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Abstract

In this paper, we investigate the relationship be-
tween two prioritized knowledge bases by measur-
ing both the conflict and the agreement between
them. First of all, a quantity of conflict and two
quantities of agreement are defined. The former is
shown to be a generalization of the Dalal distance.
The latter are, respectively, a quantity of strong
agreement which measures the amount of infor-
mation on which two belief bases “totally” agree,
and a quantity of weak agreement which measures
the amount of information that is believed by one
source but is unknown to the other. All three quan-
tity measures are based on theweighted prime im-
plicant, which represents beliefs in a prioritized be-
lief base. We then define a degree of conflict and
two degrees of agreement based on our quantity of
conflict and the quantities of agreement. We also
consider the impact of these measures on belief
merging and information source ordering.

1 Introduction
In the belief revision and belief merging literature, the well-
known Dalal distance known as the Hamming distance be-
tween interpretations[Dalal, 1988], plays a key role in the
notion of minimal change. The Dalal distance between two
interpretations models how many atoms are in conflict, so it
measures only the quantity of conflict between them. Hunter
has defined a degree of conflict between two knowledge bases
based on the Dalal distance[Hunter, 2004].

In recent years, relationships between two knowledge
bases have been defined by measures of information and con-
tradiction. In[Koniecznyet al., 2003], a degree of contra-
diction and a degree of ignorance were defined and they can
be used to order the sources of information. If a knowledge
base has a high degree of contradiction and a low degree of
ignorance, then it has a low order. In[Hunter, 2002], some
compromise relations between two knowledge bases were de-
fined according to the quantities of conflict information and
total information in them.

In all the relationships described above, the quantity of
conflict information between two knowledge bases was fo-
cused upon. However, in reality, when establishing the rela-

tionships between two agents, not only information in con-
flict, but also information in agreement should be considered.
The quantities of conflict and agreement can affect each other.
Considering two agents with low quantity of conflict between
them, our perception of the degree of conflict between them
will be further weakened if they have a lot in common. Fur-
thermore, when two agents have no information in conflict, it
is useful to consider the agreement between them.

We use two quantities of agreement; one is called the quan-
tity of strong agreement which measures the information that
both agents “totally” agree with, and the other is called the
quantity of weak agreement which measures the information
that is believed by one source but isunknownto the other.
Both quantities will influence the degree of conflict, but their
influences are different. Intuitively, the quantity of strong
agreement will have more influence on the degree of conflict
than the quantity of weak agreement. To illustrate, let us con-
sider the following three knowledge bases:B1 = {φ, ψ},
B2 = {¬φ, ψ}, andB3 = {¬φ}. B1 is in conflict with
both B2 and B3. B1 and B2 strongly agree onψ, whilst
B1 only weakly agrees withB3 on ψ. Clearly the degree
of conflict betweenB1 andB2 should be smaller than that
betweenB1 andB3 because there is a topic that bothB1 and
B2 agree opon. However, when defining the degree of con-
flict [Hunter, 2004], Hunter did not distinguish the influences
of strong agreement and weak agreement. To accompany the
degree of conflict, we can define a degree of strong agreement
and a degree of weak agreement.

In this paper, we will measure the conflict and agreement
between twoprioritized knowledge bases, where the pri-
ority of a formula, based on necessity degrees, is handled
in possibilistic logic. It is well-known that priority plays
an important role in inconsistency handling, belief revision
and belief merging[Gärdenfors, 1988; Konieczny & Ramon,
1998; Benferhatet al., 2002]. Possibilistic logic provides a
good framework for expressing priority. We first define the
weighted prime implicant(WPI), which is a generalization of
the regularprime implicantto possibilistic logic. Then, the
measures of conflict and agreement will be defined by WPIs.

This paper is organized as follows. Section 2 gives some
preliminaries. We then define the weighted prime implicant
and measures of conflict and agreement in Section 3. Sec-
tion 4 discusses the impact of the measures of conflict and
agreement. Finally we conclude the paper in Section 5.



