LCS: A Linguistic Combination System for
Ontology Matching

Qiu Ji, Weiru Liu, Guilin Qi, David A. Bell

School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast
Belfast, BT7 INN, UK
{Q.Ji,W.Liu,G.Qi,DA.Bell}@qub.ac.uk

Abstract. Ontology matching is an essential operation in many appli-
cation domains, such as the Semantic Web, ontology merging or inte-
gration. So far, quite a few ontology matching approaches or matchers
have been proposed. It has been observed that combining the results of
multiple matchers is a promising technique to get better results than
just using one matcher at a time. Many aggregation operators, such as
Maz, Min, Average and Weighted, have been developed. The limitations
of these operators are studied. To overcome the limitations and provide
a semantic interpretation for each aggregation operator, in this paper,
we propose a linguistic combination system (LCS), where a linguistic
aggregation operator (LAO), based on the ordered weighted averaging
(OWA) operator, is used for the aggregation. A weight here is not asso-
ciated with a specific matcher but a particular ordered position. A large
number of LAOs can be developed for different uses, and the existing
aggregation operators Max, Min and Average are the special cases in
LAOs. For each LAO, there is a corresponding semantic interpretation.
The experiments show the strength of our system.

1 Introduction

The Semantic Web [1] has gained a lot progress in recent years. In this field,
ontology is a key technique for the interoperability of heterogeneous systems.
Currently, a large amount of ontologies have been developed in various research
domains or even in the same domain. But for different ontologies, the same entity
may be named differently, or defined in different ways. Even the same name may
represent different entities. Ontology matching, which takes two different ontolo-
gies as input and outputs the correspondences between semantically equivalent
entities (e.g., classes, properties, instances), becomes a critical solution to deal
with these problems. It has been applied in many application domains, such as
the Semantic Web, ontology merging or integration.

Now, quite a few ontology matching approaches or matchers [2-7] have been
proposed. Good surveys of the matchers are provided in [8,9]. These matchers
exploit various kinds of information in ontologies, such as entity names, entity

2 Qiu Ji, Weiru Liu, Guilin Qi, David A. Bell

descriptions, name paths, taxonomic structures. It has been accepted that com-
bining the results of multiple matchers is a promising technique to get better
results than just using one matcher at a time [2—4, 10].

Some matcher combination systems, such as LSD [3], COMA [2], CMC [10]
have been developed. In general, the combination methods or aggregation opera-
tors in these systems include Maz, Min, Average and Weighted (such as Weighted
Awverage). It is clear that Maz and Min [2] are too extreme to perform well.
While Average [2] is inefficient to cope with the ontologies with very different
structures. A Weighted based method [3,2, 10] needs to compute the weights of
different matchers. One way to get the weights is to assign them manually, and
the other is by machine learning technique. Obviously, it is difficult for a person
to estimate the weights by experience and rich data sets are needed to train the
algorithm to obtain reliable weights for machine learning methods.

To overcome these limitations, in this paper, we propose a linguistic com-
bination system (LCS), which combines the results of multiple matchers based
on the ordered weighted average (OWA) operator and linguistic quantifiers [11].
The OWA operator generally includes three steps [12]:

— Reorder the input arguments in descending order.
— Determine the weights associated with the OWA operator.
— Utilize the OWA weights to aggregate these reordered arguments.

A weight here is associated with a particular ordered position not a specific
matcher. In the OWA operator, determining weights is a key step. We adopt the
way to obtain weights by a linguistic quantifier [11, 13]. So we call our system the
linguistic combination system (LCS). A linguistic aggregation operator (LAO)
will be used for the aggregation in LCS. LAO is an OWA operator where the
associated weights are obtained by the linguistic quantifiers [11]. Specifically, it
is composed of the following four steps:

Reorder the similarity values to be combined in descending order. These
values are obtained by the base matchers on the current task.

Choose or define a linguistic quantifier.

Obtain the OWA weights by the linguistic quantifier.

