of
weighted subsets, with each of the distributions satisfying the condition

1−max{π(ω)|ω ∈ Āi} ≥ αi

which guarantees thatN(Ai) ≥ αi. Let {πj , j = 1, ..,m} be all the possibility dis-
tributions that are compatible with{(Ai, αi), i = 1, .., p}. A possibility distribution
πl ∈ {πj , j = 1, .., m} is said to be the least specific possibility distribution among
{πj , j = 1, .., m} if 6 ∃πt ∈ {πj , j = 1, ..,m}, πt 6= πl such that∀ω, πt(ω) ≥ πl(ω).

A common method to select one of the compatible possibility distributions is to
use theminimum specificity principle[DP87] which allocates the greatest possibility
degrees in agreement with the constraintsN(Ai) ≥ αi. This possibility distribution
always exists and is defined as ([DP87,BDP97])

∀ω ∈ Ω, π(ω) =





min{1− αi|ω 6∈ Ai}
= 1−max{αi|ω 6∈ Ai} when ∃Ai s. t. ω 6∈ Ai

1 otherwise
(5)

A possibility distribution is not normal if∀ω, π(ω) < 1. The value1−maxω∈Ωπ(ω)
is calledthe degree of inconsistencyof the PIB and is denoted asInc(K). Given a PIB
{(Ai, ai), i = 1, .., p}, this PIB isconsistentiff ∩iAi 6= ∅.

The two basic combination modes in possibility theory are theconjunctiveand the
disjunctivemodes for merging possibility distributions ([BDP97]) whenn possibility
distributions are given on the same frame of discernment. For example, if we choose
minandmaxas the conjunctive and disjunctive operators respectively, then

∀ω ∈ Ω, πcm(ω) = minn
i=1(πi(ω)), ∀ω ∈ Ω, πdm(ω) = maxn

i=1(πi(ω)) (6)

A conjunction operator is used when it is believed that all sources are reliable and
these sources agree with each other whilst a disjunctive operator is applied when it is
believed that some sources are reliable but it is not known which of these sources are. A
conjunction operator can lead to a new possibility distribution that is not normal when
some sources are not in agreement, even though all the original possibility distribu-
tions are normal. When this happens, the merged possibility distribution expresses an
inconsistency among the sources.

3 Belief functions verse necessity measures

In [Sha76], a belief function is called aconsonant functionif its focal elements are
nested. That is, ifS1, S2 ,.., Sn are the focal elements withSi+1 containing more
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elements thanSi, thenS1 ⊂ S2 ⊂ .. ⊂ Sn. Let Bel be a consonant function, andPl
be its corresponding plausibility function,Bel andPl have the following properties:

Bel(A ∩B) = min(Bel(A), Bel(B)) for all A,B ⊆ 2Ω .

P l(A ∪B) = max(Pl(A), P l(B)) for all A,B ⊆ 2Ω .

These two properties are exactly the requirements of necessity and possibility mea-
sures in possibility theory. Necessity and possibility measures are special cases of belief
and plausibility functions.

Furthermore, acontour functionf : Ω → [0, 1], for a consonant function is defined
through equation

f(ω) = Pl({ω})
For a subsetA ⊆ Ω,

Pl(A) = maxω∈Af(ω) (7)

Equation (7) matches the definition of possibility measure from a possibility distri-
bution, so a contour function is a possibility distribution.

The procedure to derive a bba from a possibility distribution is stated below.

Proposition 1. ([HL06]) Let π be a possibility distribution on frame of discernmentΩ
and is normal. LetB1, B2,.., Bp andBp+1 be disjoint subsets ofΩ such thatπ(ωi) =
π(ωj) when bothωi, ωj ∈ Bi; π(ωi) > π(ωj) if ωi ∈ Bi andωj ∈ Bi+1; π(ωi) = 0 if
ωi ∈ Bp+1 then the following properties hold:

1. Let Ai = ∪{Bj |j = 1, .., i} for i = 1, 2, .., p, then subsetsA1, A2, .., Ap are
nested;

2. Letm(Ai) = π(ωi)−π(ωj) whereωi ∈ Bi andωj ∈ Bi+1 for i = 1, .., p− 1. Let
m(Ap) = π(ω) whereω ∈ Bp. Thenm is a bba on focal elementsAi;

3. Let Bel be the belief function corresponding tom defined above, thenBel is a
consonant function.

SubsetB1 (or focal elementA1) is called thecoreof possibility distributionπ which
contains the most plausible interpretations [BK01]. The nature of Proposition 1 was first
observed in [DP82] where the relationship between the possibility theory and DS theory
was discussed. This relationship was further referred to in several papers subsequently
([DP88b,DP98b,DNP00]).

