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Abstract

In this paper, we investigate into applying a novel approach to repre-
senting the topologies of telecommunication networks (TNs) by adopting
the ideas in the assumption-based truth maintenance system (ATMS). A
new meaning is given to the justifications to reflect the requirements of
telecommunications. As results, a domain independent data structure is
designed for telecommunication networks using which the maintenance of
the topology of a constantly changing network needs only little work, and
a generic fault detection algorithm is developed.

Keywords: ATMS, diagnostic systems, telecommunications.

1 Introduction

The applications of telecommunications are increasingly popular in recent years.
The telecommunication networks (TNs) in use are getting larger and larger.
Therefore, the management of such a network is increasingly difficult. Fault
management, a crucial functionality in any network management, is even more
difficult to handle. Inevitably, various kinds of approaches for fault management
have been investigated, such as model-based approaches ([4], [6]), neural nets
methods (e.g., [5]), fuzzy-set based approaches (e.g., [7]), and probability theory
([1]) or evidential theory related approaches ([2]).

When one uses a model-based diagnostic technique, two main components
are necessary. One is the structural model which simulates the physical model
of the network, another is the behavior model which simulates how the network
works. This method has been used widely in the network maintenance in the
past. However, researchers gradually realized that this method has a number
of disadvantages, such as, the difficulty of redefining the structural model when



the network has changed, the difficulty of acquiring network behavior knowledge
from experts, and the exponentially computational complexity with the num-
ber of components. Some model-based approaches even require an exhaustive
model of the fault behavior which turns out to be difficult to define. Therefore,
searching for alternative techniques is inevitable.

The neural network approach can be seen as an alternative to the model-
based approach in the way that each fault detection only involves a number of
components in the network. However, as the procedure of building (training) a
neural network is very slow, and the interaction of such a system with human
experts is difficult to master, the method has not been widely used in this area.

Dawes et al ([2]) discussed the method of using the Dempster-Shafer theory
of evidence to deal with the uncertain status of components (broken or not)
and to manage the degrees of beliefs about their status according to the fault
reports. In this paper, a list of nodes describing all components (or called
devices) is defined. In particular, within each node, there is a slot recording the
distance (the count of how many nodes are in the middle) between this node
and the nearest data collector (monitor). This information is combined with
the knowledge of network topology to decide to which nodes the propagation
proceeds. There are two limitations in their method. First, if a network is
changed (updated) in some way, many nodes would have to be revised to reflect
the changes. Second, the knowledge about the network topology has to be
changed. These two tasks may involve considerable time and effort along with
any changes of the network.

In order to overcome these difficulties, in this paper, we introduce a novel
approach to designing a domain independent data structure for telecommuni-
cations using assumption-based truth maintenance systems (ATMSs) [3]. An
adapted ATMS data structure is proposed to describe the topology of a TN. In
this data structure, a list of nodes are designed for devices in a network which
are similar to the nodes in [2]. However, our method is superior to [2] in the
way that we don’t record the distance of a node to a monitor, rather we record
the neighbour nodes of a node. So that the topology of a network is implied in
all these nodes, and no separate knowledge about the structure of a topology
is required. Therefore, the changes needed to reflect the revised networks are
minimum.

The main contributions of this paper are:

1) Providing a simple, but efficient method to represent the topology of a
network.

2) Extending or changing the network structure only need to revise the
messages on connections in a limited number of nodes.

3) Enabling a system using this data structure to deal with uncertain and
imprecise fault messages by associating probabilities on proper nodes.

4) Designing a domain independent fault detection algorithm for locating
possible sources of faults.



Besides, the data structure also support the parallel execution of the algo-
rithm in the case of multiple faults.

Therefore, the new approach has a number of advantages over the methods
in [4], [5], [2]. It has promising application potentials in the telecommunication
network management domain.