Apply the OWA weights to aggregate these similarity values.

It is interesting that existing aggregation operators like Max, Min and Average
are special cases of LAOs. Besides, there is a semantic interpretation for each
LAO to facilitate users to choose an appropriate LAO. So LAO provides a good
way to supply a gap for existing aggregation operators without considering the
weights to matchers.

This paper is organized as follows. Some related work is introduced in the
next section. In Section 3, we give more details on the background knowledge on
ontology matching and the OWA operator. The linguistic aggregation operators
(LAOs) are described in Section 4. Section 5 defines the matching process which
uses LAO to aggregate the results of multiple matchers. Experiment results are
analyzed in Section 6. Finally, we conclude the paper and give some future work
in Section 7.

LCS: A Linguistic Combination System for Ontology Matching 3

2 Related Work

Ontology matchers have been developed by many researchers for all kinds of
information provided in ontologies. Due to the space limitation for the paper, we
only introduce some of them here. NOM [4] proposed seventeen rules by experts,
which can be seen as seventeen matchers. These rules contain different aspects
of an ontology, such as super concepts, sub concepts, super properties and sub
properties. Cupid [5] integrates linguistic and structural matching. Importantly,
it makes use of a wide range of techniques to discover mappings between schema
elements. The techniques based on element names, data types, constraints and
schema structures are included. In Lite [7], a universal measure for ontology
matching is proposed. It separates the entities in an ontology into eight categories
like classes, objects, datatypes. For an entity in a category, all the features about
its definition are involved. In these papers, most of the matchers can be selected
as base matchers to be combined in a combination system [10].

In existing matcher combination systems, some typical systems are mentioned
as follows. LSD [3] is a data-integration system which semi-automatically finds
semantic mappings by employing and extending machine-learning techniques. It
aggregates multiple similarities obtained by the individual matchers by means
of weighted average, where the similarities and weights are acquired by machine
learning. COMA [2] exploits Max, Min, Average and Weighted strategies for
combination. The Weighted strategy needs a relative weight for each matcher
to show its relative importance. For each category in Lite [7], a set of all rela-
tionships in which the category participates is defined. And the relative weights
are assigned to each relationship. Only the entities in the same category can
be matched. CMC [10] combines multiple schema-matching strategies based on
credibility prediction. It needs to predict the accuracy of each matcher on the
current matching task first by a manual rule or a machine learning method.
Accordingly, different credit for the pair is assigned. Therefore from each base
matcher, two matrices including the similarity matrix and the credibility ma-
trix are provided. It aggregates all the similarity matrices into a single one by
weighted average, where the weights are determined by the credibility matrices.
In NOM [4], it is mentioned that not all matchers have to be used for each ag-
gregation, especially as some matchers have a high correlation. Both manual and
automatic approaches to learn how to combine the methods are provided. The
weights they use are determined manually or by a machine learning method.

To sum up, when it is not necessary or difficult to get weights for matchers,
the aggregation operator which we can choose for aggregation includes Maz, Min
and Average. However, since each base matcher performs differently in different
conditions, these operators may be not enough to show the various performance
for complex situations [14].

In this paper, we propose a linguistic combination system (LCS), which in-
cludes rich linguistic aggregation operators (LAOs). And according to the se-
mantic interpretation of LAOs we provide, it is much more convenient for users
to choose an appropriate LAO.

4 Qiu Ji, Weiru Liu, Guilin Qi, David A. Bell
3 Background

3.1 Ontology matching

Typically, an ontology is to define a vocabulary in a domain of interest, and a
specification of the meaning of entities used in the vocabulary. In this paper,
the entities in an ontology are separated into three categories: classes, properties
and instances. We only match the entities in the same category and represent
ontologies in OWL! or RDF(S)2.

