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Abstract

In this paper, we introduce two pairs of rough operations on Boolean algebras.
First we define a pair of rough approximations based on a partition of the unity of
a Boolean algebra. We then propose a pair of generalized rough approximations on
Boolean algebras after defining a basic assignment function between two different
Boolean algebras. Finally, some discussions on the relationship between rough oper-
ations and some uncertainty measures are given to provide a better understanding
of both rough operations and uncertainty measures on Boolean algebras.
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1 Introduction

Rough set theory was introduced by Pawlak [16] to generalize the classical set
theory. In rough set theory, given an equivalence relation on a universe, we
can define a pair of rough approximations which provide a lower bound and an
upper bound for each subset of the universe. Rough approximations can also
be defined equivalently by a partition of the universe which is corresponding
to the equivalence relation [11]. In [14,15], Yao generalized rough set theory
by generalizing the equivalence relation to a more general relation, and then
interpreted belief functions using the generalized rough set theory in [12].

In [6,7], Bayesian theory and Dempster-Shafer theory [3] are extended to be
constructed on Boolean algebras. This provides a more general framework to
deal with uncertainty reasoning. In this paper, we define a pair of dual rough
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set operations on Boolean algebras to interpret belief functions and some other
uncertainty measures on Boolean algebras. The new pair of rough operations
coincide with ∩- and ∪-homomorphisms in interval structure [9,10]. The differ-
ence is that the ∩- and ∪-homomorphisms are defined by some axioms, whilst
the (generalized) rough operations are defined by a (generalized) partition.
The lower approximation defined in this paper can be used to interpret belief
functions on Boolean algebras in [7]. We establish a one to one correspondence
between belief functions and pairs consisting of a Bayesian function and a lower
approximation given by a basic assignment. This result is more general than
the corresponding relation between rough sets and belief functions given in
[12].

This paper is organized as follows. In the first two sections, we introduce some
important concepts of Boolean algebra and evidential measures on Boolean
algebras. In Section 4, we first define a pair of rough approximations based on
a partition of the unity of a Boolean algebra, then propose a pair of generalized
rough approximations after defining a basic assignment function between two
different Boolean algebras. In Section 5, we discuss relationship between rough
operations and some uncertainty measures. Finally, we summary the paper in
Section 6.

2 A Brief Review of Boolean Algebra

A Boolean algebra [4] is a 6-tuple 〈χ, ∪, ∩, ′, Φ, Ψ〉 where χ is a set:
Φ, Ψ∈χ, and for every A, B ∈ χ there exist A∪B ∈ χ, A∩B ∈ χ satisfying
the following conditions

b1) commutative laws: A∪B = B∪A, A∩B = B∩A;
b2) associative laws: A∪(B∪C) = (A∪B)∪C, A∩(B∩C) = (A∩B)∩C;
b3) there exist Φ, Ψ∈χ : A∪Φ = A, A∩Ψ = A and Φ6=Ψ;
b4) for every A ∈ χ there exists an A

′

∈ χ such that A∪A
′

= Ψ, A∩A
′

= Φ;
b5) distributive laws:

A∩(B∪C) = (A∩B)∪(A∩C), A∪(B∩C) = (A∪B)∩(A∪C).

We call

1. χ the space of the Boolean algebra 〈χ, ∪, ∩, ′, Φ, Ψ〉;
2. ∪ the union operation of the algebra;
3. ∩ the intersection operation of the algebra;
4. ′ the negation operation of the algebra;
5. Φ the zero element of the algebra;
6. Ψ the unity element of the algebra
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We say that B includes A, denoted by A⊆B, if any one of the following
statements hold: 1) A∩B = A; 2) A∪B = B; 3) A′∪B = Ψ; 4) A∩B′ = Φ.

If ⊆ is considered as a partial ordering, we have

1) Φ is the smallest element in χ; i.e., Φ is included in every A∈χ.
2) Ψ is the biggest element in χ; i.e., Ψ includes every A∈χ.

Example 1 (Finite sets) Let Θ be a finite non-empty set, denoting the frame

of discernment. Then 〈2Θ, ∪, ∩, Θ−X, ∅, Θ〉 is a Boolean algebra, where

1. 2Θ is the power set of Θ; i.e., the set of subsets of Θ, 2Θ = {X|X⊆Θ};
2. ∪ is the union operation for subsets, X∪Y = {x∈Θ|x∈X or x∈Y };
3. ∩ is the intersection operation for subsets, X∩Y = {x∈Θ|x∈X and x∈Y };
4. Θ−X is the complement of X, Θ−X = {x∈Θ|x 6∈X};
5. ∅ is the empty set, the least element in 2Θ under the inclusive relation ⊆;
6. Θ is the greatest element in 2Θ under the corresponding inclusive relation

⊆.