The paper is organized as follows. Section 2 introduces the basics of an
ATMS. Some key concepts justifications, assumptions, and labels are explained
in detail. Section 3 discusses how to adapt the ATMS structure to describe the
topology of a network. New meanings are given to the justifications to suit the
features in networks. A special kind of fault problem, i.e., connection failures,
is used to demonstrate how to use the data structure. Section 4 introduces the
generic fault detection algorithm based on this data structure and Section 5
summarizes the paper.

2 The Basics of ATMSs

The assumption-based truth maintenance system (ATMS) [3] is a symbolic ap-
proach to manipulating statements in order to obtain a set of specific statements
in which we believe. The basic and central idea in such a system is that each
statement is assigned to a set of reasoning pathes, each of which is called a jus-
tification. Each justification contains a number of other statements from which
the current statement can be derived. Justifications are specified by the system
designer. Through justifications, a set of supporting environments is produced
for the statement. A supporting environment contains a set of special state-
ments which are assumed to be true if no conflicts, and are called assumptions.
Each supporting environment suggests that the statement is believed to be true
under these assumptions. In an ATMS, each statement is represented using a
unique node.

For instance, if we have two statements representing inference rules r : p —
q and ry : ¢ — r, then logically we can infer that r3 : p — r. In an ATMS, if
ri,ry and rg are represented by node;, nodes and nodes respectively, then nodes
is derivable from the conjunction of node; and nodey. We call (node;,nodes)
a justification of nodes. So a justification is a set of nodes from which a node
is provable. If we also have nodes and nodes from ry : p - sand r5 : s > r
respectively, then (nodes,nodes) is another justification of nodes. Normally a
statement may have several justifications.

If we take p and r as two devices in a network, then formula p — r can
be explained as that p and r are connected if pairs p and ¢, and ¢ and r are
connected (or alternatively, if pairs p and s, and s and r are connected). Fur-
thermore if node; and nodes are valid under the conditions that A and B are
true respectively, then nodes is valid at least when the condition A A B is true,
denoted as {A,B}. {A},{B} and {4, B} are sets of supporting environments
of nodey,nodes and nodes respectively. Associating nodes with the supporting



environments (such as {A, B}) and the justifications (such as (node;,nodes)),
nodes is represented in the form of

< mnodeg : p = r,{{A,B},{C,D}},

{(nodey,nodes), (nodey, nodes)} >

where {C, D} represents the set of supporting statements derived from justifi-
cation (nodes,nodes). nodes is true when A and B are true, or when C, D are
true. The collection of all possible sets of supporting environments is called the
label of a node, and denoted as L(node;).

In general, a node in an ATMS is in the form of < node;
datum, label, justi fications >. If we assume that rq,r2, r4, and r5 hold without
requiring any dependent relations on other nodes, then node;, nodes, nodes, and
nodes are represented as

<mnoder : p — ¢, {{A}},{0} >,
<nodes : ¢ = r,{{B}}, {0} >,
<nodey :p— s, {{C}},{0} >
< nodes : s = r,{{D}},{0} >

)

A, B,C, and D are assumptions which are assumed to be true if there is no
conflict. Assumptions are in capital letters in an ATMS and we follow this
convention in this paper.

Statement A supporting p — ¢ can be explained as that devices p and ¢
are connected through cable A. Only when A is working properly, the part of
the network is OK. Similarly, B, C, and D can all be explained as cables (or
wires). Using the first justification of nodes, supporting environment {4, B}
is obtained. Similarly, the second part of L(nodes) is derivable. Therefore, we
can infer the label for any node as long as its justifications are known. A node
is believed if at least one of its environments containing assumptions is derived
through a justification.

3 The Adapted ATMS Structure for TNs

The main idea in an ATMS is to use justifications as inference pathes to infer
the potential conclusions, given the initial inputs. If we apply this idea directly
to the fault detection, we will have to enumerate different combinations of phe-
nomena and faults. Obviously, in a large network, this is almost impossible.
So we will have to think to apply the idea in ATMSs in a different way. This
section concentrates on exploring the new usage of justifications in establishing
an adapted ATMS structure for representing the topology of a network.