The similarity for ontologies is defined as a similarity function: sim(ei;, e2;) €
[0,1], where ey, ea; are two entities in the same category from a source ontology
ontol and a target ontology onto2 separately. Especially, sim(eq;,ez;) = 0 indi-
cates e1; and ey; are different, and sim(e1;, e2;) = 1 shows they are the same.
If the similarity sim(eq;,ez;) exceeds a threshold thyina € [0,1], we call ey;
the matching candidate of ey;. Furthermore, if there is more than one matching
candidate in onto2 for ey;, the one with the highest similarity is selected as its
matched entity.

3.2 The ordered weighted averaging (OWA) operator

The ordered weighted averaging (OWA) operator is introduced by [11] to ag-
gregate information. It has been used in a wide range of application areas, such
as neural networks, fuzzy logic controllers, vision systems, expert systems and
multi-criteria decision aids [15].

Given a set of arguments Vi = (a1, az,...,a,),a; € [0,1,1 < i < n, re-
order the elements of the set in descending order and mark the ordered set as
Vo = (b1, b2, ...,by,), where b; is the jth highest value in V3. An OWA operator
is a mapping F from I™ to I, I = [0, 1]:

F(ala az, ..., an) = Z?:l wzbv

= ’LU1b1 + U)ng + ...+ wnbn,
where each weight w; € [0,1] and > ; w; = 1.

Note that the weight w; is not associated with a particular argument a;, but
with a particular ordered position ¢ of the arguments. That is w; is the weight
associated with the ith largest argument whichever component it is [11].

4 The linguistic aggregation operator (LAO)

From the previous section, it is obvious that a critical technique in the OWA
operator is to determine the OWA weights w;, 1 < ¢ < n. So far, quite a few ap-
proaches have been proposed, for example, O’Hagan [16] introduced a procedure
to generate the OWA weights by a predefined degree of orness and maximizing
the entropy of the OWA weights. An interesting way to obtain the weights is
developed by Yager using linguistic quantifiers [11,13].

! http:/ /www.w3.org/TR/2004/REC-owl-guide-20040210/
2 http://www.w3.org/TR/rdf-schema/

LCS: A Linguistic Combination System for Ontology Matching 5

We adopt the linguistic quantifiers to determine the OWA weights. We use
such kind of OWA operators as linguistic aggregation operators (LAOs). The
following gives more details on how to aggregate the results of multiple matchers
for an entity pair to be compared by LAO.

Assume there is n matchers of concern, {my,ma,...,my}, in an ontology
matching problem. Let (x,y) be an entity pair, where z is an entity from a
source ontology ontol, y from a target ontology onto2. For each matcher m;,
m;(x,y) € [0, 1] indicates the similarity of = and y, i.e., the degree to which this
matcher is satisfied by (z,y). The final similarity between z and y, sim(z,y),
can be computed by the results of the n matchers. That is,

Sim('% y) = F(ml(m> y)’ mg(l‘, y)7) mn(‘r7 y))

=iy wibi

= w1b1 + w2b2 =+ ...+ wnbn,
where F' is the same function as that in the previous section, b; is the ith largest
value in {mq(z,y), ma(x,y), ..., mp(z,y)}. According to the linguistic approach
[11,13], the weight w; is defined by

wz:Q(i)_Q(%% 1=1,2,.. (1)

where @ is a nondecreasing proportional fuzzy linguistic quantifier and is defined
as the following;:

7”’

0, if r <ay
Q(r)=< (r—a)/(b—a),ifa <7 <b, a,b,r €[0,1]; (2)
1, if r > b,

where a and b are the predefined thresholds to determine a proportional or rel-
ative quantifier. Q(r) indicates the degree to which r portion of objects satisfies
the concept denoted by Q [17].

There are many proportional fuzzy quantifiers, such as For all, There ezists,
Identity, Most, At least half (Alh), As many as possible(Amap). Table 1 gives
more details on some examples of LAOs.