Example 2 (Propositions) Let P be a set of propositions. Then 〈P, ∨, ∧,

¬, F, T 〉 is a Boolean algebra, where F is the ever-false proposition, T is
the ever-true proposition, ∨ is the disjunction operation, ∧ is the conjunction
operation, and ¬ is the negation operation.

In the case 〈χ, ∪, ∩, ′, Φ, Ψ〉 = 〈P, ∨, ∧, ¬, F, T 〉, we usually replace
A⊆B with A→B.

A non-empty subset χ0 of a Boolean algebra χ is said to be a sub-algebra

of χ provided χ0 is closed under the operations ∪, ∩, −, i. e. the following
conditions are satisfied:

1) if A, B∈χ0, then A∪B ∈ χ0;
2) if A, B∈χ0, then A∩B ∈ χ0;
3) if A∈χ0, then A′ ∈ χ0.

Each subalgebra χ0 of any Boolean algebra χ is also a Boolean algebra under
the same operations ∪, ∩, ′ restricted to χ0. The inclusion relation in the
Boolean algebra χ0 is that of χ, restricted to χ0.

An element a 6=Φ of a Boolean algebra χ is said to be an atom of χ, if for every
A∈χ, the inclusion

A⊆a

implies that

either A = Φ or A = a.
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The notion of atom is a Boolean analogue of one-point sets. If a is an atom of
a Boolean algebra χ, then, for every element B ∈ χ,

either a⊆B or a∩B = Φ.

3 Evidential Functions on Boolean Algebras

In this section, we introduce some uncertainty measures on Boolean algebras
in [6,7].

Let 〈χ, ∪, ∩, ′, Φ, Ψ〉 be a Boolean algebra, where Φ is the zero element of
χ and Ψ is the unity element of χ.

A function bay : χ→[0, 1] is called a Bayesian function if

y1) bay(Φ) = 0,
y2) bay(Ψ) = 1.
y3) bay(A∪B) = bay(A) + bay(B) − bay(A∩B).

A function bew : χ→[0, 1] is called a weak belief function if it satisfies

b1) bew(Φ) = 0,
b2) bew(Ψ) = 1,
b3) for any collection A1, A2, ..., An(n≥1) of subsets of Ψ.

bew(
⋃

i=1,...,n

Ai)≥
∑

I⊆{1,...,n}, I 6=Φ

(−1)|I|+1bew(
⋂

i∈I

Ai).

Given a weak belief function bew, the function dow(A) = bew(A′) is called a
weak doubt function and the function plw(A) = 1 − dow(A) = 1 − bew(A′) is
called a weak plausibility function.

A function m : χ → [0, 1] is called a mass function if it has non-zero value
only at a finite number of elements A1, A2, ..., AF in χ and it satisfies

m1) m(Φ) = 0,
m2) ΣX⊆Ψm(X) = ΣF

i=1m(Ai) = 1.

A mass function is also called a basic probability assignment.

A function bel on χ is called a belief function if it can be expressed in terms
of a mass function m : bel(A) = ΣX⊆Am(X) for all A ∈ χ.

Theorem 3 [7] (Belief function is a weak belief function) Let m be a mass
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function. Then the function bel defined by the following expression

bel(A) = ΣX⊆Am(X) for all A ⊆ Ψ

is a weak belief function.

4 Rough Operations on Boolean Algebras

In Pawlak’s rough set theory, a rough set is induced by a partition of the
universe. In this section, we will extend Pawlak’s rough set theory by defining
a pair of rough operations induced by a partition of the unity of a Boolean
algebra. A partition in a Boolean algebra is defined as

Definition 4 (Partition of Ψ) Given a Boolean algebra 〈χ, ∪, ∩, ′, Φ, Ψ〉,
a family consisting of pairwise disjoint elements {Ai}i∈I (where I is an index
set) is called a partition of Ψ if it satisfies

⋃

i∈I

Ai = Ψ.

Now we can define a pair of rough operations on a Boolean algebra.

