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Abstract. Current merging methods for stratified knowledge bases are
often based on the commensurability assumption, i.e. all knowledge bases
share a common scale. However, this assumption is too strong in prac-
tice. In this paper, we propose a family of operators to merge stratified
knowledge bases without commensurability assumption. Our merging op-
erators generalize the quota operators, a family of important merging
operators in classical logic. Both logical properties and computational
complexity issues of the proposed operators are studied.

1 Introduction

The problem of merging multiple sources of information is important in many
applications, such as database merging [14] and group decision making [15].
Priorities, either implicit or explicit, play an important role in belief merging.
In classical logic, a knowledge base is a set of formulas with the same level
of priority. However, an implicit ordering on the set of possible worlds can be
extracted from it [11, 14]. In some cases, we even assume that explicit priorities
are attached to each source which takes the form of a stratified set of beliefs
or goals [8, 20]. That is, each source can be viewed as a stratified or prioritized
knowledge base.

Merging of stratified knowledge bases is often handled in the framework of
possibilistic logic [8] or ordinal conditional function [20]. Usually, the merging
methods are based on the assumption that all agents use the same scale (usually
ordinal scales such as [0,1]) to order their beliefs. However, in practice, the
numerical information is hard to get-we may only have a knowledge base with
a total pre-order relation on its formulas. In addition, different agents may use
different ways to order their beliefs. Even a single agent may have different ways
of modeling her preferences for different aspects of a problem [6]. In that case,
the previous merging methods cannot be applied.

It is widely accepted that belief merging is closely related to social choice
theory [15, 7, 13, 9]. In social choice theory, we have a group of p voters (or
agents). Each voter suggests a preference on a set of alternatives. An important
problem is then to define a voting rule which is a function mapping a set of
p preferences to an alternative or a set of alternatives. Many voting rules have
been proposed, such as the Plurality rule [16] and the voting by quota [2].
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In this paper, we propose a family of quota-based merging operators for strat-
ified knowledge bases under integrity constraints. We assume that each stratified
knowledge base is assigned to an ordering strategy. For each stratified knowledge
base K and its ordering strategy X, we get a complete, transitive and asymmet-
ric preference relation <K,X on subsets of the set of possible worlds. A possible
world is a model of the resulting knowledge base of the quota-based merging
operator if it belongs to the most preferred element of at least k preference rela-
tions. The quota-based merging operators are problematic in some cases. So we
define a refined version of the quota-based merging operators.

This paper is organized as follows. Some preliminaries are given in Section 2.
Section 3 introduces quota merging operators in propositional logic. In Section
4, we consider the preference representation of stratified knowledge bases. A new
ordering strategy is proposed. Our merging operators are defined in Section 5.
Section 6 analyzes the computational complexity of our merging operators. We
then study the logical properties of our merging operators in Section 7. Section
8 discusses related work. Finally, we conclude the paper in Section 9.

2 Preliminaries

Classical logic: In this paper, we consider a propositional language LPS from
a finite set PS of propositional symbols. The classical consequence relation is
denoted as `. An interpretation (or possible world) is a total function from PS

to {0, 1}, denoted by a bit vector whenever a strict total order on PS is specified.
Ω is the set of all possible interpretations. An interpretation w is a model of a
formula φ iff w(φ) = 1. p, q, r,... represent atoms in PS. We denote formulas in
LPS by φ, ψ, γ,... For each formula φ, we use M(φ) to denote its set of models.
A classical knowledge base K is a finite set of propositional formulas (we can also
identify K with the conjunction of its elements). K is consistent iff there exists
an interpretation w such that w(φ) = true for all φ∈K. A knowledge profile
E is a multi-set of knowledge bases, i.e. E = {K1, ...,Kn}, where Ki may be
identical to Kj for i6=j. Let