Example 1Letπ be a possibility distribution onΩ = {ω1, ..., ω4} where

π(ω1) = 0.7, π(ω2) = 1.0, π(ω3) = 0.8, π(ω4) = 0.7

The disjoint subsets forπ are

B1 = {ω2}, B2 = {ω3}, B3 = {ω1, ω4}
and the corresponding focal elements as well as bbam are

A1 = B1, A2 = B1 ∪B2, A3 = B1 ∪B2 ∪B3

m(A1) = 0.2, m(A2) = 0.1, m(A3) = 0.7
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Proposition 2. Let π be a possibility distribution on frame of discernmentΩ and be
normal. LetBetP be the pignistic probabilistic function of the corresponding bbam
derived fromπ. ThenBetP (ωi) ≥ BetP (ωj) iff π(ωi) ≥ π(ωj).

Proof Let the collection of disjoint subsets satisfying conditions in Proposition 1 be
B1, B2, . . . , Bp+1 and let the set of focal elements beA1, A2, . . . , Ap. Without losing
generality, we assumeωi ∈ B1 andωj ∈ B2, soπ(ωi) ≥ π(ωj). Based on Equation 1,

BetP (ωi) =
m(A1)
| A1 | +

m(A2)
| A2 | + . . . +

m(Ap)
| Ap |

and

BetP (ωj) =
m(A2)
| A2 | + . . . +

m(Ap)
| Ap |

It is obvious thatBetP (ωi) ≥ BetP (ωj).
3

In fact, if the elements inΩ are ordered in the way such thatπ(ω1) ≥ π(ω2) ≥
... ≥ π(ωn), then the inequalityBetP (ω1) ≥ BetP (ω2) ≥ ... ≥ BetP (ωn) holds.
Proposition 2 is valid even when a possibility distribution is not normal. In that case,
m(∅) = 1 − π(ω|ω ∈ B1). This proposition says that the more plausible a possible
world is, the more betting commitment it carries.

Proposition 3. Let π1 andπ2 be two possibility distributions on frame of discernment
Ω for two PIBs and be normal. LetK be the conjunctively merged PIB. Assumem1

andm2 are the bbas derived fromπ1 andπ2 respectively. Then the following properties
hold.

1. Inc(K) = 0 iff m1 ⊕m2(∅) = 0
2. Inc(K) = 1 iff m1 ⊕m2(∅) = 1
3. Inc(K) > 0 iff m1 ⊕m2(∅) > 0

Proof We assume the conjunctive operator used in the proof ismin. In fact, this
proof is equally applicable to the other two commonly used conjunctive operators,
namely,productandlinear product.

Let Bπ1 andBπ2 be the two cores for possibility distributionsπ1 andπ2 respec-
tively.

We first proveInc(K) = 0 iff m1 ⊕m2(∅) = 0. WhenInc(K) = 0, the conjunc-
tively merged possibility distribution ofπ1 andπ2 is normal and there exists aω ∈ Ω
such thatω ∈ Bπ1 ∩ Bπ2 . Recall thatBπ1 andBπ2 are the respective smallest focal
elements form1 andm2, then for anyAm1 andAm2 , two focal elements associated
with m1 andm2 respectively,Am1 ∩Am2 6= ∅. Som1 ⊕m2(∅) = 0.

On the other hand, whenm1 ⊕ m2(∅) = 0, Bπ1 ∩ Bπ2 6= ∅. Therefore,∃ω such
thatω ∈ Bπ1 ∩Bπ2 . That is,π1(ω) = π2(ω) = 1 which impliesInc(K) = 0.

Now we proveInc(K) = 1 iff m1 ⊕m2(∅) = 1. WhenInc(K) = 1, the conjunc-
tively merged possibility distribution ofπ1 andπ2 is totally inconsistent, then for any
ω ∈ Ω eitherπ1(ω) = 0 or π2(ω) = 0 or both. LetAp

m1
andAq

m2
be the largest focal
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elements ofm1 andm2 respectively, thenω 6∈ Ap
m1
∩Aq

m2
, soAp

m1
∩Aq

m2
= ∅. There-

fore, for Am1 andAm2 , two focal elements associated withm1 andm2 respectively,
Am1 ∩Am2 = ∅ which impliesm1 ⊕m2(∅) = 1.

