
Re-investigating Dempster’s Idea on Evidence

Combination

Weiru Liu and Jun Hong

School of Information and Software Engineering
University of Ulster at Jordanstown

Newtownabbey, Co. Antrim BT37 0QB, UK
{w.liu, j.hong}@ulst.ac.uk

Abstract. In this paper, we investigate the problem encountered by
Dempster’s combination rule in view of Dempster’s original combination
framework. We first show that the root of Dempster’s combination rule
(defined and named by Shafer) is Dempster’s original idea on evidence
combination. We then argue that Dempster’s original idea on evidence
combination is, in fact, richer than what has been formulated in the rule.
We conclude that, by strictly following what Dempster has suggested,
there should be no counterintuitive results when combining evidence.
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1 Introduction

Methods for dealing with uncertainty in many areas of Artificial Intelligence have
received considerable attention for more than a decade. Several numerical and
symbolic methods have been proposed for handling uncertain information (see
[3], [10], [11] for details). The traditional numerical method is Bayesian probabil-
ity. The well known expert system Prospector ([5]) is a typical example of using
this method. Bayesian updating rule provides this method with the ability to
revise a result in the light of new evidence. Generally speaking, Bayesian prob-
ability (subjective and conditional) is powerful for a certain class of problems,
but not suitable for all situations. Alternatives have been investigated by many
researchers. The certainty factor model in expert system MYCIN ([20]) is one of
the alternatives.

The Dempster-Shafer theory of evidence (DS theory) (sometimes called evid-
ential reasoning or belief function theory) is a mechanism formalised by Shafer
([14]) for representing and reasoning with uncertain, imprecise and incomplete
information. It is based on Dempster’s original work ([4]) on the modelling of
uncertainty in terms of upper and lower probabilities that are induced by a mul-
tivalued mapping rather than as a single probability value. DS theory reduces
to standard Bayesian reasoning when an agent’s knowledge is accurate but it is
more flexible in representing and dealing with ignorance and uncertainty [1]. DS
theory has been popular since early 1980s when AI researchers were searching for
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different mechanisms to cope with those situations where Bayesian probability is
powerless. Its relationships with related theories have been intensively discussed
[23].

There are two main reasons why DS theory has attracted so much attention.
It has the ability to model information flexibly, without requiring a probability
(or a prior) to be assigned to each element in a set, and it provides a convenient
and simple mechanism (Dempster’s combination rule) for combining two or more
pieces of evidence under certain conditions. The former allows an agent to de-
scribe ignorance because of lacking of information, and the latter allows an agent
to narrow down the possible solution space as more evidence is accumulated.

Even though DS theory has been widely used, it has however been found
that Dempster’s combination rule gives counterintuitive results in some cases.
The condition under which the rule is used is crucial to the successful applic-
ation of the theory but the condition was not fully defined when Shafer gave
the rule in the first instance [14]. Various discussions and criticisms of the rule
have appeared in the literature. A mathematical description of the condition of
applying Dempster’s combination rule is formalised in [22].

In this paper, we first introduce the background of DS theory. We then study
the probabilistic basis of basic functions defined by Shafer to see how we can
derive a mass function from a probability distribution through a multivalued
mapping [4]. We closely examine Dempster’s original idea on evidence combin-
ation. We show that, in fact, Dempster suggested two alternative approaches to
combine evidence. One approach requires the construction of a combined source
covering several original sources, and propagates the combined probability distri-
bution on the combined source to the target space. Another approach encourages
the individual propagation from each original source to the target space, and then
combines the propagation results on the target space. Dempster’s combination
rule in DS theory is a simplified form of the second approach.

We argue that the simplified form of combination (i.e. Dempster’s combina-
tion rule) does not carry enough information to allow an agent to judge whether
two pieces of evidence can be combined. In fact under Dempster’s original idea,
some counterintuitive examples of using Dempster’s combination rule are not
counterintuitive at all, because these examples cannot be and should have not
been dealt with in DS theory in the way they were.

2 Basic Concepts in Dempster-Shafer Theory

In DS theory, a piece of information is usually described as a mass function on
a frame of discernment. We first give some definitions of the theory [14].

Definition 1 (Frame of Discernment). A set is called a frame of discern-
ment (or simply a frame) if it contains mutually exclusive and exhaustive possible
answers to a question. It is usually denoted as Θ. The set is required that at any
time, one and only one element in the set is true.
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For instance, if we assume that Emma lives in one of the cities, city1, ..., city6,
then Θ = {city1, city2, city3, city4, city5, city6} is a frame of discernment for the
question ‘In which city does Emma live?’.

Definition 2 (Mass Function). A function m : 2Θ → [0, 1] is called a mass
function on frame Θ if it satisfies the following two conditions:

1. m(∅) = 0, and
2. ΣAm(A) = 1,

where ∅ is an empty set and A is a subset of Θ.

A mass function is also called a basic probability assignment, denoted as bpa.
For instance, if we know that Emma lives in the area covering the six cities,

but we have no knowledge about in which city she lives, then we can only give
a mass function m(Θ) = 1. Alternatively, if we know that Emma lived in city3

two years ago and she intended to move to other cities and tried to find a job
somewhere within these six cities, but we have no definite information about
where she lives now, then a mass function could be defined as m({city3}) =
p, m(Θ) = 1 − p, where p stands for the degree of our belief that she still lives
in city3.