⋃

(E) = ∪n
i=1Ki. Two knowledge profiles E1 and E2

are equivalent, denoted E1≡E2 iff there exists a bijection f between E1 and E2

such that for each K∈E1, f(K)≡K.
Stratified knowledge base: A stratified knowledge base, sometimes also called
ranked knowledge base [6] or prioritized knowledge base [3], is a set K of (finite)
propositional formulas together with a total preorder ≤ on K (a preorder is
a transitive and reflexive relation, and ≤ is a total preorder if either φ≤ψ or
ψ ≤ φ holds for any φ, ψ∈K)1. Intuitively, if φ ≤ ψ, then φ is considered to
be less important than ψ. K can be equivalently defined as a sequence K =
(S1, ..., Sn), where each Si (i = 1, ..., n) is a non-empty set which contains all
the maximal elements of K \ (∪i−1

j=1
Sj) w.r.t ≤, i.e. Si = {φ∈K \ (∪i−1

j=1
Sj) :

∀ψ∈K \ (∪i−1

j=1
Sj), ψ≤φ}. Each subset Si is called a stratum of K and i the

1 For simplicity, we use K to denote a stratified knowledge base and ignore the total
preorder ≤.
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priority level of each formula of Si. Therefore, the lower the stratum, the higher
the priority level of a formula in it. A stratified knowledge profile (SKP) E

is a multi-set of stratified knowledge bases. Given a stratified knowledge base
K = (S1, ..., Sn), the i-cut of K is defined as K≥i = S1∪...∪Si, for i∈{1, ..., n}.
A subbase A of K is also stratified, that is, A = (A1, ..., An) such that Ai⊆Si,
i = 1, ..., n. Two SKPs E1 and E2 are equivalent, denoted E1≡sE2 iff there exists
a bijection between E1 and E2 such that n = m and for each K = (S1, ..., Sl)∈E1,
f(K) = (S′

1, ..., S
′
l) and Si≡S′

i for all i∈{1, ..., l}.

3 Quota Merging Operator

In this section, we introduce the quota operators defined in [9].

Definition 1. [9] Let k be an integer, E = {K1, ...,Kn} be a multi-set of knowl-
edge bases, and µ be a formula. The k-quota merging operator, denoted ∆k, is
defined in a model-theoretic way as:

M(∆k
µ(E)) =

{

{ω∈M(µ)|∀Ki∈E ω |= Ki} if not empty,

{ω∈M(µ)|]({Ki∈E| ω |= Ki})≥k} otherwise.
(1)

(#L denotes the number of the elements in L.)

The resulting knowledge base of the k-quota merging of E under constraints µ

is simply the conjunction of the bases when
∧

E ∧ µ is consistent. Otherwise,
the models of the resulting knowledge base are the models of µ which satisfy at
least k bases of E.

The choice of an appropriate k is very important to define a good quota
merging operator. An interesting value of k is the maximum value such that the
merged base is consistent. That is, we have the following definition.

Definition 2. [9] Let E = {K1, ...,Kn} be a knowledge profile, and µ be a
formula. Let kmax = max({i≤ ](E)|∆i

µ 6|= ⊥}). ∆kmax is defined in a model-
theoretical way as:

M(∆kmax

µ (E)) =

{

{ω∈M(µ)|∀Ki∈E ω |= Ki} if not empty,

{ω∈M(µ)|]({Ki∈E| ω |= Ki})=kmax} otherwise.
(2)

4 Preference Representation of Stratified Knowledge

Bases

4.1 Ordering strategies

Given a stratified knowledge base K = {S1, ..., Sn}, we can define some total
pre-orders on Ω.

– best out ordering [3]:
Let rBO(ω) = min{i : ω 6|= Si}, for ω∈Ω. Then the best out ordering ¹bo

on Ω is defined as: ω¹boω
′ iff rBO(ω)≥rBO(ω′)
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– maxsat ordering [6]:

Let rMO(ω) = min{i : ω |= Si}, for ω∈Ω. Then the maxsat ordering ¹maxsat

on Ω is defined as: ω¹maxsatω
′ iff rMO(ω)≤rMO(ω′)

– leximin ordering [3]:

Let Ki(ω) = {φ∈Si : ω |= φ}. Then the leximin ordering ¹leximin on Ω is
defined as:

ω¹leximinω′ iff |Ki(ω)| = |Ki(ω′)| for all i, or there is an i such that
|Ki(ω′)|<|Ki(ω)|, and for all j < i: |Kj(ω)| = |Kj(ω′)|, where |Ki| denote
the cardinality of the sets Ki.