Definition 5 Let 〈χ, ∪, ∩, ′, Φ, Ψ〉 be a Boolean algebra. If A = {Ai}i=1,...,n

(n≥1) is a partition of Ψ, then a pair of operations L : χ → χ and H : χ → χ

such that

L(A) =
⋃

Ai⊆A, Ai∈A

Ai, (1)

H(A) =
⋃

A∩Ai 6=Φ, Ai∈A

Ai (2)

are called a lower approximation and an upper approximation respectively.

We give some of the properties of the lower approximation and upper approx-
imation as follows.

Theorem 6 Let 〈χ, ∪, ∩, ′, Φ, Ψ〉 be a Boolean algebra. If A = {Ai}i=1,...,n

(n≥1) is a partition of Ψ, L and H are the lower and upper approximations
induced by A respectively, then we have:

1) L(Ψ) = Ψ
2) L(A)⊆A

3) L(A) = L(L(A))
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4) L(A∩B) = L(A)∩L(B)
5) L(A) = H(L(A))
6) L(A) = (H(A′))′.

Proof. 1)-3) and 5) are clear by the definitions of partition and lower approx-
imation. Now let us prove 4) and 6).

4)

L(A∩B) =∪Ai⊆A∩BAi

=∪Ai⊆A, and Ai⊆BAi

= (∪Ai⊆AAi) ∩ (∪Ai⊆BAi)

= L(A)∩L(B).

6) Before the proof of 6), let us introduce a lemma.

Lemma 7 [4] Let 〈χ, ∪, ∩, ′, Φ, Ψ〉 be a Boolean algebra, A, B ∈ χ, then

A∩B′ = Φ if and only if A⊆B.

Now we can continue the proof of 6)

(H(A′))′ = (∪Ai∩A′ 6=ΦAi)
′

=∪Ai∩A′=ΦAi

=∪Ai⊆AAi

= L(A).

Example 8 For the Boolean algebra 〈2Θ, ∪, ∩, Θ−X, ∅, Θ〉 in Example
1, it is clear that, given a partition on Θ, the induced lower approximation
and upper approximation are rough lower approximation and rough upper
approximation in Pawlak’s rough set algebra respectively.

Given two different Boolean algebras 〈χ, ∪, ∩, ′, Φ, Ψ〉 and 〈U , ∪, ∩, ′, ⊥,

>〉, a mapping j : χ → U is called a basic assignment if it satisfies [10]:

1) j(Φ) = ⊥
2) j(A)∩j(B) = ⊥, if A6=B

3)
⋃

A∈χ j(A) = >.
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If j(A) 6= ⊥, A is called a focal element of j. Clearly, all the focal elements
form a partition of >. We call this partition a generalized partition. In the
following, we always assume that the focal elements of j are finite.

Definition 9 Let 〈χ, ∪, ∩, ′, Φ, Ψ〉 and 〈U , ∪, ∩, ′, ⊥, >〉 be two Boolean
algebras. Suppose j : χ → U is a basic assignment. Then a pair of operations
L : χ → U and H : χ → U such that

L(A) =
⋃

B⊆A

j(B), for each A∈χ (3)

H(A) =
⋃

B∩A 6=Φ

j(B), for each A∈χ (4)

are called a generalized lower approximation and a generalized upper approx-
imation respectively.

In Definition 9, if χ = U , {Ai}i=1,...,n (n≥1) is a partition of Ψ and we define
j(A) = A for each A in {Ai}i=1,...,n (n≥1), then the generalized lower approx-
imation(generalized upper approximation) is lower approximation(upper ap-
proximation). Therefore, a generalized lower approximation(generalized upper
approximation) is an extension of a lower approximation (upper approxima-
tion).

Given two Boolean algebras, if L and H are generalized lower and upper ap-
proximations defined by a basic assignment, then the interval [L,H] is an
interval structure defined in [9,10]. That is, the generalized lower and upper
approximations coincide with ∩- and ∪-homomorphisms in interval structure.
The difference is that the ∩- and ∪-homomorphisms are defined by some ax-
ioms, but the (generalized) approximations are defined by a (generalized) par-
tition.

The following properties of generalized lower and upper approximations can
be found in [10,13].

(1) L(A)∪L(B)⊆L(A∪B),

(2) L(A)∩L(B) = L(A∩B),

(3) L(Φ) = ⊥,

(4) L(Ψ) = >,

and

(1′) H(A∩B)⊆H(A)∩H(B),

(2′) H(A)∪H(B) = H(A∪B),

(3′) H(Φ) = ⊥,
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(4′) H(Ψ) = >,

Generalized lower approximation and upper approximation can be defined
axiomatically.