2 Preliminaries
Classical logic: In this paper, we consider a propositional
languageLPS from a finite setPS of propositional symbols.
The classical consequence relation is denoted as`. An inter-
pretation is a total function fromPS to {true, false}. Ω is
the set of all possible interpretations. An interpretationw is
a model of a formulaφ iff w(φ) = true. p, q, r,... represent
atoms inPS. A literal is an atomp or its negation¬p. We will
denote literals byl, l1, .. and formulae inLPS by φ, ψ, γ,...
For each formulaφ, we useM(φ) to denote its set of models.
A classical knowledge base Bis a finite set of propositional
formulae.B is consistent iff there exists an interpretationw
such thatw(φ) = true for all φ∈B. A clauseC is adisjunc-
tion of literals:C = l1∨...∨ln and its dual clause, ortermD,
is aconjunctionof literals:D = l1∧...∧ln.
Possibilistic Logic [Dubois et al., 1994]: Possibilistic logic
is a weighted logic where each classical logic formula is asso-
ciated with a number in[0, 1], a necessity degree, which rep-
resents the extent to which the formula is true. A possibilistic
knowledge base (PKB) is the set of possibilistic formulae of
the formB = {(φi, αi) : i = 1, ..., n}. Possibilistic formula
(φi, αi) means that the necessity degree ofφi is at least equal
to αi. A classical knowledge baseB = {φi : i = 1, ..., n}
corresponds to a PKBB′ = {(φi, 1) : i = 1, ..., n}. In this
paper, we consider only PKBs where every formulaφ is a
classical propositional formula. The classical base associated
with B is denoted asB∗, namelyB∗ = {φi|(φi, αi) ∈ B}.
A PKB is consistent iff its classical base is consistent.

Semantically, the most basic and important notion ispos-
sibility distribution π: Ω → [0, 1]. π(ω) represents the
possibility degree of interpretationω with available beliefs.
From possibility distributionπ, two measures can be deter-
mined, one is the possibility degree of formulaφ, defined as
Π(φ) = max{π(ω) : ω |= φ}, the other is the necessity
degree of formulaφ, defined asN(φ) = 1 − Π(¬φ). The
possibility measure is max-decomposable, i.e.Π(φ ∨ ψ) =
max(Π(φ),Π(ψ)). Whilst the necessity measure is min-
decomposable, i.e.N(φ ∧ ψ) = min(N(φ),Π(ψ)).

Definition 1 [Dubois et al., 1994] Let B be a PKB,
and α ∈ [0, 1]. The α-cut of B is B≥α =
{φ∈B∗|(φ, a)∈B and a≥α}.

Definition 2 [Duboiset al., 1994] Let B be a PKB. A for-
mulaφ is said to be apossibilistic consequenceof B to de-
gree a, denoted byB`π(φ, a), iff the following conditions
hold: (1)B≥a is consistent; (2)B≥a`φ; (3) ∀b>a, B≥b 6` φ.

3 Measures of Conflicts and Agreements

3.1 Weighted prime implicant

In this section, we will define and discuss weighted prime
implicants of PKBs.

A termD is an implicant of formulaφ iff D`φ andD does
not contain two complementary literals.

Definition 3 [Cadoli & Donini, 1997] A prime implicantof
knowledge base B is an implicant D of B such that for every
other implicantD′ of B,D 6`D′.

Prime implicants are often used in knowledge compilation
[Cadoli & Donini, 1997] to make the deduction tractable.
SupposeD1, ..., Dk are all the prime implicants of B, we
haveB`φ, for anyφ iff for every prime implicantDi, Di`φ.

Now we define weighted prime implicants of a PKB. Let
us first define weighted prime implicants for PKBB =
{(φ1, a1), ..., (φn, an)} whereφi are clauses. For a more
general PKB, we can decompose it to an equivalent PKB
whose formulae are clauses by the min-decomposability of
necessity measures, i.e.,N(∧i=1,kφi)≥m⇔∀i,N(φi)≥m.

Let B = {(φ1, a1), ..., (φn, an)} be a PKB where
φi are clauses. A weighted implicant ofB is D =
{(ψ1, b1), ..., (ψk, bk)}, a PKB, such thatD `π B, where
ψi are literals. LetD andD′ be two weighted implicants of
B, D is said to be morespecificthanD′ iff D 6=D′, D′∗⊆D∗

and∀(ψi, ai)∈D,∃(ψi, bi)∈D′ with bi≤ai.