Given a preorder ¹ on Ω, as usual, the associated strict partial order is defined
by ω≺ω′ iff ω¹ω′ and not ω′¹ω. An ordering ¹X is more specific than another
¹X′ iff ω≺X′ω′ implies ω≺Xω′. The total preorders on Ω defined above are not
independent of each other.

Proposition 1. [6] Let ω, ω′∈Ω, K a stratified knowledge base. The following
relationships hold: ω≺boω

′ implies ω≺leximinω′;

4.2 A new ordering strategy

We now define a new ordering strategy by considering the “distance” between
an interpretation and a knowledge base.

Definition 3. [9] A pseudo-distance between interpretations is a total function
d from Ω×Ω to N such that for every ω1, ω2∈Ω: (1) d(ω1, ω2) = d(ω2, ω1); and
(2) d(ω1, ω2) = 0 if and only if ω1 = ω2.

A “distance ” between an interpretation ω and a knowledge base S can then be
defined as d(ω, S) = minω′|=Sd(ω, ω′). When S is inconsistent, d(ω, S) = +∞.
That is, all the possible worlds have the same distance with an inconsistent
knowledge base. Two common examples of such distances are the drastic distance
dD and the Dalal distance dH , where dD(ω1, ω2) = 0 when ω1 = ω2 and 1
otherwise, and dH(ω1, ω2) is the Hamming distance between ω1 and ω2.

Definition 4. The distance-based ordering ¹d on Ω is defined as:

ω¹dω
′ iff d(ω, Si) = d(ω′, Si) for all i, or there is an i such that d(ω, Si)<d(ω′,

Si), and for all j < i: d(ω, Sj) = d(ω′, Sj).

It is clear that the distance-based orderings are total preorders on Ω. Suppose
d = dH , the ordering ¹dH

is equivalent to the total preorder ≤K,Lex which is
defined to characterize the minimal change of a revision operator in [17].

Proposition 2. Let ω, ω′∈Ω, and K be a stratified knowledge base. Suppose
d = dD or dH , then we have: (1) ω¹dω

′ implies ω¹boω
′ and ω¹dω

′; (2) ω≺boω
′

implies ω≺dω
′
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5 Quota-based Merging Operators

5.1 Voting by quota

Let A be a finite set of objects and N = {1, 2, ..., n} be a set of n voters (or
agents), where n≥2. Alternatives are subsets of A. We use X, Y and Z to denote
alternatives. The ith voter’s preference relations, denoted by ≺i, ≺

′

i, etc, are
complete, transitive, and asymmetric relations on 2A (the set of subsets of A).
For X,Y ∈2A, X≺iY means X is strictly preferred to Y w.r.t voter i. Let X⊆2A,
we denote by min(X ,≺i) the most preferred alternative in X according to ≺i.
Let P denote the set of all preference relations on A. A voting rule on the domain
D1×...×Dn⊆Pn is a function f : D1×...×Dn→A, where each Di is considered
to represent the set of ith voter’s preference relations.

We now introduce a voting rule, called voting by quota.

Definition 5. [2] A vote rule f : D1 × ...×Dn → 2A is voting by quota if there
exists k between 1 and n such that for all (≺1, ...,≺n), we have x∈f(≺1, ...,≺n)
if and only if #{i|x∈min(2A,≺i)}≥k.

Voting by quota k selects the alternative consisting of objects which are in at
least k most preferred alternatives of 2A according to ≺i.

5.2 Quota-based merging operator

We use ¹X to denote a total preorder on Ω, where X represents an ordering
strategy. For example, if X = bo, then ¹X is the best-out ordering. The idea of
defining our quota-based operators can be explained as follows. First, for each
stratified knowledge base Ki and the ordering strategy Xi, we obtain a complete,
transitive and asymmetric preference relation on 2Ω . We then apply voting by
quota to aggregate the preferences and the obtained set of possible worlds is
taken as the set of models of the resulting knowledge base.