Similar to this proof procedure, it is easy to show that whenm1 ⊕ m2(∅) = 1,
Inc(B) = 1.

Finally, we proveInc(K) > 0 iff m1 ⊕ m2(∅) > 0. WhenInc(K) > 0 there
does not exist aω ∈ Ω such thatω ∈ Bπ1 ∩ Bπ2 (otherwisemin(π1(ω), π2(ω)) = 1
which violates the assumption). SinceBπ1 andBπ2 are two smallest focal elements for
m1 andm2 respectively,Bπ1 ∩ Bπ2 = ∅ when combining these two mass functions,
thereforem(∅) > 0.

Whenm(∅) > 0, we at least haveBπ1 ∩Bπ2 = ∅. So for anyω ∈ Bπ1 (resp.Bπ2),
it impliesω 6∈ Bπ2 (resp.Bπ1), it follows immediately thatmin(π1(ω), π2(ω)) < 1.

3

In general conclusionInc(K12) ≥ Inc(K13) ⇒ m1⊕m2(∅) ≥ m1⊕m3(∅) does
not hold.

4 Measuring conflict between PIBs

The conflict between uncertain information in possibility theory is measured by the
degree of inconsistency induced by the information. However, this measure can only
tell if two (or multiple) sources are inconsistent and to what extent, it cannot further
differentiate pairs of PIBs that have the same degree of inconsistency.

Example 2Consider a set of four PIBs as detailed below withΩ = {ω1, .., ω4}.
K1

1 = {({ω1, ω2}, 0.4), ({ω2, ω3, ω4}, 0.5), ({ω2}, 0.4)}
K1

2 = {({ω1, ω2}, 0.3), ({ω1, ω2, ω3}, 0.5), ({ω1, ω4}, 0.4)}
K1

3 = {({ω1, ω3}, 0.4), ({ω2, ω3, ω4}, 0.5), ({ω3}, 0.4)}
K1

4 = {({ω2, ω4}, 0.3), ({ω1, ω3, ω4}, 0.5), ({ω1, ω4}, 0.4)}

Let π1
1 , π1

2 , π1
3 andπ1

4 be the corresponding possibility distributions of these PIBs
as detailed in Table 1.

Table 1.Four possibility distributions for the four PIBs.

PIB π ω1 ω2 ω3 ω4

K1
1 π1

1 0.5 1.0 0.6 0.6
K1

2 π1
2 1.0 0.6 0.6 0.5

K1
3 π1

3 0.5 0.6 1.0 0.6
K1

4 π1
4 0.6 0.5 0.6 1.0

Combining any pair of the four possibility distributions conjunctively (e.g., min)
produces an unnormalized possibility distribution and in all the cases, the degree of
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inconsistency is0.4 (using min operator). It is, therefore, difficult to tell which two or
more PIBs may be more consistent.

In this section, we deploy two approaches developed in DS theory on measuring
conflict among bbas to uncertain information in possibility theory.

4.1 A Distance-based measure of conflict

In [JGB01], a method for measuring the distance between bbas was proposed. This
distance is defined as

dBPA(m1,m2) =

√
1
2
(m̃1 − m̃2)T D= (m̃1 − m̃2) (8)

where
D= is a2Ω × 2Ω dimensional matrix withd[i, j] = |A ∩ B|/|A ∪ B| (note: it is

defined that|∅∩∅|/|∅∪∅| = 0), andA ∈ 2Ω andB ∈ 2Ω are the names of columns and
rows respectively. Given a bbam on frameΩ, m̃ is a2Ω-dimensional column vector
(can also be called a2Ω × 1 matrix) withmA∈2Ω (A) as its2Ω coordinates.

(m̃1 − m̃2) stands for vector subtraction and(m̃)T is the transpose of vector (or
matrix) m̃. Whenm̃ is a 2Ω-dimensional column vector,(m̃)T is its 2Ω-dimensional

row vector with the same coordinates.((m̃)T D= m̃) therefore is the result of normal
matrix multiplications (twice).