Definition 4 Let B = {(φ1, a1), ..., (φn, an)} be a PKB
whereφi are clauses. A weighted prime implicant (WPI ) of
B is D such that

1. D is a weighted implicant ofB

2. 6 ∃ D′ of B such thatD is more specific thanD′.

Let us look at an example to illustrate how to construct
WPIs.

Example 1 Let B = {(p, 0.8), (q∨r, 0.5), (q ∨ ¬s, 0.6)} be
a PKB. The WPIs of B areD1 = {(p, 0.8), (q, 0.6)},
D2 = {(p, 0.8), (r, 0.5), (¬s, 0.6)}, and D3 =
{(p, 0.8), (q, 0.5), (¬s, 0.6)}.

The WPI generalizes the prime implicant.

Proposition 1 Let B = {(φ1, 1), ..., (φn, 1)} be a PKB
which contains formulae with weight 1, i.e.,B is a classi-
cal knowledge base. ThenD is a WPI ofB iff D is a prime
implicant ofB.

However, given PKBB, if D is a WPI ofB, thenD∗ is
not necessarily a prime implicant ofB∗. A counterexample
can be found in Example 1, whereD3 is a WPI, butD∗

3 =
{p, q,¬s} is not a prime implicant ofB∗.

The following proposition says that WPIs can be used to
compile a PKB.

Proposition 2 Let B be a PKB. IfD1,...,Dn are all the WPIs
of B, then for any formulaφ, we have,

B`π(φ, a) iff Di`π(φ, a), for all Di.

Next we give some justification for the WPI.
First of all, to measure information in a single classical

knowledge base (this knowledge base may be inconsistent),
most of the current methods are based on themodelsof the
knowledge base[Hunter, 2002; Lozinskii, 1994]. In [Hunter,
2002], the degree of inconsistency is measured based on the
modelof an inconsistent knowledge base in the framework
of quasi-classical logic. In[Lozinskii, 1994], a quasi-model
of an inconsistent knowledge base, which is a maximal con-
sistent subbase of the knowledge base, is defined to mea-
sure information for inconsistent sets. By Definition 4, each
WPI can be interpreted as a partial truth assignment. Sup-
posep is an atom andD is a WPI, then(p, a)∈D means



that there is an argument forp in D with certainty degree
a, and(¬p, b)∈D means that there is an argument againstp
in D with certainty degreeb, while φ6∈D∗ means the truth
value ofφ is undetermined inD. By Proposition 2, a WPI
can be viewed as apartial modelof a possibilistic knowledge
base. This is consistent with the methods in[Hunter, 2002;
Lozinskii, 1994].

Second, when all the formulae in a PKB have the same
weight 1, a WPI is a prime implicant. In classical logic, a
classical model is often used to define the distance between
two knowledge bases[Dalal, 1988]. However, classical mod-
els are not suitable for us to define the quantities of agreement
between knowledge bases because a classical model must as-
sign a truth value to every atom in the knowledge bases. Let
us look at the example in the introduction again. The only
model forB1 is w = {φ, ψ} and there are two models for
B3, i.e., w1 = {¬φ, ψ} andw2 = {¬φ,¬ψ}. B1 andB3

weakly agree onψ because onlyB1 supportsψ. However,
by comparingw with w1 or comparingw with w2 we cannot
get such a conclusion. In contrast, a prime implicant can be
viewed as apartial truth assignment. That is, only some of
the atoms are assigned truth values. Given a prime implicant
D of B, a three-value semantics can be associated with it as
follows:

vD(p) =

{

true if D ` p,
false if D ` ¬p,

undetermined otherwise.
(1)

In the example,B1 has one prime implicantD1 = {φ, ψ}
andB3 has one prime implicantD2 = {¬φ}, whereD2 does
not contain any information onψ; so the quantity of weak
agreement betweenD1 andD2 is 1. As a consequence, the
weak agreement betweenB1 andB3 is 1, which is consistent
with our analysis above.

3.2 Quantity of conflict and quantities of
agreement

In this section, we will measure the quantities of conflict and
agreement between two PKBs based on the WPI.

First we define the quantity of conflict between two WPIs.