Definition 3 (Belief Function). A function bel : 2Θ → [0, 1] is called a belief
function if bel satisfies:

1. bel(Θ) = 1;
2. bel(∪n

1 Ai) ≥ Σibel(Ai) − Σi>jbel(Ai ∩ Aj) + ... + (−1)−nbel(∩iAi).

It is easy to see that bel(∅) = 0 for any belief function. A belief function is
also called a support function. The difference between m(A) and bel(A) is that
m(A) is our belief committed to the subset A excluding any of its subsets while
bel(A) is our degree of belief in A as well as all of its subsets.

In general, if m is a mass function on frame Θ then bel defined in (1) is a
belief function on Θ

bel(B) = ΣA⊆Bm(A). (1)

Recovering a mass function from a belief function is as follows [18]:

m(A) = ΣB⊆A(−1)|B|bel(B).

For any finite frame, it is always possible to get the corresponding mass
function from a belief function and the mass function is unique.

A subset A with m(A) > 0 is called a focal element of this belief function. If all
focal elements of a belief function are the singletons of Θ then the corresponding
mass function is exactly a probability distribution on Θ. So mass functions are
generalised probability distributions in this sense.

If there is only one focal element for a belief function and the focal element
is the whole frame Θ, this belief function is called a vacuous belief function. It
represents total ignorance (because of lack of knowledge).
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Definition 4 (Plausibility Function). A function pls defined below is called
a plausibility function

pls(A) = 1 − bel(¬A).

pls(A) represents the degree to which the evidence fails to refute A. From a
mass function, we can get its plausibility function as [18]:

pls(B) = ΣA∩B �=∅m(A). (2)

When more than one mass function is given on the same frame of discern-
ment, the combined impact of these pieces of evidence is obtained using a math-
ematical formula called Dempster’s combination rule. If m1 and m2 are two mass
functions on frame Θ, then m = m1 ⊕ m2 is the mass function after combining
m1 and m2.

m(C) =
ΣA∩B=C m1(A)m2(B)

1 − ΣA∩B=∅m1(A)m2(B)
.

⊕ means that Dempster’s combination rule is applied on two (or more) mass
functions. The condition of using the rule is stated as “two or more pieces of
evidence are based on distinct bodies of evidence” [14]. This description is a bit
confusing and causes a lot of misapplications and counterintuitive results [22].

3 Probability Background of Mass Functions

Even though Shafer has not agreed on the idea that belief function theory is
generalised probability theory and has regarded belief function theory as a new
way of representing evidence and knowledge, some people have argued that the
theory has strong links with probability theory [6], [7]. We argue that in De-
mpster’s paper [4], Dempster implicitly gave the prototype of mass functions.
Shafer’s contribution has been to explicitly define the mass function and to use
it to represent evidence directly.

3.1 Dempster’s probability prototype of mass functions

Definition 5 (Dempster’s Probability Space). A structure (X, τ, µ) is
called a Dempster’s probability space where

1. X is a sample space containing all the possible worlds;
2. τ is a class of subsets of X;
3. µ is a probability measure which gives µ : τ → [0, 1], and µ(X) = 1.

Definition 6 (Multivalued Mapping). Function Γ : X → 2S is a multival-
ued mapping from space X to space S if Γ assigns a subset Γ (x) ⊆ S to every
x ∈ X.
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From a multivalued mapping Γ , a probability measure µ on spsce X can be
propagated to space S in such a way that for any subset T of S, the lower and
upper bounds of probabilities of T are defined as

P∗(T ) = µ(T∗)/µ(S∗), (3)

P ∗(T ) = µ(T ∗)/µ(S∗), (4)

where
T∗ = {x ∈ X, Γ (x) 	= ∅, Γ (x) ⊆ T},

T ∗ = {x ∈ X, Γ (x)∩ T 	= ∅}.
Eqs (3) and (4) are defined only when µ(S∗) 	= 0. The denominator µ(S∗) is

a renormalizing factor necessitated by the fact that the subset {x | Γ (x) = ∅},
which does not map into a meaningful subset of S, should be removed from X
and the measure of the remaining set S∗ renormalized to unity.

A multivalued mapping Γ from space X to space S says that if the possible
answer to a question described in the first space X is x, then the possible answer
to a question described in the second space S is in Γ (x).

For the case that S = {s1, s2, ..., sn} is finite, the propagation procedure can
be done as follows. Suppose that Sγ1γ2...γn denotes the subset of S which contains
si if γi = 1 and excludes si if γi = 0 for i = 1, 2, ..., n. If for each Sγ1γ2...γn , we
define Xγ1γ2...γn as

Xγ1γ2...γn = {x ∈ X, Γ (x) = Sγ1γ2...γn}, (5)

then all the non-empty subsets of X defined in Eq (5) form a partition1 of X
and

X = ∪γ1γ2...γnXγ1γ2...γn . (6)

The idea of constructing Xγ1γ2...γn is that each Xγ1γ2...γn contains those
elements in X which have the same mapping environment in S.

In order to calculate P∗(T ) and P ∗(T ), Dempster assumed that each non-
empty Xγ1γ2...γn is in τ , then for any T ⊂ S, P∗(T ) and P ∗(T ) are uniquely
determined by the 2n quantities pγ1γ2...γn as,

pγ1γ2...γn = µ(Xγ1γ2...γn). (7)

We use an example to demonstrate the idea.