For example, letΩ = {a, b} be the frame and letm({a}) = 0.7,m(Ω) = 0.3 be a

bba. Thenm̃ =




0
0.7
0

0.3


 is a 4-dimensional column vector with row names (∅, {a}, {b},

Ω) and(m̃)T = [0, 0.7, 0, 0.3] is the corresponding row vector with column names (∅,
{a}, {b}, Ω).

D= is a4 × 4 square matrix with (∅, {a}, {b}, Ω) as the names for both

rows and columns.((m̃)T D= m̃) = 0.79 in this example.

Example 3(Continuing Example 2)The four bbas recovered from the four possibility
distributions in Example 2 are:

m1({ω2}) = 0.4, m1({ω2, ω3, ω4}) = 0.1, m1(Ω) = 0.5
m2({ω1}) = 0.4, m2({ω1, ω2, ω3}) = 0.1, m2(Ω) = 0.5
m3({ω3}) = 0.4, m3({ω2, ω3, ω4}) = 0.1, m3(Ω) = 0.5
m4({ω4}) = 0.4, m4({ω1, ω3, ω4}) = 0.1, m4(Ω) = 0.5

Applying the distance-based measure defined in Equation 8 to all the pairs of PIBs,
the distances between pairs of PIBs are listed below.

dBPA(m1,m2) = 0.4203, dBPA(m2,m3) = 0.4203, dBPA(m2,m4) = 0.4203
dBPA(m1,m4) = 0.4358, dBPA(m1,m3) = 0.4, dBPA(m3,m4) = 0.4041

These results show that PIBsK1 andK4 are most inconsistent whilst PIBs(K1,K3)
or (K3, K4) are most consistent. This detailed analysis cannot be measured by the
degree of inconsistency since every pair of PIBs has the same degree of inconsistency.
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A distance-based measure of a pair of bbas does not convey the same information
asm1 ⊕ m2(∅). More specifically,Inc(K) = 0 does not meandBPA = 0, nor does
Inc(K) = 1 imply dBPA = 1. For instance, a pair of possibility distributionsπ1 and
π2 defined onΩ = {ω1, ω2, ω3, ω4} for two PIBs with

π1(ω1) = 1, π1(ω2) = 0.5, π1(ω3) = 0.4, π1(ω4) = 0.4
π2(ω1) = 1, π2(ω2) = 1, π2(ω3) = 1, π2(ω4) = 0.8

produces a normal possibility distribution after a conjunctive merge. The degree of in-
consistency isInc(K12) = 0 whereK12 is the merged PIB. However,dBPA(m1,m2) =
0.41 wherem1 andm2 are the bbas forπ1 andπ2. Similarly, if we have a pair of pos-
sibility distributionsπ3 andπ4 defined on the same setΩ as

π3(ω1) = 1, π3(ω2) = 0.6, π3(ω3) = 0, π3(ω4) = 0
π4(ω1) = 0, π4(ω2) = 0, π4(ω3) = 1, π4(ω4) = 0.8

thenInc(K34) = 1 whilst dBPA(m3,m4) = 0.842 whereK34 is the merged PIB and
m3 andm4 are the bbas forπ3 andπ4 respectively.

This discussion shows that the distance-based measure can not replace the measure
of degree of inconsistency. Both measures should be used when assessing how conflict
a pair of PIBs is.

4.2 A (difBetP, m1 ⊕ m2(∅)) based measure of conflict

The conflict between two belief functions (or bbas) in DS theory is traditionally mea-
sured using the combined mass value assigned to the emptyset before normalization,
e.g.,m(∅). In [Liu06], it is illustrated that this measure is not accurate and a new mea-
sure which is made up of two values is introduced. One of these two values is the dif-
ference between betting commitments obtained through pignistic probability functions
and another is the combined value assigned to the emptyset before normalization.

Definition 3. (adapted from [Liu06]) Letm1 andm2 be two bbas onΩ andBetPm1

andBetPm2 be their corresponding pignistic probability functions. Then

difBetPm2
m1

= maxω∈Ω(|BetPm1(ω)−BetPm2(ω)|)

is called thedistance between betting commitmentsof the two bbas.

Value(|BetPm1(ω) − BetPm2(ω)|) is the difference between betting commitments to
possible worldω from the two sources. The distance of betting commitments,difBetPm2

m1
,

is therefore the maximum extent of the differences between betting commitments to all
the possible worlds. This definition is a revised version in [Liu06] where in the original
definition fordifBetPm2

m1
, ω is replaced byA (a subset). The rational for this adaptation

is that we want to know how “far apart” the degrees of possibility assigned to a possible
world is from the two sources.