Definition 5 Let B1 and B2 be two PKBs. SupposeC and
D are WPIs ofB1 andB2 respectively, then thequantity of
conflict betweenC andD is defined as

qCon(C,D) =
∑

(p,a)∈C and (¬p,b)∈D

min(a, b). (2)

When all the weights are 1,qCon(C,D) is the cardinality of
the set of atoms which are in conflict inC∪D.

Definition 6 Let B1 and B2 be two PKBs. SupposeC and
D are the sets of WPIs ofB1 and B2 respectively, then the
quantity of conflict betweenB1 andB2 is defined as

QCon(B1, B2) = min{qCon(C,D)|C∈C, D∈D}. (3)

The quantity of conflict betweenB1 and B2 measures the
minimum amount of information in conflict between them.

Example 2 Let B1 = {(¬p, 0.8), (¬q ∨ r, 0.6)} and
B2 = {(p ∨ ¬r, 0.7), (q, 0.5)} be two PKBs. The

WPIs of B1 are C1 = {(¬p, 0.8), (¬q, 0.6)} and C2 =
{(¬p, 0.8), (r, 0.6)}, and the WPIs ofB2 are D1 =
{(p, 0.7), (q, 0.5)} andD2 = {(¬r, 0.7), (q, 0.5)}. It is easy
to calculate thatqCon(C1,D1) = 1.2, qCon(C1,D2) =
0.5, qCon(C2,D1) = 0.7, qCon(C2,D2) = 0.6. Therefore,
the quantity of conflict betweenB1 andB2 is 0.5.

Proposition 3 LetB, B1 andB2 be three PKBs. IfB1⊆B2,
thenQCon(B,B1) ≤QCon(B,B2).

Proposition 3 tells us that the quantity of conflict between two
PKBs will increase (not strictly) when one of them has some
new information added.

Let X be a set of classical propositional formulae. Let
I(X) be the set of interpretations ofX delineated by the
atoms used inX (i.e. I(X) = 2Atoms(X), whereAtom(X)
denotes the set of atoms appearing inX). Let M(X,Y )
be the set ofmodels of X that are in I(Y ). That is,
M(X,Y ) = {w|=∧X|w∈I(Y )}. The Dalal distance[Dalal,
1988] between two modelswi, wj of a classical formula is
the Hamming distance between them, i.e.,Dalal(wi, wj) =
|wi − wj | + |wj − wi|.

Proposition 4 Let B1 and B2 be two consistent clas-
sical knowledge bases. LetDalal (B1, B2) = min
{Dalal(wi, wj)|wi∈M(B1, B1∪B2), wj∈M(B2, B1∪B2)}.
Then we have

QCon(B1, B2) = Dalal(B1, B2).

Proposition 4 is very important, because it reveals that our
quantity of conflict coincides with the Dalal distance in clas-
sical logic. Therefore, the quantity of conflictQCon(B1, B2)
can be taken as a generalization of the Dalal distance.

Definition 7 Let B1 and B2 be two PKBs. SupposeC and
D are WPIs ofB1 andB2 respectively, then thequantity of
strong agreement betweenC andD is defined as

qSA(C,D) =
∑

(p,a)∈C, (p,b)∈D

min(a, b), (4)

When all the weights are 1,qCon(C,D) is the cardinality of
the set of literals that are in bothC andD.

Definition 8 Let B1 and B2 be two PKBs. SupposeC and
D are the sets of WPIs ofB1 and B2 respectively, then the
quantity of strong agreement betweenB1 andB2 is defined
as

QSA(B1, B2) = max{qSA(C,D)|C∈C, D∈D}. (5)

The quantity of strong agreement betweenB1 andB2 mea-
sures how much information is supported by bothB1 andB2.

Example 3 (Continue Example 2) By Equation 4, we have
qSA(C1,D1) = qSA(C1,D2) = 0 and qSA(C2,D1) =
qSA(C2,D2) = 0. Therefore, the quantity of strong agree-
ment betweenB1 andB2 is QSA(B1, B2) = 0.

Definition 9 Let B1 and B2 be two PKBs. SupposeC and
D are WPIs ofB1 andB2 respectively, then thequantity of
weak agreement betweenC andD is defined as

qWA(C,D) =
∑

(pi,ai)∈C∪D,pi 6∈C∗∩D∗ and ¬pi 6∈C∗∪D∗

ai.