Given a stratified knowledge base K and an ordering strategy X, Ω can be
stratified with regard to the total preorder ¹X on it as ΩK,X = (Ω1, ..., Ωm)
in the same way as stratifying a knowledge base. For two interpretations ω1,
ω2, if ω1∈Ωi and ω2∈Ωj , where i < j, then ω1 is preferred to ω2. A com-
plete, transitive and asymmetric preference relation <K,X on 2Ω can then be
defined as follows. (1) For W,W ′∈2Ω , if W = Ωi and W ′ = Ωj , where i < j,
then W<K,XW ′; if W = Ωi for some i, and there does not exist j such that
W ′=Ωj , then W<K,XW ′; (2) For elements in 2Ω\{Ω1, ..., Ωn}, we order them as
W≤K,XW ′ iff ∀i, #(W∩Ωi)=#(W ′∩Ωi) or ∃i such that #(W∩Ωi)>#(W ′∩Ωi)
and #(W∩Ωj)=#(W ′∩Ωj) for all j < i. It is possible that there exist some
Wi (i = 1, ..., k) such that Wi=K,XWj for any pair i and j, where Wi=K,XWj

means W≤K,XW ′ and W ′≤K,XW . In that case, we arbitrary order them as
W1,W2, ...,Wk such that Wi<K,XWj if i < j. (3) Finally, for all W,W ′∈2Ω , if
W<K,XW ′, then not W ′<K,XW . It is easy to check that <K,X defined above
is a complete, transitive and asymmetric relation on 2Ω .
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Definition 6. Let E = {K1, ...,Kn} be a multi-set of stratified knowledge bases,
where Ki = {Si1, ..., Sim}, µ be a formula, and let k be an integer. Let X =
(X1, ...,Xn) be a set of ordering strategies, where Xi (i = 1, ..., n) are ordering
strategies attached to Ki. Suppose <Ki,Xi

is the complete, transitive and asym-
metric relation on 2Ω obtained by Ki and Xi. The resulting knowledge base of
k-quota merging operator, denoted by ∆k,X

µ (E), is defined in a model-theoretic
way as follows:

M(∆k,X
µ (E)) = {ω∈M(µ)|]({Ki∈E| ω∈Min(2Ω , <Ki,Xi

)})≥k}.

The models of the resulting knowledge base of the k-quota merging of E under
constraints µ are the models of µ which most preferred according to at least k

preference relations.

Example 1. Let E = {K1,K2,K3} be a SKP consisting of three stratified knowl-
edge bases, where

- K1 = {S11, S12, S13}, where S11 = {p1∨p2, p3}, S12 = {¬p1,¬p2, p2∨¬p3, p4},
S13 = {¬p3 ∨ ¬p4}

- K2 = {S21, S22}, where S21 = {p1, p2∨p3} and S22 = {¬p2, p4}
- K3 = {S31, S32}, where S31 = {p1, p3} and S32 = {p2}.

The integrity constraint is µ = {¬p1 ∨ p2}. The set of models of µ is M(µ) =
{ω1 = 0111, ω2 = 0101, ω3 = 0110, ω4 = 0100, ω5 = 0011, ω6 = 0001, ω7 =
0010, ω8 = 0000, ω9 = 1111, ω10 = 1101, ω11 = 1110, ω12 = 1100}. We denote
each model by a bit vector consisting of truth values of (p1, p2, p3, p4). For exam-
ple, ω1 = 0111 means that the truth value of p1 is 0 and the truth values of other
atoms are all 1. Let X = {X1,X2,X3}, where X1 = X2 = bo and X3 = dH .
That is, the best out ordering strategy is chosen for both K1 and K2, whilst the
Dalal distance-based ordering is chosen for K3. The computations are given in
Table 1 below.

ω K1 K2 K3

0111 1 3 3

0101 2 3 5

0110 1 3 3

0100 2 3 5

0011 2 3 4

0001 2 3 6

0010 2 3 4

0000 2 3 6

1111 1 2 1

1101 2 2 3

1110 1 2 1

1100 2 2 3

Table 1
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In Table 1, the column corresponding to Ki gives the priority levels of strata
of ΩKi,Xi

where ωi belongs to. Let us explain how to obtain the column cor-
responding to K2 (other columns can be obtained similarly). Let ω13 = 1011,
ω14 = 1001, ω15 = 1010 and ω16 = 1000. Since rBO(ωi) = 1 for all 1≤i≤8,
rBO(ωi) = 2 for 9≤i≤12 and 14≤i≤16, rBO(ω13) = +∞, we have ΩK2,bo =
({ω13}, {ω9, ..., ω12, ω14, ..., ω16}, {ω1, ..., ω8}). So lK2,bo(ωi) = 3 for 1≤i≤8 and
lK2,bo(ωi) = 2 for 9≤i≤12. Let k=1. Since ω1, ω3, ω9 and ω11 are the only models
of µ which belong to the level 1 of the strata of at least one of ΩKi,Xi