Quantifier Qr) w; LAO
There exists Q(r)=0,ifr = w; =1,ifi=1 Max
Q(r)=1,ifr>0 w; =0,ifi #1
For all Q(r)y=0,ifr <1 w; =0,ift<n Min
Qiry=1,ifr=1 w; =1,ifi=n
Identity Qry=r,if0<r<1 w; = %, i=1,2,...,n|Average
Q(r)=0,if0<r<0.3 w; =Q(L) — Q=1
Most Qir)=1,i08<r<1 i=1,2,..,n Most
Q(r) =2(r—0.3),if 03 <7 <0.8
Alh [Q(r)=2r,if0<r <05 w; =Q(L)—Q(=L)| Alh
Q(r)=0,if05<r<1 i=1,2,...n
Amap Q(r)=0,if0<r<0.5 w; =Q(%) —Q % Amap
Q(r)=2(r—0.5),if05<r<1 1=1,2,..,n

Table 1. Definitions of some LAOs

6 Qiu Ji, Weiru Liu, Guilin Qi, David A. Bell

From this table, it is clear that the existing aggregation operators Maz, Min
and Average are special cases of LAOs. The following simple example illustrates
the use of some LAOs.

Ezample: Assume the similarity values to be combined are V; = (0.6,1,0.3,0.5),
where each value is obtained by a base matcher on the current matching task.
After re-ordering V7 in descending order, we get V2=(1,0.6,0.5,0.3).

a) For Most, if we let a be 0.3 and b be 0.8 (see Table 1) for Equation (2),
we obtain Q(r) = 2(r —0.3),if 0.3 <r <0.8; Q(r) =0, if 0 <r < 0.3; Q(r)=1,
if 0.8 < r < 1. So, the weights for the four positions in V5 are computed as
followings by Equation (1):

wy = Q(%) —Q(0)=0
wy = Q(g) - Q(%) = 2(% —03)-0=04
ws = Q(7) = Q(§) =2(1 - 0.3) —2(§ - 0.3) =05
wy=Q(1) —Q(7) =1-2(] —0.3)=0.1
Hence,
F(0.6,1,0.3,0.5) = 20, wib;
= (0)(1) + (0.4)(0.6) + (0.5)(0.5) + (0.1)(0.3)

b) For Alh, we obtain wy = 0.5, wes = 0.5, wy = 0, wy = 0, by setting
a =0, b=0.5, n =4 for Equation (1) and (2). Here,
F(0.6,1,0.3,0.5) = Y1, w;b;
= (0.5)(1) + (0.5)(0.6) + (0)(0.5) + (0)(0.3)
=0.8

5 An Overview of LCS

In this section, we first give an overview of ontology matching process in LCS.
We then give more details on the matchers we will use for our evaluation and
the semantic interpretation for LAOs.

5.1 Ontology matching process

Based on COMA [2], the matching process in LCS is illustrated in Figure 1,
where LAO is used for the aggregation.

Ontology flzr;l!a rity
Input Similarity

Ontolo, matrix .

ontol | Matchers Aggregation g_lapplﬂg Mappings
— —> iscovsly [(e11, e23): 0.8

Ontology (e13,e22):0.7

E

Figure 1. Matching process in LCS

The entities in an ontology are classes, properties or instances. For differ-
ent entity category, different matchers may be used according to the features

LCS: A Linguistic Combination System for Ontology Matching 7

of each category. For example, only a property has domain and range, so that
the matcher of Domain and Range could only be used for the properties cate-
gory. Similar to the matcher of Mother Concept, it is only suitable for instances
category.

According to COMA [2] and the survey of approaches to automatic schema
matching [8], matchers can be divided into three categories: individual matchers,
hybrid matchers and composite matchers. We assume in this paper that indi-
vidual matchers do not rely on any initial similarity matrix provided by other
matchers. In contrast, a hybrid matcher needs such a matrix and directly com-
bines several matchers, which can be executed simultaneously or in a fixed order.
A composite matcher combines its independently executed constituent matchers,
including individual matchers and hybrid matchers.