Definition 10 Suppose L : χ → U and H : χ → U are two mappings
from a Boolean algebra 〈χ, ∪, ∩, ′, Φ, Ψ〉 to another Boolean algebra
〈U , ∪, ∩, ′, ⊥, >〉. We say that L and H are dual mappings if H(A) =
(L(A′))′ for every A ∈ χ.

Definition 11 Let 〈χ, ∪, ∩, ′, Φ, Ψ〉 and 〈U , ∪, ∩, ′, ⊥, >〉 be two Boolean
algebras. A pair of dual mappings L, H are called generalized lower approx-
imation and upper approximation respectively, if they satisfy the following
properties:

L1) L(Ψ) = >,
L2) L(A∩B) = L(A)∩L(B),
H1) H(Φ) = ⊥,

H2) H(A∪B) = H(A)∪H(B).

In fact, axioms L1) and L2) form an independent set of axioms for L, whereas
H1) and H2) form an independent set of axioms for H.

There is a one to one corresponding relationship between basic assignment
and generalized lower approximation.

Theorem 12 Let L and H be two mappings from a Boolean algebra χ to
another Boolean algebra U with L(A) = (H(A′))′ for every A∈χ. L satisfies
axioms L1) and L2) if and only if there exists a basic assignment j : χ → U
such that for all A∈χ,

L(A) =
⋃

B⊆A

j(B), (5)

and j is defined as

j(A) = L(A)∩(
⋃

B⊆A

L(B))′. (6)

The proof of Theorem 12 is similar to that of Theorem 1 in [10].

Example 13 (Generalized rough sets) Suppose (2U , ∪, ∩, ¬, ∅, U) and
(2W , ∪, ∩, ¬, ∅, W ) are two Boolean algebras, where U and W are two
finite sets, and j : 2U→2W is a basic assignment from 2U to 2W , then it
is clear that the generalized lower approximation and upper approximation
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induced by j are the pair of lower and upper approximations in a rough set
algebra (2W , 2U , ∩, ∪, ¬, L, H)([11]).

Example 14 (Incidence calculus) Suppose 〈P, ∧, ∨, ¬, F, T 〉 and (2Θ,

∪, ∩, Θ−X, ∅, Θ) are Boolean algebras of propositions (see Example 2) and
finite sets (see Example 1) respectively. If j : P→2Θ is a basic assignment,
then the generalized lower approximation and upper approximation defined
by

i∗(φ) =
⋃

|=ψ→φ

j(ψ)

i∗(φ) =
⋃

ψ∧φ6=F

j(ψ)

are called lower and upper bounds on the incidence respectively. The tightest
pair of lower and upper mappings ([1,2,10]) in incidence calculus are lower and
upper bounds on the incidence defined above.

Example 15 (Modal algebra) In [8], a structure called modal algebra was
introduced to give an algebraic semantics for modal logic [5]. A structure
M = 〈M, ∪, ∩, −, P 〉 is a normal modal algebra iff M is a set of elements
closed under operations ∪, ∩, −, and P such that:

(i) M is a Boolean algebra with respect to ∪, ∩, −;
(ii) for x, y∈M , P (x∪y) = Px∪Py.
(iii) P (Φ) = Φ, where Φ is zero element of M

Another dual operation N is defined as

Nx = −P − x.

Clearly, these defined operations P and N are a lower and an upper rough ap-
proximations respectively. Therefore, our newly defined rough approximations
can be used to interpret modal logic.

5 Rough Operations and Uncertainty Measures

In this section, we will discuss the relationship between rough operations and
uncertainty measures. In the first subsection, we introduce inner and outer
measures on Boolean algebras. Then in the second subsection, the relationship
between rough operations and uncertainty measures is examined.
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5.1 Inner and outer measures on Boolean algebras

Given a Boolean algebra, we may only know Bayesian functions on a subalge-
bra of it when information is absent. For those elements not belonging to the
subalgebra, what we can do is to define inner measure and outer measure on
them as follows:

Definition 16 Let 〈χ, ∪, ∩, ′, Φ, Ψ〉 be a Boolean algebra, χ0 be a subal-
gebra of it. If bay : χ0→[0, 1] is a Bayesian function on χ0, a pair of functions
bay∗ : χ0→[0, 1] and bay∗ : χ0→[0, 1] defined by

bay∗(A) = sup{bay(U)|U⊆A,U∈χ0} (7)

bay∗(A) = inf{bay(U)|A⊆U,U∈χ0} (8)

are called inner and outer measures induced by a Bayesian function bay re-
spectively.