(6)



When all the weights are 1,qCon(C,D) is the cardinality of
the set of literals which are in only one ofC or D.

Definition 10 Let B1 andB2 be two PBKs. SupposeC and
D are the sets of WPIs ofB1 and B2 respectively, then the
quantity of weak agreement betweenB1 andB2 is defined as

QWA(B1, B2) = max{qWA(C,D)|C∈C, D∈D}. (7)

The quantity of weak agreement betweenB1 andB2 mea-
sures the information supported by only one knowledge base
andunknownto the other.

Example 4 (Continue Example 2) By Equation 6, we
have qWA(C1,D1) = 0, qWA(C1,D2) = 1.5, and
qWA(C2,D1) = 1.1, qWA(C2,D2) = 1.3. Therefore,
the quantity of weak agreement betweenB1 and B2 is
QWA(B1, B2) = 1.5.

The functionQWA is not monotonic with regard to the sub-
set relation, as shown below

Example 5 Let B1 = {(p, 1)} and B2 = {(q, 1)}, then
QWA(B1, B2) = 2. However, the quantity of weak agree-
ment betweenB3 = {(p, 1), (p → ¬q, 1)} and B2 is
QWA(B2, B3) = 1, whereB1⊆B3.

Based on the quantity of conflict and quantities of agree-
ment, we can define the following relationships between two
knowledge basesB1 andB2 as

• B1 and B2 are said to be totally in conflict
iff Qc(B1, B2) > 0 and QSA(B1, B2) =
QWA(B1, B2) = 0.

• B1 andB2 aretotally in agreementiff QCon(B1, B2) =
QWA(B1, B2) = 0 andQSA(B1, B2) > 0.

• B1 andB2 arepartially in conflict iff QCon(B1, B2) >
0 andQSA(B1, B2) + QWA(B1, B2) > 0.

3.3 Degree of conflict and degrees of agreement
In this subsection, we will define a degree of conflict and two
degrees of agreement between two PKBs. The degree of con-
flict measures the extent to which two knowledge bases are in
conflict. It was first introduced in[Hunter, 2004] to measure
the believability of arguments.

Definition 11 Let B1 and B2 be two self-consistent knowl-
edge bases, andDalal(B1, B2) be the Dalal distance be-
tweenB1 and B2. Thedegree of conflict betweenB1 and
B2, denoted asC(B1, B2), is defined as follows:

C(B1, B2) =
Dalal(B1, B2)

log2(|I(B1∪B2)|
(8)

Although this definition gives a method to measure the de-
gree of conflict, it can sometimes overestimate the degree of
conflict between two knowledge bases, because it doesn’t dis-
tinguish the influences of strong agreement and weak agree-
ment. For example, let us consider two pairs of knowl-
edge bases(B1, B2) and (B′

1, B2), whereB1 = {p, q, r},
B2 = {¬p, q, r} andB′

1 = {p}. Although the quantity of
conflict betweenB1 and B2 is 1, the quantity of strongly
agreement between them is 2. This meansB1 andB2 have
more in agreement than in conflict. In contrast, although the

quantity of conflict betweenB′
1 andB2 is also 1, but with

DSA(B′
1, B2) = 0 andDWA(B′

1, B2) = 2, the degree of
conflict betweenB′

1 andB2 should be higher than that be-
tweenB1 andB2. However, by Equation 8,C(B1, B2) =
C(B′

1, B2) = 1/3. This is not reasonable.
We propose the following revised definition of the degree

of conflict.

Definition 12 LetB1 andB2 be two PKBs. LetC andD be
WPIs ofB1 andB2 respectively.AtomC(C,D) denotes the
cardinality of the set of atoms which are in conflict inC∪D.
Then thedegree of conflict betweenC andD is defined as

dCon(C,D) =
qCon(C,D)

AtomC(C,D) + qSA(C,D) + λqWA(C,D)
,

(9)
whereλ ∈ (0, 1] is used to weaken the influence of the quan-
tity of weak agreement on the degree of conflict. In the fol-
lowing, we always assume thatλ = 0.5, that is, the quantity
of weak agreement only has “half” as much the influence on
the degree of conflict as the quantity of strong agreement.