Example 1 (From [4])

Assume that S = {s1, s2, s3}. Using pγ1γ2...γn , the lower and upper bounds
of probabilities of all subsets of S are given in Table 1.

1 A list of subsets X1, X2, ...,Xn of X is called a partition of X if Xi ∩ Xj = ∅ and
∪i=n

i=1 Xi = X .
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Table 1. Upper and lower probabilities of all subsets of S.

T P ∗(T ) P∗(T )

∅ 0 0
{s1} (p100 + p110 + p101 + p111)/k p100/k
{s2} (p010 + p110 + p011 + p111)/k p010/k
{s3} (p001 + p101 + p011 + p111)/k p001/k
{s1, s2} (p100 + p010 + p110 + p101 + p011 + p111)/k (p100 + p010 + p110)/k
{s1, s3} (p100 + p001 + p110 + p101 + p011 + p111)/k (p100 + p001 + p101)/k
{s2, s3} (p010 + p001 + p110 + p101 + p011 + p111)/k (p010 + p001 + p011)/k
S 1 1

Here k is defined as µ(S∗) = 1−p000. Given a subset T of S, the corresponding
lower and upper subsets in X are known. For instance, if T = S110 = {s1, s2},
then T∗ = X100∪X010∪X110 and T ∗ = X100∪X010∪X110∪X101∪X011∪X111.

If we define a function m on S as m(Sγ1γ2...γn) = mγ1γ2...γn = pγ1γ2...γn/(1−
p00...0), as shown in Table 2, then function m is exactly a mass function when S is
a frame. Certainly some of mγ1γ2...γn may be 0. P∗ and P ∗ define a belief function
and a plausibility function on S respectively. We assume that this is the model
for defining mass functions in Shafer’s style. S being a frame of discernment is
a special case of S being a space in Dempster’s paper.

Table 2. Upper and lower probabilities of all subsets of S using function m.

T P ∗(T ) = pls P∗(T ) = bel m(T )

∅ 0 0 0
{s1} m100 + m110 + m101 + m111 m100 m100

{s2} m010 + m110 + m011 + m111 m010 m010

{s3} m001 + m101 + m011 + m111 m001 m001

{s1, s2} m100 + m010 + m110 + m101 + m011 + m111 m100 + m010 + m110 m110

{s1, s3} m100 + m001 + m110 + m101 + m011 + m111 m100 + m001 + m101 m101

{s2, s3} m010 + m001 + m110 + m101 + m011 + m111 m010 + m001 + m011 m011

S 1 1 m111

The vital requirement of calculating probability bounds in Dempster’s pro-
totype is that every non-empty subset Xγ1γ2...γn should be in τ . If τ , a collection
of subsets of X, does not suit this requirement, then the rest of the calculation
in Dempster’s paper could not be carried out.

3.2 Deriving mass functions from probability spaces

Definition 7 (Probability Space). A probability space (X, χ, µ) has:

X: a sample space containing all the possible worlds;
χ: a σ-algebra containing some subsets of X, which is defined as containing X

and closed under complementation and countable union.
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µ: a probability measure µ : χ → [0, 1] with the following features:
1. µ(Xi) ≥ 0 for all Xi ∈ χ;
2. µ(X) = 1;
3. µ(∪∞

j=1Xj) = Σ∞
j=1µ(Xj), if the Xj ’s are pairwise disjoint members of

χ.

A subset χ′ of χ is called a basis of χ if it contains non-empty and disjoint
elements, and if χ consists precisely of countable unions of members of χ′. For
any finite χ there is a unique basis χ′ of χ and it follows that

ΣXi∈χ′µ(Xi) = 1.

For any subset Xi of X, if Xi is not in χ, it is only possible to get two
probability bounds of Xi, usually called the inner measure, denoted as µ∗, and
the outer measure, denoted as µ∗, with

µ∗(Xi) = sup{µ(Xj) | Xj ⊆ Xi, Xj ∈ χ}, (8)

µ∗(Xi) = inf{µ(Xj ) | Xj ⊇ Xi, Xj ∈ χ}. (9)

It has been proved in [6], [7] that µ∗ is a belief function on X when X is a
frame.

Given a probability space (X, χ, µ), assume there is a multivalued mapping
function Γ from X to frame S. For a subset T of S, we define

bel(T ) =
{

µ(T∗)/k when T∗ = {x | Γ (x) 	= ∅, Γ (x) ⊆ T} ∈ χ,
µ∗(T∗)/k Otherwise. (10)

bel is also a belief function on S. Here k = µ∗({x ∈ X, Γ (x)∩S 	= ∅}) which
has the same meaning as it has in Table 1.

In a Dempster’s probability space, those non-empty subsets Xγ1γ2...γn of X
form a partition of X, and equation Σγ1γ2...γnµ(Xγ1γ2...γn) = 1 holds. This
suggests that these non-empty subsets possess the properties of a basis of a
σ−algebra. If we use χ′ to denote this partition, we can derive a σ−algebra of X
using this basis. So a Dempster’s probability space can always be translated into
a normal probability space. Therefore a probability space is more general than
a Dempster’s probability space. Given a probability space (X, χ, µ) and a multi-
valued mapping Γ from X to S, Eq (10) is suitable for deriving a belief function
on S, while given a Dempster’s probability space (X, τ, µ) and a multivalued
mapping Γ from X to S, Eq (3) is adequate to define a belief function on S. In
either case, a belief function can always be derived, so belief function theory is
closely related to probability theory and comes out of probability theory.