The inner and outer measures of a subset A of Ψ can be viewed as our best
estimate of the true measures of A, given our lack of knowledge. Suppose χ is
a Boolean algebra, and χ′ is a subalgebra of it. We say that Bayesian functions
bay on χ and bay′ on χ′ agree on χ′ if bay(A) = bay′(A) for all A ∈ χ′. Clearly
we have the following result: If Bayesian functions bay on χ and bay′ on χ′

agree on χ′, then bay′
∗(A)≤bay(A)≤bay′∗(A).

Now let us discuss some important properties of inner and outer measures.

Theorem 17 Let < χ, ∪, ∩, ′, Φ, Ψ > be a Boolean algebra, and χ0 be a
subalgebra of it. If bay is a Bayesian function on χ0, bay∗ and bay∗ are inner
and outer measures induced by bay respectively, then the followings hold:

(1) if A⊆B, then bay∗(A)≤bay∗(B), bay∗(A)≤bay∗(B).
(2) bay∗(A)≤bay∗(A).
(3) bay∗(A) = 1 − bay∗(A′).
(4) bay∗(A∪B)≥bay∗(A) + bay∗(B) − bay∗(A∩B).

Proof. (1) and (2) are clear. We will prove (3) and (4).

(3) By Definition 16, we have

1 − bay∗(A′) = 1 − inf{bay(U)|A′⊆U, U ∈ χ0}

= sup{1 − bay(U)|U ′⊆A, U ∈ χ0}

= sup{bay(U ′)|U ′⊆A, U ∈ χ0}

= bay∗(A).
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(4)

bay∗(A∪B) = sup{bay(U)|U⊆A∪B, U ∈ χ0}

≥sup{bay(C∪D)|C⊆A, D⊆B, where C, D ∈ χ0}

= sup{bay(C) + bay(D) − bay(C∩D)|C⊆A, D⊆B, C, D ∈ χ0}

≥sup{bay(C) + bay(D) − bay∗(A∩B)|C⊆A, D⊆B, C, D ∈ χ0}

= sup{bay(C)|C⊆A, C ∈ χ0} + sup{bay(D)|D⊆B, D ∈ χ0}

−bay∗(A∩B)

= bay∗(A) + bay∗(B) − bay∗(A∩B).

Next we will discuss the relationship between inner measures and belief func-
tions.

Theorem 18 Let 〈χ, ∪, ∩, ′, Φ, Ψ〉 be a Boolean algebra, and χ0 be a
subalgebra of it. If χ0 is finite, then every inner measure bay∗ on χ induced by
a Bayesian function bay on χ0 is a belief function.

Proof. Since χ0 is finite, there exists a subset Y of χ0 such that for every
A∈χ0, there exist some elements {Bi}i=1,...m in Y such that A = ∪m

i=1Bi and
Y is a partition of Ψ (we can take Y as all the atoms of χ0). If we define
m(A) = bay(A) for A∈Y and m(A) = 0 otherwise, then it is easy to check
that m is a mass function on χ. Moreover,

bay∗(A) = max{bay(B)|B⊆A, B∈χ0}

=
∑

B⊆A, B∈Y

bay(B)

=
∑

B⊆A, B∈Y

m(B)

Therefore, bay∗ is a belief function.

Since a belief function must be a weak belief function, we have the following
corollary.

Corollary 19 Let 〈χ, ∪, ∩, ′, Φ, Ψ〉 be a Boolean algebra, and χ0 be a

subalgebra of it. If χ0 is finite, then every inner measure bay∗ on χ induced by

a Bayesian function bay on χ0 is a weak belief function.
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5.2 Rough operations and uncertainty measures

Let 〈χ, ∪, ∩, ′, Φ, Ψ〉 be a Boolean algebra , and Y be a finite partition
of Ψ. Let us define χ0 = {A|A is the union of some elements in Y}, then
it is easy to check that χ0 is a subalgebra of χ. Moreover, suppose U is an
arbitrary subalgebra of χ containing Y , then we have χ0 ⊆ U . Therefore, χ0

defined above is the smallest subalgebra of χ containing Y . If bay is a Bayesian
function defined on χ0, then we can extend bay by defining

bay∗(A) = bay(L(A)), (9)

bay∗(A) = bay(H(A)), (10)

where A is a subset of Ψ, L(A) and H(A) are lower and upper approximations
of A respectively. Moreover, we have the following theorem.