3.1 New meanings of justifications

Example 1: Assume we have three PCs connected as shown in Figure 1la. If
PCj is in control of this part of the network (PCj5 is a monitor) and we use
each node for each device, the three ATMS nodes representing these three PCs
will be as shown in Figure. 1b.
B
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Figure la. Three connected PCs.

< node; : PCy,{{PC4,B,C,E}},{()} >,
< nodey : PCy, {{PC>,D,C,E}}, {()} >,
< nodey : PC3, {{PC5}},{0)} > .

Figure 1b. ATMS nodes.

Here B, D, and E are cables, and C is a part of a network. {PCy, B,C, E}
represents that PC} is connectable when PC4 and all B, C, E are working prop-
erly.

If the data collector ([2]) or a alarm residented in PCj5 reports losting contact
with PC}, it implies that the possible fault lies in {B,C, E, PC, }. In this case
it is obvious to a human expert that checking whether PC5 is working will help
to locate the sources of a fault. That is to see whether the fault is caused by a
common part shared by the routes between PC; and PC3 and between PCs and
PC5. This will help to narrow down the sources of the fault to either { PC}, B}
or to {C, E}. How can we let a system know how to narrow down the possible
sources of faults in general? If we put node; in the justification part of nodes
and put nodes in that of node; as below

< nodey : PCy,{{PC4,B,C,D}},{(nodes)} >,

< nodey : PCy, {{PC5,E,C,D}},{(node1)} >,

and ask the system to test the nodes in the justification set. Then this will
let the system know which node should be tested on. Surely in this case, a
justification is not used to derive a label. Rather, it is used to narrow down
the sources of faults among assumptions in a label, because the label sets of
node; and nodey are overlapped. The test on the nodes included in such a
justification helps to decide whether the fault lies in the overlapped parts of the
environments.

Example 2: We expand the above network by attaching PC4 with PC}
through a cable F as shown in Figure 2 (in Appendix). When PCy is not
contactable, checking PC; would be vary helpful for finding the sources of a
problem. So a meaningful ATMS node for PC} should look like:



< nodey : PCy,{{PC4, F,L(nodey)}},{(node1)} > .

The justification (node;) indicates that node; is in control of linking PCy
and PCj5. If the connection between PCy and PC3 is down, by looking at the
justification of nodey, the system knows that checking the connection between
node; and nodes would help to decide the source of a fault.

The function of justification (node;) in nodes is also to narrow down the
source of a fault. However the functionalities of node; as a justification in nodey
and in nodes are different. To distinguish these two types of justifications, we
divide the nodes in justifications of node; into two groups: the essential group
and the assistant group.

The essential group of node;: this group contains those nodes, which provide
different communication pathes between node; and the data collector (or central
control). The labels of these nodes are parts of the environments of node;. node;
is an essential node of node,.

The assistant group of node;: this group contains those nodes, which share
a part of the communication link with node;, but the connection between node;
does not go through any of them. The labels of these nodes are overlapped with
some environments of node;, but not subsumed by the environments of node;.
node; is an assistant node of nodes.

In this way, the justifications are not used to infer labels as in traditional
ATMSs, rather they are given fresh meanings as providing nodes for auxiliary
tests in order to decide those assumptions which are likely to cause the fault.

3.2 The adapted ATMS data structure

Upon the new meanings and functionalities of justifications, the basic data struc-
ture, therefore, for a TN is an adapted ATMS node, which has the similar
structure with a normal ATMS node but has two separate justification sets.

Definition 1 : Adapted ATMS data structure.
An adapted ATMS data structure is a quintuple

< node; : device_name,label, Jy, Jo >
where

e node; is a unique identifier to identify a node in an ATMS system,
e device_name is the actual name of that device,

e label is a set of environments, each of which provides a link between this
device and the monitor,

e J; means justification 1 which is a set containing all the essential nodes
of node;,



e Jo means justification 2 which is a set containing all the assistant nodes
of node;.

When node; is out of contact, the system choses the nodes in justification; to
test on first, then in justi fications.