Definition 13 Let B1 andB2 be two PKBs. SupposeC and
D are the sets of WPIs ofB1 and B2 respectively, then the
degree of conflict betweenB1 andB2 is defined as

DCon(B1, B2) = min{dCon(C,D)|C∈C, D∈D}. (10)

The advantage of our degree of conflict can be seen from
the following example.

Example 6 Let us consider a dialogue between three peo-
ple John, Mary, and Gary. They are discussing “whether
Italy is the best football team in the world ”(p) and “whether
the best forwards are in Brazil” (q). John says “I think
Italy is the best football team in the world and the best
forwards are in Brazil”, Mary says “No, I think France is
the best team, but I agree with you that the best forwards
are in Brazil”, and Gary says “No, I think France is the
best team”. So the knowledge bases areJohn = {p, q},
Mary = {¬p, q} and Gary = {¬p}. By Equation 8, we
haveC(John,Mary) = C(John,Gary) = 1/2. This is
not reasonable, because John and Mary agree onq, the de-
gree of conflict between them should be less than the degree
of conflict between John and Gary. In contrast, we have
Dc(John,Mary) = 1/2 and DCon(John,Gary) = 2/3,
soDc(John,Mary) < Dc(John,Gary).

Proposition 5 LetB1, B2 be two classical knowledge bases.
SupposeC(B1, B2) and DCon(B1, B2) are the degrees of
conflict defined by Definition 11 and Definition 13 respec-
tively. ThenC(B1, B2)≥DCon(B1, B2).

Similarly, we can define the degree of strong agreement.
We hold that the influence of the quantity of conflict on the
degree of strong agreement is more than that of the quantity
of weak agreement.

Definition 14 LetB1 andB2 be two PKBs. LetC andD be
WPIs ofB1 andB2 respectively.AtomSA(C,D) denotes the
cardinality of the set of atoms which are included in bothC
andD. Then thedegree of strong agreement betweenC and



D is defined as

dSA(C,D) =
qSA(C,D)

AtomSA(C,D) + qCon(C,D) + λqWA(C,D)
,

(11)
whereλ ∈ (0, 1] is used to weaken the influence of the quan-
tity of weak agreement on the degree of conflict. As in Defini-
tion 12, we usually takeλ = 0.5.

Definition 15 Let B1 andB2 be two PKBs. SupposeC and
D are the sets of weighted prime implicants ofB1 and B2

respectively, then the degree of strong agreement betweenB1

andB2 is defined as

DSA(B1, B2) = max{dSA(C,D)|C∈C, D∈D}. (12)

Example 7 Let B1 = {(p, 0.8), (q ∨ r, 0.4), (p → s, 0.5)}
and B2 = {(p ∨ ¬r, 0.8), (q, 0.6), (¬s, 0.7)}. The
WPIs of B1 are C1 = {(p, 0.8), (q, 0.4), (s, 0.5)} and
C2 = {(p, 0.8), (r, 0.4), (s, 0.5)}, and the WPIs of
B2 are D1 = {(p, 0.8), (q, 0.6), (¬s, 0.7)} and D2 =
{(¬r, 0.8), (q, 0.6), (¬s, 0.7)}. So dSA(C1,D1) = 0.48,
dSA(C1,D2) = 0.17, dSA(C2,D1) = 0.4, dSA(C2,D2) =
0. Therefore,DSA(B1, B2) = 0.48.

The degrees of conflict and strong agreement are related to
each other.
Proposition 6 Let B1 andB2 be two PKBs. Then their de-
gree of conflict and degree of strong agreement cannot be
greater than 0.5 at the same time, i.e., ifDCon(B1, B2) >
0.5, thenDSA(B1, B2)≤0.5.

We can also define the degree of weak agreement.

Definition 16 LetB1 andB2 be two PKBs. LetC andD be
WPIs ofB1 and B2 respectively.AtomWA(C,D) denotes
the cardinality of the set of atoms which are included in only
one ofC andD but not both. Then thedegree of weak agree-
ment betweenC andD is defined as

dWA(C,D) =
qWA(C,D)

AtomWA(C,D) + qCon(C,D) + qSA(C,D)
,

(13)

In Definition 16, the quantity of conflict and quantity of
strong agreement have the same influence on the degree of
weak agreement. When bothB1 andB2 are classical knowl-
edge bases, we havedWA(C,D) = AtomW A(C,D)

|Atom(C∪D)| .