We use the following example to show the advantage of (difBetP, m1 ⊕ m2(∅))
overm1 ⊕m2(∅).
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Example 4Letm1 andm2 be two bbas onΩ = {ω1, ..., ω5} as

m1({ω1}) = 0.8, m1({ω2, ω3, ω4, ω5}) = 0.2,

and
m2(Ω) = 1.

Thenm1 ⊕ m2(∅) = 0 whenm1 andm2 are combined with Dempster’s rule, which
is traditionally explained as there is no conflict between the two bbas. However,m1

is more committed whilstm2 is less sure about its belief as which value(s) are more
plausible than others. The difference in their opinions is reflected bydifBetPm2

m1
= 0.6.

It says that the two sources have rather different beliefs as where the true hypothesis
lies.

Definition 4. Let (K1,K2) and (K1, K3) be two pairs of PIBs andK12 andK13 be
the two merged PIBs from these two pairs. Letm1, m2, andm3 be the bbas for the three
PIBs respectively. Assume thatInc(K12) = Inc(K13), thenK1 is more consistent with
K2 than withK3 when the following condition holds

difBetPm2
m1
≤ difBetPm3

m1
and m1 ⊕m2(∅) ≤ m1 ⊕m3(∅)

Example 5Let three PIBs on setΩ = {ω1, ω2, ω3, ω4} be

K2
1 = {({ω1, ω3}, 0.4), ({ω2, ω3, ω4}, 0.5), ({ω2}, 0.4)}

K2
2 = {({ω1, ω2}, 0.3), ({ω1, ω2, ω3}, 0.5), ({ω1, ω4}, 0.4)}

K2
3 = {({ω1, ω2, ω3}, 0.4), ({ω1, ω2, ω4}, 0.4), ({ω2, ω3}, 0.4)}

The corresponding possibility distributions and bbas for these PIBs are

π2
1(ω1) = 0.5, π2

1(ω2) = 0.6, π2
1(ω3) = 1.0, π2

1(ω4) = 0.6,
π2

2(ω1) = 1.0, π2
2(ω2) = 0.6, π2

2(ω3) = 0.6, π2
2(ω4) = 0.5,

π2
3(ω1) = 0.6, π2

3(ω2) = 1.0, π2
3(ω3) = 0.6, π2

3(ω4) = 0.6.

and
m2

1({ω3}) = 0.4, m2
1({ω2, ω3, ω4}) = 0.1, m2

1(Ω) = 0.5
m2

2({ω1}) = 0.4, m2
2({ω1, ω2, ω3}) = 0.1, m2

1(Ω) = 0.5
m2

3({ω2}) = 0.4, m2
3(Ω) = 0.6,

Inc(K2
12) = Inc(K2

13) = 0.4. However,m2
1⊕m2

2(∅) = 0.20 andm2
1⊕m2

3(∅) = 0.16.
Furthermore,

difBetP
m2

2
m2

1
= 0.4 + 0.1/3, and difBetP

m2
3

m2
1

= 0.4 + 0.1/4− 0.1/3

Therefore,

difBetP
m2

3
m2

1
< difBetP

m2
2

m2
1

and
m2

1 ⊕m2
3(∅) < m2

1 ⊕m2
2(∅)
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K2
1 is more consistent withK2

3 than withK2
2 .

In [Liu06], it has been shown that the (difBetP, m1⊕m2(∅)) based approach is more
appropriate to measure the conflict among evidence than the distance-based approach.
This can at least be seen from re-examining Example 2 using (difBetP, m1 ⊕m2(∅)).
For example, applying this approach to the first pair of bbas derived from (π1, π2) in
Example 2, we have (difBetPm2

m1
, m1 ⊕ m2(∅))=(0.383, 0) which concludes that the

two pieces of information are largely consistent (sincem1 ⊕ m2(∅) = 0) but there
is some disagreement among them (sincedifBetPm2

m1
6= 0). However, the degree of

inconsistency (which is0) as a single value cannot give us this (further) information.