Every device in a network is mapped to a node in the above data structure,
so the connections among all the devices are implied in these nodes. In Figure
2, image that PC is linked with PC3 via another device D;, D; certainly is
essential to the link between PC4 and PCs;. However, we don’t take D; as
an essential node for PCy in order to keep the sizes of justifications minimum.
Doing so will not lose any necessary information for PC4 because L(PCy) is a
part of an environment of PCy and in turn L(D;) is a part of an environment
of PCy, so L(Dj) is a part of L(PCy). The following definition decides all the
essential nodes for a device.

Definition 2 : Fssential nodes of a node.

All the essential nodes for node D are included in set justification; which
is defined as:

justifications = {D; | L(D;) C L(D), ¥ L(D;) C L(D)Ai#j, L(D;) €
L(D;)}.

Here L(D;) C L(D) means that for each environment E(D;), there exists an
environment E(D) where E(D;) C E(D).

So the essential nodes of node D are those nodes which form a part of the
links between D and the monitor, and are closest to D. Assistant nodes normally
only exit for those nodes which are directly connected with the monitor without
passing through any other nodes. If node; is a node staying far away from a
monitor, then there must be some nodes sitting in the middle between node;
and the monitor, so node; has some essential nodes providing vital links.

Fault reports cannot always be precise. In this data structure, if we attach
numerical degrees of belief to assumptions, we may be able to infer a statement
with a degree of belief. For example, if we know that cables F, B and E all have
probability 0.2 to be down independently and the probability of PCy is not
working is 0.1, then the probability of PCjy is connected is 0.46 [8]. Therefore,
deal with imprecise and uncertain fault reports are possible in this structure.

3.3 An example

To apply the adapted ATMS mechanism to fault management in TNs, the first
step is to construct a list of nodes which describe the topological structure of the
TN. Within this network, we assume that there is a central control which receives
reports from monitors (or called alarms in some cases) across the network. A
report from a monitor may either indicate a normal situation or a fault(s).



Example 3: We apply our approach to an example in [2] to show how to
use this method in practice. Assume that a part of a network is shown as in
Figure 3! in Appendix.

Letters A,B,C,D,E,F,G,H,I,J,L and R are links (maybe wares, or ca-
bles) between two devices and they are known as assumptions. M; means that
this is the ¢th monitor of the network. Ri, Ry, R3, and R4 are routers. Ly and Ly
are LANs (we treat each of them as a whole unit). Wi, ...Ws are Workstations.

Using the data structure we designed, a list of adapted ATMS nodes are
obtained as follows.

< nodey : My, {{Mi}}, {0}, {0} >,
< nodey : Ry, {{RlaA}}a {()}7 {()} >

< nodes : R, {{R2, B, L(nodes)}}, {(node2)},{()} >,
< nodes : R3,{{R3,C, L(node2)}}, {(node2)},{()} >,
< nodes : Ry, {{R4, F, L(nodes)}

{R4, E, L(node4)}},{(nodes), (nodeq)},{()} >,

< nodeg : Ly, {{L2, D, L(node3)}}, {(nodes)},{()} >,
< noder : Ly, {{L4, J, L(nodes)}},{(nodes)}, {(

< nodeg : Wy, {{W1, G, L(nodeg)}}, {(nodeg)
< nodeg : Wa, {{Ws, H, L(nodeg) } }, { (nodes)
< nodeyg : W3, {{Ws, I, L(nodeg)}}, {( )
< nodeyy : Wy, {{W4, R, L(noder) }}, {(noder)},
< noders : Wi, {{W5s, L, L(noder) }}, {(noder)}

)

)

)

When monitor M; reports that R4 is not responding, the high-level control
system will load this list of nodes into the system first and then apply an ap-
propriate fault detection algorithm (see next section) to find the sources of the
fault. Assume that the serial lines F and F are down at the moment which
have caused the links blocked. The algorithm first searches the nodes in J; of
Ry. There are two nodes nodes and nodey in that set. The algorithm then tests
whether nodes is responding OK. The result is yes. So assumption F is taken
as a possible source of fault, and put into F(R4). Similarly, the test on nodes
is positive, so F' is added as a possible source of the fault as well, and put into
F(R4). There are no more nodes left to be tested. The algorithm outputs E
and F' as the possible sources of the fault.