In the following, we use probability spaces to stand for both normal and
Dempster’s probability spaces.
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4 Problems with Dempster’s Combination Rule

A multivalued mapping from space X1 to space S generates a mass function on
S given a probability distribution on X1 or a collection of subsets of X1 (either
τ or χ) as we have seen in the previous section.

If there is another multivalued mapping from space X2 to S which also defines
a mass function on S, then there are two mass functions available on S. In DS
theory, when there are two or more mass functions on the same frame of discern-
ment, it is desirable to combine them using Dempster’s combination rule, if it is
believed that they are derived from ‘independent sources’. The debate about the
precise meaning of ‘independent sources’ has appeared in many research papers,
including some by Shafer himself, since the interpretation of this phrase determ-
ines whether an agent can apply Dempster’s rule correctly. However, Dempster’s
combination rule only involves mass functions, which cannot tell anything about
the relationships between their sources. Therefore, it is very difficult to describe
the condition of using the rule if an agent’s attention is focused on the rule itself.

As Dempster’s combination rule is motivated by the idea in Dempster’s ori-
ginal paper, we believe that re-examining the idea of combination suggested by
Dempster would be very beneficial to the clarification of the condition of using
the rule.

4.1 Dempster’s combination framework

In [4], Dempster first discussed the procedure of generating the lower and upper
bounds of probabilities on space S from a probability space (X, χ, µ) through a
multivalued mapping Γ , as discussed in Section 3. Dempster then considered the
situation where n probability spaces are available and each of which has a mul-
tivalued mapping relation with the same space S, given that these n probability
spaces are independent.

In summary, Dempster’s idea on the combination of independent sources of
information can be stated as follows. Suppose there are n pieces of evidence
which are given in the form of n probability spaces (Xi, χi, µi), each of which
has a mapping relation with the same space S through a multivalued mapping
Γi. These n sources are said to be independent and explained by Dempster as
“opinions of different people based on overlapping experiences could not be re-
garded as independent sources. Different measurements by different observations
on different equipment would often be regarded as independent ... the sources are
statistically independent” [4].

Under his assumption of independence, Dempster [4] suggested that these
sources can be combined using Eq (11) to derive a combined source (X, χ, µ)
and a unified Γ as

X = X1 ⊗ X2 ⊗ ...⊗ Xn,

χ = χ1 ⊗ χ2 ⊗ ...⊗ χn, (11)
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µ = µ1 ⊗ µ2 ⊗ ...⊗ µn,

Γ (x) = Γ1(x) ∩ Γ2(x) ∩ ... ∩ Γn(x).

The fourth formula can also be stated and explained as

Γ (x) = Γ ′
1(x) ∩ Γ ′

2(x) ∩ ... ∩ Γ ′
n(x)

where Γ ′
i (x) = Γi(xi) when x ∈ X1 ⊗ ...⊗ Xi−1 ⊗ {xi} ⊗ ...⊗ Xn.

Here ⊗ is the set product operator as usual. µ = µ1 ⊗ µ2 is defined as
µ({(x1i, x2j)}) = µ1({x1i})× µ2({x2j}) for every (x1i, x2j) ∈ X where x1i ∈ X1

and x2j ∈ X2. The combined source (set product measure space) summarises
the message carried by all separate sources. The combined multivalued mapping
Γ from the combined source to space S suggests x = (x1, x2, ..., xn) ∈ X is
consistent with si ∈ S, if and only if si belongs to all Γi(xi) simultaneously.

Through the combined source (X, χ, µ) and the unified mapping Γ , for any
subset T of S, a pair of lower and upper bounds of probabilities can be calculated
using Eqs (3) and (4).

Apart from using the set of formulas in Eq (11), Dempster also recommended
an alternative calculation method for calculating the final bounds of probabilities
on S using function q

q(T ) = q1(T ) × q2(T )×, ...,×qn(T ), (12)

where
qj(T ) = µj(T̃j),

and
T̃j = {xj ∈ Xj , Γj(xj) ⊇ T}.

When S is finite, each qj can be calculated through pj
γ1γ2...γn

. For instance
qj
100 = pj

100 + pj
110 + pj

101 + pj
111 when S has three elements.

If we examine Eqs (11) and (12) carefully, it is easy to see that these two
different calculation methods suggest two different procedures of combination.
The former calculates the combined source first while the latter propagates the
effect of each source to S first.

Dempster implicitly assumed that the results obtained in these two pro-
cedures are the same under the condition that the n sources are statistically
independent.

If we refer to the levels containing spaces (Xi, χi, µi) as the original informa-
tion level, and space S as the target information level, then Dempster’s condition
of independence is assumed at the original information level. This requirement
is called DS-independent in [22]. Now the two approaches in Dempster’s com-
bination framework can be summarised as follows.

Approach 1: Combining information at the original information level by pro-
ducing a joint space and a single probability distribution on the space. This
procedure should consider the different mappings from the joint space to the
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target information space, unify the original mappings into one mapping and
propagate the joint probability distribution to the target information level.
The intuitive meaning of this method is shown in Figure 1.