, we have
M(∆1

µ(E)) = {0111, 0110, 1111, 1110}. Let k = 3. Since none of models of µ is
in the first level of strata of all ΩKi,Xi

(i = 1, 2, 3), we have M(∆3
µ(E)) = ∅.

By Example 1, the resulting knowledge base of the k-quota based merging op-
erator may be inconsistent.

Clearly, we have the following proposition.

Proposition 3. Let k be an integer, E = {K1, ...,Kn} be a multi-set of knowl-
edge bases, and µ be a formula. Let X = (X1, ...,Xn) be a set of ordering strate-
gies, where Xi (i = 1, ..., n) are ordering strategies attached to Ki. We have
∆k+1,X

µ (E) |= ∆k,X
µ (E) or equivalently, M(∆k+1,X

µ (E))⊆M(∆k,X
µ (E)). The con-

verse does not generally hold.

According to Proposition 3, the quota-based operators lead to a sequence of
merged bases that is monotonic w.r.t. logical entailment. That is, the number of
models of the merged bases may decrease when k increases. So the set of models
of the merged bases may be empty for some k. We have the following definition
which generalizes the kmax-quota operator.

Definition 7. Let E = {K1, ...,Kn} be a SKP, and µ be a formula. Let kmax =
max({i≤ ](E)|∆i,X

µ 6|= ⊥}). ∆kmax,X is defined in a model-theoretical way as:

M(∆kmax,X
µ (E)) = {ω∈M(µ)|]({Ki∈E| ω∈Min(2Ω , <Ki,Xi

)})=kmax}.

Example 2. (continue Example 1) kmax = 2. So the result of merging by the
∆kmax,X operator is M(∆kmax,X

µ (E)) = {1111, 1110}. That is, ∆kmax,X
µ (E) =

p1∧p2∧p3.

The following proposition states the relationship between different ∆k,X op-
erators when considering different ordering strategies.

Proposition 4. Let E = {K1, ...,Kn} be a SKP, µ be the integrity constraint,
and let k be an integer. Let X1 = {X1, ...,Xn} and X2 = {X ′

1, ...,X
′
n} be two

vectors of ordering strategies, where both Xi and X ′
i are ordering strategies for

Ki. Suppose ¹Xi
is more specific than ¹X′

i
, for all i, where Xi∈X1 and X ′

i ∈ X2,

then ∆k,X2

µ (E) |= ∆k,X1

µ (E).

Proposition 4 shows that the operator with regard to the set of more specific
ordering strategies can result in a knowledge base which has stronger inferential
power.



8 Guilin Qi, Weiru Liu, David A. Bell

5.3 Refined quota-based merging operator

The quota-based operators is problematic when merging knowledge bases which
are jointly consistent with the formula representing the integrity constraints, i.e.
K1∪...∪Kn ∪ φ is consistent.

Example 3. Let E = {K1,K2,K3} be a SKP consisting of three stratified knowl-
edge bases, where

- K1 = {S11, S12}, where S11 = {p1∨p2, p3}, S12 = {¬p1, p4}

- K2 = {S21, S22}, where S21 = {p2∨p3} and S22 = {p4}

- K3 = {S31, S32}, where S31 = {p3} and S32 = {p2}.

The integrity constraint is µ = {¬p1 ∨ p2}. The set of models of µ is M(µ) =
{ω1 = 0111, ω2 = 0101, ω3 = 0110, ω4 = 0100, ω5 = 0011, ω6 = 0001, ω7 =
0010, ω8 = 0000, ω9 = 1111, ω10 = 1101, ω11 = 1110, ω12 = 1100}. It is clear
that

∧

Si∈K1∪K2∪K3
Si ∧ µ is consistent (the knowledge base Si is viewed as a

formula), i.e. ω1 is its only model. Let X = {X1,X2,X3}, where X1 = X2 = bo

and X3 = dH . Let k = 2. We then have M(∆2,X
µ (E)) = {ω1, ω9}. So ∆2,X

µ (E) 6≡
∧

Si∈K1∪K2∪K3
Si ∧ µ.