Theorem 20 bay∗ and bay∗ defined by Equation (9) and (10) are inner and
outer measures respectively.

Proof. Since

bay∗(A) = bay(L(A))

= bay(∪Ai⊆A, Ai∈YAi)

= max{bay(U)|U⊆A, U ∈ χ0},

and

bay∗(A) = bay(H(A))

= bay(∪Ai∩A 6=∅, Ai∈YAi)

= min{bay(U)|A⊆U, U ∈ χ0},

it follows that bay∗ and bay∗ are inner and outer measures respectively.

By Theorem 18, Corollary 19 and Theorem 20 we have following conclusion.

Corollary 21 bay∗ defined by Equation (9) is both a weak belief function
and a belief function.

From the proof of Theorem 18, clearly we have the following theorem.

Theorem 22 Let 〈χ, ∪, ∩, ′, Φ, Ψ〉 be a Boolean algebra, and χ0 be a
subalgebra of it. If χ0 is finite, then for each inner measure bay∗ induced by
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some Bayesian function bay, there exists a partition Y of Ψ such that

bay∗(A) = bay(L(A)), for every A ∈ χ,

where L(A) is the lower approximation induced by Y .

Theorem 20 and Theorem 22 tell us that the lower approximation and the
inner measure have a one to one corresponding relationship.

When two Boolean algebras are given, we get a pair of generalized rough
operations derived from a basic assignment. We have the following theorem.

Theorem 23 Let 〈χ, ∪, ∩, ′, Φ, Ψ〉 and 〈U , ∪, ∩, ′, ⊥, >〉 be two Boolean
algebras. Suppose j : χ → U is a basic assignment, and L is the generalized
lower approximation derived from j. Suppose bay is a Bayesian function on U ,
then the function bel defined by

bel(A) = bay(L(A)), for every A ∈ χ (11)

is a belief function.

Proof. We define a function m as

m(A) = bay(j(A)), for every A ∈ χ.

It is easy to check m defined above is a basic probability assignment. Let M

denote the set containing all the focal elements of j. Then

bel(A) = bay(L(A))

=
∑

B⊆A, B∈M

bay(j(B))

=
∑

B⊆A, B∈M

m(B),

so bel is a belief function.

Conversely, given a belief function on a Boolean algebra, we can define a
Bayesian function and a generalized lower approximation such that Equation
(11) holds.

Theorem 24 Let 〈χ, ∪, ∩, ′, Φ, Ψ〉 be a Boolean algebra. If bel is a belief
function defined on χ, then there exists a Boolean algebra U and a Bayesian
function bay on it such that Equation (11) holds.
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Proof. Suppose m is the corresponding mass function of bel, M is the set of
focal elements of m and M = {A1, A2, ...An}. Let U be a Boolean algebra such
that there are at least n atoms in it (this Boolean algebra must exist, because
we can take U as a finite set with at least n elements, then define U = 2U).
Let A = {U1, ..., Un} be a partition of Ψ derived from atoms (this can be done
by uniting some atoms). If U0 is a subalgebra generated by A (that is, U0 is
the smallest subalgebra of U containing A), then we can define a mapping
j : χ→U0 such that j(A) = Ui for A∈M and j(A) = ∅ otherwise. Clearly j

is a basic assignment on χ to U0. If we define a Bayesian function bay on U0

such that
bay(Ui) = m(Ai),

then it is clear
bel(A) = bay(L(A)), for each A ∈ χ.

This completes the proof.

Theorem 23 and Theorem 24 show that belief functions are in one to one
correspondence with pairs consisting of a Bayesian function and a lower ap-
proximation given by a basic assignment.

6 Summary

In this paper, we introduced a pair of dual rough operations on Boolean al-
gebras and used them to interpret some uncertainty measures on Boolean
algebras. This pair of rough operations (called generalized lower and upper
approximations) coincide with ∩-homomorphism and ∪-homomorphism de-
fined in interval structure [9,10]. We established a one to one correspondence
relation between belief functions and pairs of a Bayesian function and a lower
approximation. This correspondence relation is more general than the one es-
tablished in [12], where both rough sets and belief functions are defined on
classical sets.
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