Definition 17 Let B1 andB2 be two PKBs. SupposeC and
D are the sets of WPIs ofB1 and B2 respectively, then the
degree of weak agreement betweenB1 andB2 is defined as

DWA(B1, B2) = max{dWA(C,D)|C∈C, D∈D}. (14)

Example 8 (Continue Example 7) By Definition 16, we have
dWA(C1,D1) = 0, dWA(C1,D2) = 0.55, dWA(C2,D1) =
0.3, dWA(C2,D2) = 0.48. So the degree of weak agreement
betweenB1 andB2 is 0.55.

Proposition 7 LetB1 andB2 be two possibilistic knowledge
bases. IfdWA(B1, B2) > 0.5, thendCon(B1, B2) < 0.5 and
dSA(B1, B2) < 0.5.

Proposition 7 shows that if the degree of weak agreement be-
tween two knowledge bases is large, i.e., greater than 0.5,
then both the degree of conflict and degree of strong agree-
ment between them should be small, i.e., less than 0.5.

4 Impact of Measures of Conflict and
Agreement

4.1 Choice of combination operators
Many operators have been proposed for merging PKBs.
Given two PKBsB1 andB2 with possibility distributionsπB1

andπB2
respectively, the semantic results of their combina-

tion by a T-normtn and a T-conormct are

∀ω, πtn(ω) = tn(πB1
(ω), πB2

(ω)), (15)

∀ω, πct(ω) = ct(πB1
(ω), πB2

(ω)). (16)

The syntactic results associated withπtn andπct are respec-
tively the following PKBs[Benferhatet al., 2002]:

Btn = B1 ∪ B2 ∪ {(φi ∨ ψj , ct(αi, βj))|(φi, αi) ∈ B1

and (ψj , βj) ∈ B2}, (17)

Bct = {(φi ∨ ψj , tn(αi, βj))|(φi, αi) ∈ B1

and (ψj , βj) ∈ B2}. (18)

If we require that the result of the combination be a consistent
knowledge base, then the T-norm based operator cannot be
used when there is a conflict betweenB1 and B2. In this
case, we can only use a T-conorm based operator.

Typical T-norm operators are the minimum operator, the
product operator and theŁukasiewicz T-norm(tnŁ for short)
(max(0, a + b − 1)). The duality relation respectively yields
the following T-conorm: the maximum operator, theproba-
bilistic sum(ctps for short) (a+b−ab), and thebounded sum
(ctbs for short) (min(1, a + b)).

Although some criteria to choose between merging opera-
tors have been given in[Benferhatet al., 1997; 2002], these
criteria are not enough.

Suppose two PKBsB1 andB2 are consistent, then the de-
gree of conflict between them must be 0 and at least one of the
degrees of agreement is greater than 0. If the degree of strong
agreement betweenB1 andB2 is very high, thenB1 andB2

share beliefs on most of the topics. In this case, it is advisable
to combine them using an operator with higherreinforcement
effect, for example, theŁukasiewicz t-normmax(0,a+b-1).
However, if the degree of strong agreement betweenB1 and
B2 is low and the degree of weak agreement between them is
very high, it is advisable to combine them using the minimum
operator which does not have anyreinforcementeffect.

SupposeB1 and B2 are in conflict, we usually use a T-
conorm to combine them. When the degree of conflict be-
tweenB1 andB2 is very high, thenB1 andB2 have mostly
different beliefs and we can choose the “bounded sum” oper-
ator which has a highcounteracteffect. On the other hand,
if the degree of conflict betweenB1 andB2 is very low, we
can choose the maximum which does not have anycounteract
effect.

More formally, we have the following criteria to choose
between merging operators.
Merging operators selection criterion: Let ⊕1 and⊕2 be
two operators applied to mergeA andB, andC andD re-
spectively, then for alla, b∈[0, 1],
(1) ⊕1(a, b)≤⊕2 (a, b) if 0 < DCon(A,B) < DCon(C,D)
(2) ⊕1(a, b)≥ ⊕2 (a, b) if DCon(A,B) = 0 and
DSA(A,B) < DSA(C,D).