A main step of LCS is to combine the results of multiple base matchers. A
base matcher is the matcher to be combined, which can be individual matcher,
hybrid matcher or composite matcher. After executing each matcher, a similarity
matrix is obtained. Multiple similarity matrixes form a similarity cube, which
can be combined by an aggregation operator to obtain a final similarity matrix.
We use LAO to combine the results of multiple base matchers. Some linguistic
quantifiers for LAOs have been described in Table 1, such as At least half, Most.
Others can be defined by users by adjusting the two parameters in Equation (2).

The final step of matching process is to select match candidates from the
final similarity matrix. We only focus on finding the best matching candidate
or matched entity from the target ontology onto2 for each entity in the source
ontology ontol if possible, which is the task of mapping discovery.

5.2 Ontology matchers

In LCS, we choose some existing ontology matchers to evaluate our system. The
details of these matchers are described as followings.

— Name: When comparing entity names, some preparation skills are adopted.
For example, separate the name string into some tokens by the capital letters
and some symbols such as ‘#’, ‘') *.’. Then delete some words like “the”,
“has”, “an” from the token sets.

— Name Path: It considers the names of the path from the root to the ele-
ments being matched in the hierarchical graphs, which regards the classes
or instances as nodes and relations as edges.

— Taxonomy: This matcher is a composite one. For classes, it consists of super
concept(Sup), sub concept(Sub), sibling concept(Sib), and properties(Prop),
which are the properties directly associated with the class to be matched. For
properties, only super properties(Sup) and sub properties(Sub) are included
here.

— Domain and Range: If the domain and range of two properties are equal,
the properties are also similar.

— Mother-concept: Obviously, this matcher considers the type of an instance.

8 Qiu Ji, Weiru Liu, Guilin Qi, David A. Bell

Among these matchers, Name is an individual matcher to provide the initial
similarity matrix for other matchers. A good example for the composite matcher
is Tazonomy. For Name Path, Sup, Sub, etc., they are hybrid matchers which
rely on the initial matrix obtained by Name.

5.3 The semantic interpretation of LAOs

In Section 4, the definitions of some LAOs were given. We now give the seman-
tic interpretation for them according to Yager’s interpretation of the linguistic
quantifiers [11,13]. The interpretation makes it convenient for users to choose
an appropriate LAO for the aggregation.

Based on the definition of LAQ, the explanation for some LAOs is given as
followings. For an entity pair (x,y),

— Max: Max(z,y) = Max{mi(x,y), ma(z,y),....,mn(z,y)}. Maz means that
(z,y) satisfies at least one of the matchers, i.e., satisfies m; or my ... or my,.

— Min: Min(z,y) = Min{mi(z,y), ma(z,y),...,mu(x,y)}. Min means that
(z,y) satisfies all the matchers, that is to say, we are essentially requiring to
satisfy m; and mso ... and m,,.

— Avg: Avg (Average) means identity. It regards all similarity values equally.

— Most: Obviously, Most means that most of the matchers is satisfied. Usually,
this operator ignores some higher and lower similarity values, that is to give
small weights on them, while paying more attention to the values in the
middle of the input arguments after re-ordering.

— Alh: Alh (At least half) satisfies at least half matchers. Actually, it only con-
siders the first half of similarity values after re-ordering them in descending
order.

— Amap: Amap (As many as possible) satisfies as many as possible matchers
and is opposite to Alh. The second half of values after reordering is consid-
ered. So after an aggregation operation, the result obtained by Alh is always
higher than that by Amap.

6 Experiments

The base matchers we will use in LCS for experiments include Name(N for
short), Tazonomy(T for short), Name Path(P for short), Domain and Range(D
for short), Mother concept(M for short). Moreover, for two entities from two
different ontologies, if they are in the classes category, N, T and P are used to
compare the two entities. If they are in the properties category, N, T and D are
used. If they are in the same instances category, we use N, P and M.

The experiments are made on some ontologies provided in the context of the
I3CON conference®. We give more details on these ontology pairs as followings.
The labels with bold font are used to represent each ontology pair.