In Example 3, the original stratified knowledge bases are jointly consistent with
µ. So intuitively, a possible world is a model of resulting knowledge base of
merging if it is a model of every Ki (i = 1, 2, 3) and µ. However, ω9, which is
a model of ∆2,X

µ (E), is not a model of K1 because it falsifies ¬p. This problem
will be further discussed in Section 7.

We have the following refined definition of quota-based merging operators.

Definition 8. Let E = {K1, ...,Kn} be a SKP, µ be a formula, and let k

be an integer. Let X = (X1, ...,Xn) be a set of ordering strategies, where Xi

(i = 1, ..., n) are ordering strategies attached to Ki. Suppose <Ki,Xi
is the com-

plete, transitive and asymmetric relation on 2Ω obtained by Ki and Xi. The re-
sulting knowledge base of refined k-quota merging operator, denoted by ∆k,X

r,µ (E),
is defined in a model-theoretic way as follows:

M(∆k,X
r,µ (E)) =

{

{ω∈M(µ)|∀Ki∈E ω |= Ki} if not empty,

{ω∈M(µ)|]({Ki∈E| ω∈Min(2Ω , <Ki,Xi
)})≥k} otherwise

Clearly, we have the following proposition.

Proposition 5. Let E = {K1, ...,Kn} be a multi-set of stratified knowledge
bases, µ be a formula, and let k be an integer. Let X = (X1, ...,Xn) be a set
of ordering strategies, where Xi (i = 1, ..., n) are ordering strategies attached to
Ki. We have ∆k,X

r,µ (E) ` ∆k,X
µ (E).
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5.4 Flat case

In this section, we apply our merging operators to the classical knowledge bases.
Since our merging operators are based on the ordering strategies, we need to
consider the ordering strategies for classical knowledge bases.

Proposition 6. Let K be a classical knowledge base. Suppose X is an ordering
strategy, then

1. for X = bo and X = maxsat, we have ω¹Xω′ iff ω |= K
2. for X = leximin, let K(ω) = {φ∈K : ω |= φ}, we have ω¹Xω′ iff |K(ω)|≥

|K(ω′)|
3. for X = d, we have ω¹Xω′ iff d(ω,K)≤d(ω,K ′).

By Proposition 6, the best out ordering and the maxsat ordering are reduced to
the same ordering when knowledge base is flat. Furthermore, the leximin ordering
can be used to order possible worlds when the knowledge base is inconsistent.

We have the following propositions.

Proposition 7. Let E = {K1, ...,Kn} be a multi-set of knowledge bases, µ be a
formula, and k be an integer. Suppose Xi = bo or maxsat for all i. Then

∆k,X
r,µ (E) ≡ ∆k

µ(E).

Proposition 7 tells us that, in the flat case, the result of our refined quota-
based merging operators is equivalent to that of the quota merging operators
when the ordering strategies are the best out ordering or the maxsat ordering.
By Proposition 1, 2, 4 and 7, we have the following result.

Proposition 8. Let E = {K1, ...,Kn} be a multi-set of knowledge bases, µ be a
formula, and k be an integer. Suppose Xi = leximin or d, then

∆k,X
r,µ (E) ` ∆k

µ(E),

but not vice verse.

Let us look at an example.

Example 4. Let E = {K1,K2}, where K1 = {p1∨p2, p3,¬p3} and K2 = {p1, p2, p3},
µ = {(p1 ∨ p3) ∧ p2} and k = 2. So Mod(µ) = {ω1 = 110, ω2 = 111, ω3 = 011}.
Let X = (X1,X2), where X1 = leximin and X2 = bo are ordering strategies of
K1 and K2 respectively. The computations are given in Table 3 below.