Approach 2: Propagating different pieces of evidence at the original informa-
tion level to the target information level separately and then combining them
at the target information level. Figure 2 illustrates this procedure explicitly.

 (Χ, χ, µ)

Γ1 Γ2
Γn

(Χ1, χ 1, µ 1) (Χ2, χ2, µ 2) (Χn, χn µn)

 Target information level

Original information level

S

Γ Γ1, Γ 2, ..., Γ n => Γ

...

...

Fig. 1. Find a common probability space first and then propagate the combined prob-
abilities distribution to the target space.

4.2 The condition of using Dempster’s combination rule

When giving Dempster’s combination rule in his book [14], Shafer followed the
spirit of Approach 2 suggested by Dempster, where function q is replaced by
function m in Figure 2. On S, Shafer proposed a mathematical formula named
Dempster’s combination rule to combine the mass functions. If we follow the
idea that the rule proposed by Shafer was derived from Dempster’s combina-
tion framework i.e., Approach 2, then Dempster’s combination rule should obey
the condition defined by Dempster. Later, in some of his papers, Shafer indeed
addressed the importance of independence among original sources. For example
in [16], [17], Shafer stated that the condition of using Dempster’s combination
rule is that ‘two or more belief functions on the same frame but based on inde-
pendent arguments or items of evidence’ and in [15] he used randomly encoded
messages to describe the condition of using Dempster’s combination rule. These
explanations are much closer to the definition given by Dempster in his com-
bination framework. However, as Dempster’s combination rule does not require
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S

q1 q2 qn

(Χ1, χ1, µ1) Γ1 (Χ2, χ2, µ2) Γ2
(Χn, χn, µn) Γn

 Target information level

Original information level

q1, q2, ..., q n => q

...

...

Fig. 2. Propagate evidence individually to the target space first and then carry out
combination at the target information level.

or reflect any information about the sources which support the corresponding
belief functions and it only needs belief functions (or mass functions) in order
to carry out the combination, it is, therefore, difficult to describe independent
condition precisely using only belief functions.

In contrast to the two views on belief functions in [8], we argue that the main
cause of giving counterintuitive results2 in using Dempster’s combination rule is
overlooking (or ignorance of) the condition of combination given in Dempster’s
original paper. In Shafer’s simplified combination mechanism (i.e. Dempster’s
combination rule) the original sources are hidden. The invisibility of the original
sources in the simplified combination mechanism makes it difficult to state the
condition of the mechanism. In other words, Dempster’s combination rule is too
simple (compared to Dempster’s combination framework) to show (or carry)
enough information for a precise mathematical description of the dependent (or
independent) relations between multiple pieces of evidence.

Proposition 1. Two belief functions on a frame can be combined using De-
mpster’s combination rule if the two sources, (X1, χ1, µ1) and (X2, χ2, µ2), from
which the two belief functions are derived, are statistically independent (or called
DS-independent).

2 These do not include the situations such as Example 6.12 in [22] and the murderer
case in Section 5.2 in [21]. Example 6.12 in [22] demonstrates that Dempster’s com-
bination rule agrees that a mass value assigned to a subset should not be evenly split
among its elements but be kept for all the elements in this subset. The murderer
case in Section 5.2 in [21] suggests that the normalisation function of Dempster’s
combination rule may not produce sensible results when two pieces of evidence are
almost contradictory with each other. These examples are not within the province
of this paper.



12 Weiru Liu, Jun Hong

The idea of describing and judging dependent relations among the original
probability spaces has also been mentioned implicitly by Shafer [15], Shafer
and Tversky [19] and Voorbraak [22] but not explicitly defined at the original
information level.

5 Examples

In this section, we use three examples to illustrate the delicate difference between
the two approaches in Dempster’s combination framework. The first two ex-
amples come from [16] where the former shows that when two pieces of evidence
are statistically independent, both approaches in Dempster’s combination frame-
work are applicable, and the latter shows that when they are not statistically
independent, only the first approach works. The third example ([22]) not only
demonstrates that the careless application of Dempster’s combination rule will
yield a wrong result but also reveals the possibility of using Approach 1 to com-
bine two dependent pieces of evidence when their common probability space
is known (as also investigated in [16], [17], [12]), although Dempster’s original
intention was aimed at dealing with independent probability spaces.

Example 2:

Suppose that Shafer wants to know whether the street outside is slippery,
instead of observing this himself, he asks another person Fred. Fred tells him
that ‘it is slippery’. However Shafer knows that Fred is sometimes careless in
answering questions. Based on his knowledge about Fred, Shafer estimates that
80% of the time Fred reports what he knows and he is careless 20% of the time.
So Shafer believes that there is only a 80% chance that the street is slippery. In
fact, Shafer forms two frames X1 and S in his mind in order to get his conclusion
in this problem, where X1 is related to Fred’s truthfulness and S is related to
the possible answers of slippery outside.

X1 = {truthful, careless},
S = {yes, no}.

Here yes and no stand for ‘it is slippery’ and ‘it is not slippery’ respectively.
A probability measure p1 on X1 is defined as

µ1({truthful}) = 0.8,

µ1({careless}) = 0.2.