3 http://www.atl.external.lmco.com/projects,/ontology/i3con.html

LCS: A Linguistic Combination System for Ontology Matching 9

— Animals: It includes two ontologies which are defined in a similar way and
around 30 entities for each ontology. They have 24 real mappings.

— Cs: Cs represents two computer science(cs) departments at two Universities
respectively. More than 100 entities are involved in the first ontology, while
about 30 entities in the second one. The number of real mappings is 16.

— Hotel: Hotel describes the characteristics of hotel rooms. The two ontolo-
gies in Hotel are equivalent, but defined in different ways. In each ontology,
around 20 entities are defined. About 17 real mappings are identified by
humans.

— Network: networkA.owl and networkB.owl describe the nodes and connec-
tions in a local area network. networkA.owl focuses more on the nodes them-
selves, while networkB.owl is more encompassing of the connections. Each
ontology has more than 30 entities. In total we have 30 real mappings.

— Petsl: Petsl is composed of ontology people+petsA.owl and people+petsB.owl
which is a modified version of people+petsA.owl. More than 100 entities are
defined in each ontology and 93 real mappings are determined manually.

— Pets2: Identical to Petsl above without instance data. 74 real mappings are
created.

— Russia: The pair of russiaA.rdf and russiaB.rdf for Russia describes the
locations, objects, and cultural elements of Russia. Each of them has more
than 100 entities. The total number of theoretical mappings is 117.

To evaluate LCS, the common matching quality measures are exploited in
the next section. The following three sections are to show the performance of
the combination methods in LCS by using some public ontologies. It is noted
that, in order to discover the mapping candidates from the aggregated similarity
matrix, we tune the threshold thfinq; to get the best performance by experience
according to the characteristics of the combination methods and ontologies to
be matched.

6.1 The criterion of evaluation

The standard information retrieval measures [18] are adopted by us.

— Precision: precision = %. It reflects the share of the correct mappings

among all mappings returned automatically by a matcher.
— Recall: recall = % specifies the number of correct mappings versus the
real mappings determined by m%nuall‘y.‘ |
. _ *Prectston*xreca,
— F-Measure: f — Measure = recisiontrecall
monic mean of Precision and Recall.

— Overall: overall = recall x (2 — m), which is introduced in [6]. It is a

combined measure and takes into account the manual effort needed for both
removing false and adding missed matches.

which represents the har-

Where, |I| indicates the number of the correct mappings that are found by the
automatic matchers. | P| is the number of all mappings that are found automat-
ically, which includes the false and correct mappings. |R| shows the number of
the manually determined real mappings.

10 Qiu Ji, Weiru Liu, Guilin Qi, David A. Bell

6.2 Single matchers vs. combination

e
0.9
038
0.7
06
054
3 0.4
(&1
203
(=%

0.2

0.1

00

asure

[precision
[Jrecall
M f-Measure

ision / recall / f-Me

NN O MND PM PD TW TD Avg Alh

Figure 2. Single matchers vs. combination methods

Figure 2 shows the performance of some single matchers and combination
methods on the ontology pair “network”, which includes ontology networkA.owl
and networkB.owl. Since there is no instance in networkA.owl, we only compare
the classes and properties in two ontologies.

In Figure 2, each single matcher is marked as two capital letters, where the
first one indicates a single matcher for classes category and the second one for
properties category. For instance, “ND” means the matcher Name(N for short)
for classes category, and the matcher Domain and Range(D for short) is used
for properties category. The combination methods are Avg (Average) and Alh
(At least half) based on all single matchers for each category (see Section 5.2
and the first paragraph of Section 6).

It has been shown that f-Measure increases with the increase of recall from
NN to Alh. Obviously, it is much more helpful to use several matchers together at
a time than just use one matcher to get better results, because more information
can be obtained for multiple matchers than that for one matcher.