ω K1 K2

110 1 2
111 1 1
011 1 2

Table 3
According to Table 3, ω2 = 111 is the only model which belong to the level

1 of the strata of both ΩK1,X1
and ΩK2,X2

. So M(∆2,X
µ (E)) = {111}. However,

if we apply the quota merging operator, since K1 and K2 are inconsistent, it is
clear that M(∆k

µ(E)) = ∅.
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6 Computational Complexity

We now discuss the complexity issue. First we need to consider the computa-
tional complexity of stratifying Ω from a stratified knowledge base. In [15], two
important problems for logical preference representation languages were consid-
ered. We express them as follows.

Definition 9. Given a stratified knowledge base K and two interpretations ω

and ω′, the COMPARISON problem consists of determining whether ω¹Xω′,
where X denotes an ordering strategy. The NON-DOMINANCE problem consists
of determining whether ω is non-dominated for ¹X , that is, there is not ω′ such
that ω′≺Xω.

It was shown in [15] that the NON-DOMINANCE problem is usually a
hard problem, i.e coNP-complete. We have the following proposition on NON-
DOMINANCE problem for ordering strategies in Section 3.

Proposition 9. Let K be a stratified knowledge base. For X = bo, maxsat, or
lexmin:

(1) COMPARISON is in P, where P denotes the class of problems decidable in
deterministic polynomial time.

(2) NON-DOMINANCE is coNP-complete.

To stratify Ω, we need to consider the problem determining all non-dominated
interpretations, which is computational much harder than the NON-DOMINANCE
problem. To simplify the computation of our merging operators, we assume that
Ω is stratified from each stratified knowledge base during an off-line preprocess-
ing stage.

Let ∆ be a merging operator. The following decision problem is denoted as
MERGE(∆):

– Input : a 4-tuple 〈E,µ, ψ,X〉 where E = {K1, ...,Kn} is a SKP, µ is a
formula, and ψ is a formula; X = (X1, ...,Xn), where Xi is the ordering
strategy attached to Ki.

– Question : Does ∆µ(E) |= ψ hold?

Proposition 10. MERGE(∆k,X) is CoNP-complete and MERGE(∆k,X
r ) is BH

(2)-complete.

The proof of Proposition 10 is similar to that of Proposition 4 in [9]. Proposi-
tion 10 shows that the complexities of both ∆k,X operators and ∆k,X

r operators
are located at a low level of the boolean hierarchy. Furthermore, the computa-
tion of ∆k,X operators is easier than that of ∆k,X

r operators (under the usual
assumptions of complexity theory).
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7 Logical Properties

Many logical properties have been proposed to characterize a belief merging
operator. We introduce the set of postulates proposed in [11], which is used to
characterize Integrity Constraints (IC) merging operators.

Definition 10. Let E, E1, E2 be knowledge profiles, K1, K2 be consistent knowl-
edge bases, and µ, µ1, µ2 be formulas from LPS. ∆ is an IC merging operator
iff it satisfies the following postulates:
(IC0) ∆µ(E) |= µ

(IC1) If µ is consistent, then ∆µ(E) is consistent
(IC2) If

∧

E is consistent with µ, then ∆µ(E)≡
∧

E∧µ, where
∧

(E) = ∧Ki∈EKi

(IC3) If E1≡E2 and µ1≡µ2, then ∆µ1
(E1)≡∆µ2

(E2)
(IC4) If K1 |= µ and K2 |= µ, then ∆µ({K1,K2}) ∧K1 is consistent iff
∆µ({K1,K2})∧K2 is consistent
(IC5) ∆µ(E1) ∧ ∆µ(E2) |= ∆µ(E1tE2)
(IC6) If ∆µ(E1)∧∆µ(E2) is consistent, then ∆µ(E1tE2) |= ∆µ(E1)∧∆µ(E2)
(IC7) ∆µ1

(E) ∧ µ2 |= ∆µ1∧µ2
(E)

(IC8) If ∆µ1
(E) ∧ µ2 is consistent, then ∆µ1∧µ2

(E) |= ∆µ1
(E) ∧ µ2

The postulates are used to characterize an IC merging operator in classical logic.
Detailed explanation of the above postulates can be found in [11].