4 Fault detection algorithm

Based on the adapted ATMS data structure in Section 3, a generic fault detec-
tion algorithm is built. Given a list of nodes which are divided into sub-lists,
we assume that each sub-list is led by a monitor node for this sub-network.

IWe made some changes to make all the devices and assumptions more obvious.



When the central control system receives an abnormal message from monitor M
reporting the connection failure of device A (or A is not responding within a cer-
tain threshold ), the following fault detection algorithm is called to isolate the
fault sources. The following variables will be used throughout this algorithm.

e J1 is a list containing the essential nodes in justification;.
e J2 ig a list containing the assistant nodes in justifications.

F(A) is empty initially. This set is gradually expended to contain only
those assumptions which may have caused the failure.

E(A) is used to stand for an environment in the label of A.

If E(A) = {P,...R, L(J;)}, then E'(A) = E(A)\ L(J;).

F'(A) is a temporary variable to record those assumptions which may
have caused the failure .

We also assume that procedure Test(M, J;) is a standard program to test
whether node J; is responding to monitor M. If yes, the output of the test is
true, otherwise, the output is false.

Algorithm FD(M,A,F(A)): Fault Detection algorithm

Step 1: Load the sub-list of nodes led by monitor M.

Step 2: Search the list to find the node which stands for device A.
Let J1 = justification, and J2 = justifications of A.
Let F(A) = {} and F'(A) = {}.
If J1 # {}, go to Step 3; else if J2 # {}, go to Step 6.
Define F(A) = L(A). Go to Step 9.

Step 3: Chose a justification J; from J1.

Let
E'(A) = E(A)\ L(J;) | L(J;) € E(A),

J1=J1\ {J;}.

Call Test(M, J;).

Step 4: If Test(M, J;) = false, then call Algorithm FD(M, J;, F(J;)) and let
F(A) = F(A)U F(J;) else define F(A) = F(A) U E'(A).

When J1 # {}, go to Step 3.



Step 5: Output list F'(A) (each element of F(A) causes one route blocked). If
J> = {}, terminate the algorithm.

Step 6: Chose a justification J; from J2. Call Test(M, J;).

J2 = J2\ {J;}.
If Test(M,J;) = false, then call Algorithm FD(M, J;, F(J;)) and let
F'(A) = F'(A) U F(J;) else go to Step 7.
Go to Step 6 if J2 # {} else go to Step 8.

Step 7: For every E(A) do
for every E(J;)
do {let E'(A) = E(A) N E(J;) | E(Ji) N E(A) £ {},
let F'(A) = F'(A) U E'(A). }

When J2 # {}, go to Step 6.

Step 8: For every two element f; and fo of F'(A) do:
lf f1 g fQ, let FI(A) = F’(A) \fl,
if fo C fi1, let F'(A) = F'(A) \ fo.

Step 9: Output list F'(A). Terminate the process.

The algorithm has been implemented both sequentially and parallelly (in
terms of runing multiple copies of the algorithm), and a set of testing results is
reported in [9].

5 Conclusions

This paper presents some preliminary research results on applying ATMS struc-
ture into fault management in telecommunication networks. The paper’s main
contributions are the adapted ATMS data structure for devices and the generic
fault detection algorithm. In this way, the topology of a network is easily built
with the data. It is expected that this structure will provide some fresh ideas
in combining artificial intelligence methods into traditional fault diagnosis. We
narrowed our attention to problems of links between hardwares only in this
paper. Principlely a node can stand for a variety of things, such as, a piece
of software, a hardware, a LAN as a whole, a cable, a switch, etc. We will
investigate into using nodes for softwares in the near future.
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