6.3 Comparing different LAOs

(0 [S S A
(S N SN S U R
g 0.8 T Nm CMax
807 - : D:IVh
“EL 0.6 - EMogst
0.5+ & Il Amap
044 ~ |[EMin
0.3+
0.2+
0.1+
0.0+ T T

animals hotel russia

Figure 3. The performance of several LAOs

LCS: A Linguistic Combination System for Ontology Matching 11

Due to the existence of some composite matchers like Tazonomy for our
experiments, the aggregation should be executed twice. One is for the composite
matchers to combine their constituent matchers. For properties category, it needs
to aggregate first the results of the constituent matchers, Super properties and
Sub properties, for Taxonomy. The second aggregation is to combine all the base
matchers, Name, Domain and Range and Tazxonomy to get the final similarity
matrix.

Since Maz, Min and Avg are not only existing aggregation operators without
weights to matchers, but the special cases in LAOs, we choose six LAOs including
the three special operators to compare their performance. From Figure 3, we can
see that: Alh, Most, Avg and Amap (As many as possible) outperform Maz and
Min. Because Maxr and Min are extra optimistic or too pessimistic, that is to
consider one extreme similarity value at a time. While Alh, Most, Avg and Amap
combine some or all the similarity values. Moreover, Alh could perform better
than Awvg in most cases while Most outperforms Avg in some cases because of
their own characteristics.

6.4 The comparison of Average and At least half

[-precision
[-recall

B -f-Measure
[-overall

snimals cs notel network petst pets2 russis Aversge

Figure 4. Compare the performance of Avg and Alh in LCS

As Avg outperforms Max and Min as existing aggregation operators, we use
Alh to compare with Avg on seven ontology pairs to give more details on their
performances. The purpose of this experiment is to give more detail on that
some operators in LAOs like Alh could perform better than existing aggregation
operators like Avg in most cases. As we have said, we do not consider the weights
to matchers.

Based on the matching process in LCS and the base matchers we have chosen,
we compare the performance of Avg and Alh on all the ontology pairs we have
introduced above. See Figure 4, the data in Y axis is computed by subtracting
the results of Avg from the results of Alh, where the results are expressed by
precision, recall, overall and f-Measure. We use “-” in the figure to indicate the
subtraction. For example, “-precision” indicates the subtraction by subtracting
the precision of Avg from the precision of Alh on a specific ontology pair (01, O2)
(i.e., —precision = precision ain (01, O2) — precision 4,4(01, O2)).

12 Qiu Ji, Weiru Liu, Guilin Qi, David A. Bell

From Figure 4, Alh outperforms Awvg on all the ontology pairs except animals
and pets by higher precision and f-Measure basing on the similar recall for each
ontology pair. For animals, the performance for Avg and Alh is the same. The
overall of Alh is only reduced in one out of the seven ontology pairs, while is
increased in five of the seven pairs with the highest increase near 0.5, which
means nearly 50% manual effort is saved.

7 Conclusion and Future Work

Ontology matching is an essential solution to deal with the interoperability of
heterogeneous systems. It has been proved that, in most cases, combining the
results of multiple matching approaches or matchers is a promising technique
to get better results than just using one matcher at a time [2-4,10]. Due to
the limitations of existing combination methods, we propose a new system LCS
where a LAO is used for the aggregation. Through experiments, the power of
LCS has been shown.

The main contribution of this paper is the introduction of OWA operator to
ontology matching. The weight here is not associated with a specific matcher but
a particular ordered position. We choose the linguistic quantifiers to determine
the OWA weights. To our convenience, we name the OWA operator based on
the linguistic quantifier to obtain weights as the linguistic aggregation operator
(LAO). So a large number of LAOs can be defined according to different linguistic
quantifiers. Besides, we provide a semantic interpretation of LAOs to facilitate
users to select an appropriate LAO for the aggregation. Specially, some existing
aggregation operators like Mazx, Min and Average are the special cases in LAOs.

From the experiments (see Figure 3 and 4), we can see that some LAOs like
Alh and Most, can perform better than Maz, Min and Avg in most cases. So
LAO provides a good way to supply a gap for existing aggregation operators
without considering the weights to matchers.