Example 9 Let B1 = {(p, 0.6), (q ∨ ¬r, 0.7), (s, 0.6)}
and B2 = {(p, 0.5), (q, 0.4), (s, 0.4)}, where
DCon(B1, B2) = 0 and DSA(B1, B2) = 0.43.
The merging operator here should be theprod-
uct operator, and the result of merging isB =
{(p, 0.6), (q∨¬r, 0.7), (s, 0.6), (p, 0.5), (q, 0.4), (s, 0.4), (p,
0.8), (p∨q, 0.76), (p∨s, 0.76), (p∨q∨¬r, 0.85), (q∨¬r, 0.88),
(q∨¬r∨s, 0.88), (p∨s, 0.8), (q∨s, 0.76), (s, 0.76)}. How-
ever, if we use aLukasiewicz t-norm, the result of merging
is B′ = {{(p, 0.6), (q∨¬r, 0.7), (s, 0.6), (p, 0.5), (q, 0.4),
(s, 0.4), (p, 1), (p∨q, 1), (p∨s, 1), (p∨q∨¬r, 1), (q∨¬r, 1),
(q∨¬r∨s, 1), (p∨s, 1), (q∨s, 1), (s, 1)}}. In B′, the weights
of formulae p and s are reinforced to 1. However, the
certainty degrees ofp ands are not high in bothB1 andB2.
Moreover,B1 andB2 are not in strong agreement with each
other becauseDSA(B1, B2) = 0.43. So it is not reasonable
to increase the weights ofp and s to the highest certainty
degree 1. In contrast, inB, p and s have certainty degrees
of 0.8 and 0.76 respectively. Therefore the result of the
product operator reflects the reinforcement ofB1 and B2

more accurately than that of theLukasiewicz t-norm.

4.2 Ordering sources
In this section, we define an ordering relation to compare dif-
ferent knowledge bases based on the degree of conflict.

Definition 18 Let Bi, Bj , B be three PKBs. A closeness re-
lation¹B with regard toB is defined as.

Bi¹BBj iff DCon(Bj , B)≤DCon(Bi, B)

Bj is closer toB thanBi to B (Bi¹BBj) iff Bj has less
quantity of conflict and more quantities of agreement withB
thanBi. If Bi¹BBj , then we may viewBj is less problem-
atic or more reliable thanBi with regard toB.

Example 10 Let B1 = {(¬p, 0.8), (¬q, 0.5), (¬r ∨ s, 0.7)},
B2 = {(¬p, 0.8), (¬q, 0.5), (¬r, 1), (s, 0.7)}, and B =
{(p∨q, 0.8), (¬s ∨ r, 1)}. SinceDCon(B1, B) = 0.22 <
0.41 = DCon(B2, B), soB2¹BB1.

5 Conclusion
The main contribution of this work is that we not only mea-
sure the conflict between two prioritized knowledge bases but
also measure their agreement in two ways. We defined the
quantity of conflict and two quantities of agreement. The
quantity of conflict is a generalization of the Dalal distance.
We then defined the degree of conflict and degrees of agree-
ment based on both the quantity of conflict and the quantities
of agreement. We have shown that the definition of degree
of conflict is more reasonable than that defined in[Hunter,
2004]. The measures of conflict and agreement can be very
useful in many applications, such as belief merging, argumen-
tation and heterogeneous source integration and management.
Another potential application of the measures of conflict isto
belief revision as we have shown that the quantity of conflict
generalizes the Dalal distance.

We didn’t touch the computational issue in this paper. It
is clear that the computations of measures of conflict and
agreement defined in Section 3.2 and 3.3 depend on the com-
putation of WPIs. It has been shown in[Bittencourtet al.,

2004] that the computation of the set of prime implicants of
a formula represented byconjunctive normal formis NP -
complete using a transformation algorithm in[Bittencourtet
al., 2003]. Given a PKBB = {(φ1, a1), ..., (φn, an)} where
φi are clauses, it is expected that the computation of all the
WPIs ofB is alsoNP -complete by generalizing the transfor-
mation algorithm. This problem will be discussed in a future
paper.
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