Shafer derives his conclusion when this probability measure is propagated
from frame X1 to frame S through a multivalued mapping function between X1

and S as
Γ1(truthful) = {yes},

Γ1(careless) = {yes, no}.
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Shafer obtains a belief function on S based on Eq (10).

bel1({yes}) = 0.8, bel1({no}) = 0.0. (13)

Furthermore, suppose Shafer has some other evidence about whether the
street is slippery: his trusty indoor-outdoor thermometer says that the temper-
ature is 31 degrees Fahrenheit, and he knows that because of the traffic, ice
could not form on the street at this temperature. However he knows that the
thermometer could be wrong even though it has been very accurate in the past.
Suppose that there is a 99% chance that the thermometer is working properly,
so he could form another frame X2 with its probability distribution as

X2 = {working, not working},

µ2({working}) = 0.99, µ2({not working}) = 0.01,

and a mapping function Γ2 as

Γ2(working) = {no},

Γ2(not working) = {yes, no}.
Therefore another belief function on S is calculated using Eq (10)

bel2({yes}) = 0.0, bel2({no}) = 0.99. (14)

Now there are two pieces of evidence available regarding the same question
‘slippery or not?’ and Shafer wants to know what the joint impact of the evidence
on S is. In the following, we try to solve this problem for Shafer in Dempster’s
combination framework.

Using Approach 1 in Dempster’s combination framework:

First of all, there are two probability spaces (X1, χ1, µ1) and (X2, χ2, µ2)
carrying the original information (with χ1 = 2X1 and χ2 = 2X2 ), which are
believed to be independent as Fred’s answer is independent of the output of
the thermometer. According to Dempster’s explanation about independence of
sources, Eq (11) is applied to combine these two sources to obtain a combined
source and a joint multivalued mapping. As a result, the combined source is
(X, χ, µ) where χ = 2X with

X = X1 ⊗ X2

and
µ({(x1, x2)}) = µ1({x1}) × µ2({x2}),

such as

µ({(truthful, working)}) = µ1({truthful}) × µ2({working})
= 0.8 × 0.99 = 0.792,
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as shown in the second column in Table 3. In the meanwhile, the joint multivalued
mapping Γ from X to S is defined as

Γ ((truthful, working)) = ∅,

Γ ((truthful, not)) = {yes},
Γ ((careless, working)) = {no},
Γ ((careless, not)) = {yes, no},

after taking into account both what Fred and the thermometer have said. Here
‘not’ means ‘not working’. Element (truthful, working) is the only element
which matches the empty set in S, so that µ(S∗) = 1 − 0.792 = 0.208. As a
result, using Eq (3),

P∗({yes}) = µ({yes}∗)/µ(S∗) = µ({(truthful, not)})/µ(S∗)
= 0.008/0.208 = 0.04.

This is the degree of our belief that the road is indeed slippery.
Alternatively, it is also possible to use Eq (10) to calculate the degree of our

belief
bel({yes}) = 0.04,

which is the same as P∗.

Table 3. The combined source is simply the set product of the original sources

X = X1 ⊗ X2 µ = µ1 ⊗ µ2 Γ (x) ⊆ S
combined source joint probability joint mapping

(truthful, working) 0.792 ∅
(truthful, not) 0.008 {yes}

(careless, working) 0.198 {no}
(careless, not) 0.002 {yes, no}

Using Approach 2 in Dempster’s combination framework:

In this approach, function q is used to calculate the joint impact on S without
constructing the joint probability space, according to Eq (12).

Given two original probability spaces (X1, χ1, µ1) and (X2, χ2, µ2) as defined
in the first part of this example, it is possible to calculate q on S as

q(∅) = q1(∅) × q2(∅) = 1 × 1 = 1,
q({yes}) = q1({yes}) × q2({yes}) = 1 × 0.01 = 0.01,
q({no}) = q1({no}) × q2({no}) = 0.2× 1 = 0.2,
q(S) = q1(S) × q2(S) = 0.2× 0.01 = 0.002.
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Dempster also suggested that when S is finite, q can be expressed in the form
of pγ1,...γn . In this example, S contains only two elements, it is therefore possible
to re-write function q as follows:

q(∅) = q00 = p00 + p10 + p01 + p11 = 1,
q({yes}) = q10 = p10 + p11 = 0.01,
q({no}) = q01 = p01 + p11 = 0.2,
q(S) = q11 = p11 = 0.002.

This set of equations determines pγ1γ2 with following values:

p00 = 0.792, p10 = 0.008,

p01 = 0.198, p11 = 0.002.

Therefore, using the method shown in Table 1 or Table 2, the degree of our
belief in the statement ‘the outside is slippery’ is

P∗({yes}) = p10/(1− P00) = 0.008/0.208 = 0.04 = bel({yes}).
This result is consistent with what has been obtained in Approach 1.
Alternatively, as we believe that Dempster’s combination rule, proposed by

Shafer, is inspired by and an variation of Eq (12), it is also possible to apply the
rule to two belief functions in (13) and (14) on S directly. The combined result
is shown in Table 4.

Table 4. The direct application of Dempster’s combination rule.

m {yes} 0.8 {yes, no} 0.2

{no} 0.99 ∅ 0.792 {no} 0.198
{yes, no} 0.01 {yes} 0.008 {yes, no} 0.002

The first row and the first column stand for the two mass functions derived
from the two belief functions defined in (13) and (14) respectively. The combined
mass function on yes is m({yes}) = 0.008/0.208 = 0.04, so that bel({yes}) =
0.04 which is identical to the result in both approaches.