Some postulates in Definition 10 need to be modified if we consider merging
postulates for stratified knowledge bases, i.e., (IC2), (IC3) should be modified
as:
(IC2

′

) Let
∧

E = ∧Ki∈E ∧φij∈Ki
φij . If

∧

E is consistent with µ, then ∆µ(E)≡
∧

E∧µ

(IC3
′

) If E1≡sE2 and µ1≡µ2, then ∆µ1
(E1)≡∆µ2

(E2)

(IC3
′

) is stronger than (IC3) because the condition of equivalence between
two knowledge profiles is generalized to the condition of equivalence between two
SKPs. We do not generalize (IC4), the fairness postulate, which is hard to be
adapted in the prioritized case because a stratified knowledge base may be in-
consistent and there is no unique consequence relation for a stratified knowledge
base [3].

Proposition 11. ∆k,X satisfies (IC0), (IC5), (IC7), (IC8). The other postu-
lates are not satisfied in the general case. ∆k,X

r satisfies (IC0), (IC2), (IC5),
(IC7), (IC8). The other postulates are not satisfied in the general case.

(IC1) is not satisfied by both ∆k,X and ∆k,X because the result of merging
may be inconsistent. ∆k,X and ∆k,X

r do not satisfy (IC3′) because some ordering
strategies may be syntax sensitive. A difference between ∆k,X and ∆k,X

r is that
∆k,X does not satisfy the postulate (IC2′), whilst ∆k,X

r satisfies this postulate.
The following proposition shows that when the ordering strategies are either
best out ordering or maxsat ordering, then both operators satisfy (IC3′).

Proposition 12. Suppose Xi = bo, maxsat, then ∆k,X satisfies (IC0), (IC2),
(IC3′), (IC5), (IC7), (IC8). The other postulates are not satisfied in the general
case.
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8 Related Work

Merging of stratified knowledge bases is often handled in the framework of pos-
sibilistic logic [8] or ordinal conditional function [20]. In possibilistic logic, the
merging problems are often solved by aggregating possibility distributions, which
are mappings from Ω to a common scale such as [0,1], using some combination
modes. Then the syntactic counterpart of these combination modes can be de-
fined accordingly [4, 5]. In [7], the merging is conducted by merging epistemic
states which are (total) functions from the set of interpretations to N, the set
of natural numbers. We now discuss two main differences between our merging
operators and previous merging operators for stratified knowledge bases.

First, our operators are semantically defined in a model-theoretic way and
others are semantically defined by distribution functions such as possibility dis-
tributions in possibilistic logic framework. In the flat case, our merging operators
belong to model-based merging operators in classical logic, so it is independent
of syntactical form of the knowledge bases. In contrast, other merging operators
are usually syntax-based ones in the flat case.

Second, most of previous merging operators are based on the commensura-
bility assumption, that is, all agents use a common scale to rank their beliefs. In
[4], a merging approach for stratified knowledge base is proposed which drops the
commensurability assumption. However, their approach is based on the assump-
tion that there is an ordering relation between two stratified knowledge bases K1

and K2, i.e. K1 has priority over K2. In contrast, our merging operators do not
require any of above assumptions and are flexible enough to merge knowledge
bases which are stratified by a total pre-ordering on their elements.

In [18], we proposed a family of lexicographic merging operators for strat-
ified knowledge bases. Our quota-based merging operators only use the most
preferred possible worlds w.r.t each ordering strategy. That is, suppose ΩK,X =
(Ω1, ..., Ωm), then only Ω1 is used to define the quota-based operators. Whilst
the lexicographic merging operators utilize the rest of the structure of ΩK,X .
Therefore, the lexicographic merging operators are refinement of the quota-based
operators. However, this refinement is paid by higher computational complexity.

9 Conclusions

In this paper, we have proposed a family of quota-based operators to merge
stratified knowledge bases under integrity constraints. Our operators generalize
the quota merging operators for classical knowledge bases. The computational
complexity of our merging operators has been analyzed. Under an additional
assumption, the complexities of both ∆k,X operators and ∆k,X

r operators are
located at a low level of the boolean hierarchy. Furthermore, the computation of
∆k,X operators is easier than that of ∆k,X

r operators (under the usual assump-
tions of complexity theory). Finally, we have generalized the set of postulates
defined in [11] and shown that our operators satisfy most of the generalized
postulates.
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