In the future, we will further develop the application of OWA operators to
combine multiple ontology matchers. Specifically, the following aspects are in-
volved: First, since we intend to compare different combination methods without
weights to the matchers, we provide a simple platform for such comparison. In
our further work, we will compare the performance of our system with other
systems. Last but not the least, we did not consider the weights of matchers, not
because they are not important, but we want to propose a flexible and efficient
way to aggregate the results of multiple matchers when it is not necessary to
use weights. If the weights of matchers can be obtained by experts or machine
learning, we can use the weighted OWA operators [19] for the aggregation.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American,
284(5):34-43, 2001.

LCS: A Linguistic Combination System for Ontology Matching 13

2. Do, H., Rahm, E.: COMA - a system for flexible combination of schema matching
approaches. In Proceedings of the 28th VLDB Conference, pp. 610-621, 2002.

3. Doan, A., Domingos, P., Halevy, A.Y.: Reconciling schemas of disparate data
sources: a machine-learning approach. SIGMOD Record (ACM Special Interest
Group on Management of Data), pp. 509-520, 2001.

4. Ehrig, M., Sure, Y.: Ontology mapping - an integrated approach. In Proceedings of
the First Furopean Semantic Web Symposium, ESWS 2004, Volume 3053 of Lecture
Notes in Computer Science, pp. 76-91, Heraklion, Greece, 2004. Springer Verlag.

5. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.
In Proceedings of the Twenty-seventh International Conference on Very Large Data
Bases(VLDB), pp. 49-58, Roma, Italy, 11-14th September 2001. Los Altos, CA,
USA, Morgan Kaufmann Publishers (2001).

6. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In Proceedings of Eigh-
teenth International Conference on Data Engineering, San Jose, California, 2002.

7. Euzenat, J. and Valtchev, P.: Similarity-based ontology alignment in OWL-Lite. In
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI), pp.
333-337, Valencia, Spain, 2004.

8. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.
The International Journal on Very Large Data Bases(VLDB), 10(4): 334-350, 2001.

9. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal
on Data Semantics, No. 4, LNCS 3730, pp. 146-171, 2005.

10. Tu, K., Yu, Y.: CMC: Combining mutiple schema-matching strategies based
on credibility prediction. In Proceedings of the 10th International Conference on
Database Systems for Advanced Applications (DASFAA), LNCS 3453, pp. 17-20,
2005, China.

11. Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria
decision making. IEEE Trans. on Systems, Man and Cybernetics, 18(1988): 183-190.

12. Xu, Z.: An overview of methods for determining OWA weights. International Jour-
nal of Intelligent Systems, 20(8): 843-865, 2005.

13. Yager, R.R.: Family of OWA operators. Fuzzy Sets and Systems, 59(1993): 125-148.

14. Yatskevich, M.: Preliminary evaluation of schema matching systems. Technical
Report # DIT-03-028, Department of Information and Communication Technology,
University Of Trento (Italy) (2003).

15. Yager, R. R. and Kacprzyk, J.: The Ordered Weighted Averaging Operation:
Theory, Methodology and Applications. Kluwer Academic Publishers, pp. 167-178,
Boston, 1997.

16. O’Hagan, M.: Aggregating template or rule antecedents in realtime expert systems
with fuzzy set logic. In Proceedings of the 22nd Annual IEEE Asilomar Conference
on Signals, Systems, Computers, pp. 681-689, Pacific Grove, CA, 1988.

17. Herrera, F., Herrera-Viedma, E. and Verdegay, J.L.: A sequential selection pro-
cess in group decision making with a linguistic assessment approach, Information
Sciences, 85 (1995), pp. 223-239.

18. Do, H., Rahm, E.: Comparison of schema matching evaluations. In Proceedings of
the second international workshop on Web Databases (German Informatics Society),
221-237, 2002.

19. V. Torra, The Weighted OWA operator, International Journal of Intelligent Sys-
tems, 12(1997): 153-166.