5 Assessment of agent’s judgement

When pieces of uncertain information are highly inconsistent and they have to be
merged, some resolutions are needed before a meaningful merged result can be ob-
tained. One common approach is to make use of the reliability of a source, so that the
information from a source with a lower reliability can be either discarded or discounted
(e.g., weakened). However, reliabilities are often required as extra knowledge and this
knowledge is not always readily available. Therefore, finding ways of assessing the reli-
ability of a source is the first step towards how to handle highly conflicting information.

In [DP94], a method for assessing the quality of information provided by a source
was proposed. This method is to measure how accurate and informative the provided
information is.

Let x be a (testing) variable for which all the possible values are included in setΩ
and its true value (denoted asv) is known. To assess the reliability of a source (hereafter
referred to asAgent), Agentis asked to provide its judgement as what is the true value for
x. Assume thatAgent’s reply is a set of weighted nested subsets in terms of possibility
theory

K = {(A1, α1), ..., (An, αn)} where Ai ⊂ Aj , i < j

Then a possibility distributionπx as well as a bbam can be constructed from this
information onΩ such that

πx(ω) = β1 = 1 when ω ∈ A1

πx(ω) = β2 when ω ∈ A2 \A1 and β2 = 1− α1

πx(ω) = β3 when ω ∈ A3 \A2 and β3 = 1− α2

...
πx(ω) = βn when ω ∈ An \An−1 and βn = 1− αn−1

πx(ω) = βn+1 when ω 6∈ An; and βn+1 = 1− αn

Thenβ1 ≥ β2 ≥ . . . ≥ βn+1, sinceα1 ≤ α2 ≤ . . . ≤ αn due to the monotonicity of
N and

m(A1) = β1 − β2, m(A2) = β2 − β3, . . . , m(An) = βn − βn+1

The rating ofAgent’s judgement in relation to this variable is therefore defined as
[DP94]

Q(K, x) = πx(v)
|Ω| − ||K||

(1−m(An))|Ω| (9)
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where||K|| = Σm
i=1(|Ai|m(Ai)), v is the actual value of variablex, and|Ω| (resp.|Ai|)

is the cardinality of setΩ (resp.Ai). This formula ensures thatAgentcan score high
only if he is both accurate (with a highπx(v)) and informative (with a fairly focused
subset).

When K = {(Ω, 1)}, it implies m(Ω) = 1 and πx(ω) = 1, ∀ω ∈ Ω, then
Q(K, x) = 0 since||K|| = |Ω|. This shows that theAgentis totally ignorant. When
K = {({v}, 1)}, it impliesπx(v) = 1 andπx(ω) = 0 whenω 6= v. ThenQ(K, x) =
(|Ω| − 1)/|Ω| sincem(An) = 0. This conclusion says that theAgent’s judgement in-
creases along the size of the set of all values, the bigger the set, the more accurate the
Agent’s judgement is.

When theAgent’s reply is not in the form of a set of weighted nested subsets, rela-
tionships between DS theory and possibility theory studies in Section 3 should be used
to construct a set of nested subsets, called focal elements. Then this set of nested subsets
can be used in Equation 9 for calculating the ranking of anAgent.

The overall rating of anAgent is evaluated as the average of all ratings obtained
from answering a set of (testing) variables whereAgent’s reply for each variable is
judged using Equation 9. Once eachAgent’s rating is established, suitable discounting
operators ([DP01]) can be applied to weaken the opinions from less reliableAgentsto
resolve inconsistency among information.

6 Conclusion

In this paper, we have shown that additional approaches to measuring inconsistency
among pieces of uncertain information are needed since the only measure used in possi-
bility theory, e.g., the degree of inconsistency, is not adequate for situations where pairs
of uncertain information have the same degree of inconsistency. We have preliminarily
investigated how two recently proposed methods in DS theory on inconsistency/conflict
measures can be used to measure the inconsistency among pieces of uncertain informa-
tion in possibility theory. In addition, we have also looked at issues as how the reliability
(or judgement) of a source can be established through assessing the quality of answers
to a set of known situations.

All these studies will have an impact on which merging operator should be selected
for what conflict scenario and how inconsistencies should be resolved if reliabilities of
sources are known. We will investigate all these issues in depth in a future paper.

In [HL05a,HL05b], a coherence interval based method was proposed to quanti-
tatively measure how consistent a pair of uncertain possibilistic information is. This
method clearly offers a very different alternative to the two methods developed in DS
theory. Comparing these three alternatives will be another objective for our future re-
search.
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