♦
Let us not forget Shafer’s initial independence assumption between Fred’s

opinion and the output of the thermometer when we attempted to solve this
problem. Next we will see when this assumption no longer holds, what results
these approaches will offer.

Example 3:

Continuing with Example 2, assume Shafer believes that the Fred’s answer
relates to the thermometer as Fred accesses to the thermometer regularly to see
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whether it is working. If it is not working properly then Fred would be careless
in answering questions. Assume that Fred has a 90% chance of being careless if
the thermometer is not working, then Fred’s answer is somehow affected when
the thermometer is not working.

Using Approach 1 in Dempster’s combination framework:

Because the two original probability spaces are not statistically independent,
it is impossible to get the joint probability distribution µ on the joint space X
by simply applying ⊗ to µ1 and µ2. Under this circumstance, Shafer somehow
worked out an alternative joint probability distribution µ′ on the same joint
space X (X = X1 ⊗ X2). The probability that µ′ assigns on each element in
X is shown in the second column in Table 5. Based on this newly created joint
probability space (X, χ, µ′) and the original multivalued mapping Γ between X
and S (shown in the third column in Table 5), Eq (3) (or Eq (10)) once again is
used to calculate the degree of our belief

P∗({yes}) = µ′({yes}∗)/µ′(S∗) = µ′({(truthful, not)})/µ′(S∗)
= 0.001/0.201 = 0.005 = bel({yes}),

where µ′(S∗) = 1 − 0.799.

Table 5. The combined space and its new probability distribution from the two original
spaces, when the original two spaces are not independent

X = X1 ⊗ X2 µ′ Γ (x) ⊆ S
combined source joint probability joint mapping

(truthful, working) 0.799 ∅
(truthful, not) 0.001 {yes}

(careless, working) 0.191 {no}
(careless, not) 0.009 {yes, no}

This result is obviously different from the result in Example 2 because of the
relationship between the two pieces of evidence.

Using Approach 2 in Dempster’s combination rule:

If we took a chance and believed that Approach 2 in Dempster’s combination
framework could be applied, then we would end up with exactly the same calcu-
lation procedure, and the same result of course, as in Example 2, because the two
original sources are still the same. When function q is being calculated, there are
no requirements on the joint probability of the originial sources, so the change
Shafer made in µ′ has no way to be reflected. Therefore, the second approach
should not be used in the non-independent situation at all. As a straightforward
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consequence, Dempster’s combination rule should not be allowed to apply in this
case as well3, as the rule is practically a different way of calculating q.

The summary of this analysis is shown in Table 6.

Table 6. Comparison of Dempster’s original combination framework and Dempster’s
combination rule in different situations

Dempster’s combination framework Dempster’s combination rule
Approach 1 Approach 2 bel1 bel2

Example 2 Applicable and correct Applicable and correct Applicable and correct
Example 3 Applicable and correct Inapplicable Inapplicable

We can see from this table that whenever Approach 2 is applicable, Demp-
ster’s rule is guaranteed applicable and whenever Approach 2 is not applicable,
Dempster’s combination rule is not applicable either.

♦
If an agent uses Dempster’s combination rule under the condition that the

rule comes from Dempster’s combination framework, then the agent can nor-
mally use the rule correctly. However, if an agent does not have Dempster’s
combination framework in mind when he intends to apply Dempster’s combina-
tion rule, then it is sometimes very difficult to judge whether the rule is applic-
able, given two belief functions. We use next example to further emphasise the
importance of bearing in mind the fact that Dempster’s combination rule comes
from Approach 2 in Dempster’s combination framework whenever Dempster’s
combination rule is being used.

Example 4 (from [22])

There are 100 labelled balls in an urn. Each ball must have either label a or
b, in addition to some extra labels, x or y or xy.

Agents A and B give separate observations of drawing a ball from the urn as
follows.

Agent A: the drawn ball has label x. The space of labels describing those
balls is X1 = {axy, ax, bxy, bx} with probability distribution

µ1({axy}) = µ1({ax}) = 4/28,

µ1({bxy}) = µ1({bx}) = 10/28.

The probability µ1({axy}) = 4/28 means that a drawing ball has label axy with
probability 4/28 when it is known that the label definitely contains x.

3 If Dempster’s combination rule were applied, the result would still be bel({yes}) =
0.4, which would have not shown the inter-relationship between the two mass func-
tions.
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Agent B: the drawn ball has label y. The space of labels describing those
balls is X2 = {axy, ay, bxy, by} with probability distribution

µ2({axy}) = 4/50, µ2({ay}) = 16/50,

µ2({bxy}) = 10/50 µ2({by}) = 20/50.

The probability µ2({axy}) = 4/50 means that a drawing ball has label axy with
probability 4/50 when it is known that the label definitely contains y.

Based on these two pieces of evidence, we are interested in knowing the degree
of our belief that the drawn ball also has label b.

First of all, we try to work out the solution using Dempster’s combination
rule.

Using Dempster’s combination rule:

Let {a, b} be a frame of discernment, where a stands for ‘the drawn ball has
label a’ and b stands for ‘the drawn ball has label b’. Two mass functions are
defined on S based on the information carried by two agents A and B as:

mX(a) = 2/7, mX(b) = 5/7,

mY (a) = 2/5, mY (b) = 3/5,

where mX(a) is the mass value on a given by agent A’s observation which rep-
resents the possibility of a ball having label a when the ball is observed having
label x and mY (a) is the mass value on a given by agent B’s observation which
represents the possibility of a ball having label a when the ball is observed having
label y.

The result of applying Dempster’s combination rule to mX and mY is m(b) =
mX ⊕ mY (b) = 15/19. So bel(b) = 15/19.

Before judging whether this result is right or wrong, let us see what results the
two approaches in Dempster’s combination framework and Bayesian probability
can offer.

Using Bayesian probability:

In probability theory, the full information of probability distribution on every
possible label must be known. This information is provided in Table 7.

The probability that a ball has both labels x and y is

p(x)p(y) = 0.28× 0.5 = 0.14 = p(x ∧ y).

Therefore, the conditional probability that a drawn ball also has label b is p(b |
x∧ y) = 5/7 when both labels x and y are observed.

Using Approach 1 in Dempster’s combination framework:
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Table 7. All the possible labels, the number of balls with each possible label, and the
prior probability of drawing a ball having a particular label.

Set of labels X Number of balls having that label µ

axy 4 0.04
ax 4 0.04
ay 16 0.16
a 16 0.16

bxy 10 0.1
bx 10 0.1
by 20 0.2
b 20 0.2

In fact, the information provided by agents A and B are carried by two
probability spaces (X1, χ1, µ1) and (X2 , χ2, µ2) with χ1 = 2X1 and χ2 = 2X2 . Let
us construct another space containing labels a and b only, S = {a, b}, then there
can be two multivalued mapping functions between the two spaces (provided by
A and B) and S as

Γ1(axy) = Γ1(ax) = {a}, Γ1(bxy) = Γ1(bx) = {b},

Γ2(axy) = Γ2(ay) = {a}, Γ2(bxy) = Γ2(by) = {b}.
The idea of Approach 1 is to get a combined space first before the combined

probability is propagated to space S. In this case, these two probability spaces
are not independent as they are from the same original probability space. Agents
A and B have only provided partial information. So the combined probability
distribution on the combined space X = {axy, bxy} is not µ1 ⊗ µ2 but the
posterior probability distribution µ′(•) = µ(•/x∧y) as given in column 3 in Table
8, after agents A and B’s opinions are considered. The combined multivalued
mapping function is detailed in the fourth column in Table 8.

Table 8. Possible labels after A and B’s opinions are considered, the number of balls
having each possible label, the posterior probability distribution, and a multivalued
mapping between X and S

Set of labels X Number of balls having that label µ′ Γ (•) ⊆ S

axy 4 4/14 a
bxy 10 10/14 b

Therefore, according to Eq (3), the degree of our belief that the drawn ball
also has label b is P∗({b}) = µ′({b}∗)/µ′(S∗) = (10/14)/1 = 5/7, when agents A
and B confirmed that the label of a drawn ball contains both x and y.

Using Approach 2 in Dempster’s combination framework:
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This is a typical situation where the two original probability spaces are not
independent, so Approach 2 cannot be used.

Discussion: Obviously the result obtained in DS theory is different from that
obtained in probability theory and that in Dempster’s combination framework,
and the result given in DS theory is wrong. The very reason of this wrong
result is that since the two pieces of evidence are not statistically independent,
Approach 2 cannot be applied. Therefore Dempster’s combination rule should
not be applied either.

♦
The importance of considering relations among the original information

sources has once again been discussed above. The result tells us that it is more
natural to consider the combination at both the original information level and
the target information level than only at the target information level.

6 Summary

In this paper, we have examined DS theory from the perspective of probability
theory and tried to clarify the independence requirement in DS theory by de-
fining the original information level and the target information level. We argue
that any independent judgement in DS theory should be made explicitly at the
original level. Merely considering Dempster’s combination rule alone without
examining the original information will cause problems. However Dempster’s
combination rule does not give us (or requires from us) any information about
what the original sources are. So the conclusion we get from the above analysis is
that some counterintuitive examples given in some articles [2], [9], [12], and [13]4

are caused by ignoring the independence requirement defined by Dempster in his
combination framework. In the sense of statistically independence required by
Dempster’s combination framework, those examples do not satisfy this require-
ment, so Dempster’s combination framework is not applicable. However if we
merely consider Dempster’s combination rule and believe that those examples
satisfy the independence requirement needed by Dempster’s combination rule
then Dempster’s combination rule is applicable, but the combination results are
counterintuitive. From the former point of view, they are caused by the misap-
plication of the framework; and from the latter point of view, they are caused
by the weakness of the combination rule. Neither of them is able to deal with
those cases. Based on such a discussion, those belief functions, which can only
be viewed as generalised probabilities, are precisely the cases which fail to sat-

4 Some of the examples in [22] show the sensitivity of choosing frames. The author
argued that the accuracy of reasoning results depends on at which level the frame
is constructed such as Example 4.1. Some other examples explain that even though
Dempster’s combination rule can be used in some situations, the results are still
counterintuitive (violate with common sense) like Example 6.12, due to the normal-
isation of the combination rule. This problem is also discussed in [21], [24] and [25].
Readers can refer to those papers if interested in more details.
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isfy the requirement of DS-independence. So Dempster’s combination rule is not
suitable for coping with them.
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