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Abstract. Many merging operators have been proposed to merge either flat or
stratified knowledge bases. The result of merging by such an operator is a flat
base (or a set of models of the merged base) irrespective of whether the origi-
nal ones are flat or stratified. The drawback of obtaining a flat merged base is
that information about more preferred knowledge (formulae) versus less preferred
knowledge is not explicitly represented, and this information can be very useful
when deciding which formulae should be retained when there is a conflict. There-
fore, it can be more desirable to return a stratified knowledge base as a merged
result. A straightforward approach is to deploy the preference relation over possi-
ble worlds obtained after merging to reconstruct such a base. However, our study
shows that such an approach can produce a poor result, that is, preference rela-
tions over possible worlds obtained after merging are not suitable for reconstruct-
ing a merged stratified base. Inspired by the Condorcet method in voting systems,
we propose an alternative method to stratify a set of possible worlds given a set
of stratified bases and take the stratification of possible worlds as the result of
merging. Based on this, we provide a family of syntax-based methods and a fam-
ily of model-based methods to construct a stratified merged knowledge base. In
the syntax based methods, the formulae contained in the merged knowledge base
are from the original individual knowledge bases. In contrast, in the model based
methods, some additional formulae may be introduced into the merged knowl-
edge base and no information in the original knowledge bases is lost. Since the
merged result is a stratified knowledge base, the commonly agreed knowledge
together with a preference relation over this knowledge can be extracted from the
original knowledge bases.

1 Introduction

Preference (or priority) is very important in many fields of computer science, such as,
in constraint satisfaction problems, in goal oriented decision making, and in system
configurations. A preference relation can be used to represent an ordering over beliefs
or goals. Preferences can be explicitly modelled in possibilistic logic (e.g. [5]) or using
an ordinal conditional function (e.g., [9, 11]), or a preference relation. With explicit
preference information, a flat knowledge base can be extended to a stratified knowledge



base, that is, propositions are divided into different strata according to the preferences
(or priorities) they are given [2, 3].

When multiple knowledge bases are available, one objective is to extract an overall
view from them. This is known as knowledge base merging or belief merging. There
are mainly two families of knowledge base merging operators: model-based ones which
select some possible worlds (or interpretations) that are the closest to the original bases
(e.g. [7, 8, 10]) and syntax-based ones which pick some formulae in the union of the
original bases (e.g., [1, 4]). It is worth noting that most of these merging operators (e.g.
[7, 8, 1, 4]) take flat knowledge bases as input, and only a few of them (e.g. [10]) allow
the original knowledge bases to be stratified.

So far, all the merging operators, no matter whether model-based or syntax-based,
return a flat knowledge base (or a set of models) as the merged result. We argue that,
in practice, we may need a stratified knowledge base as the merged result which shows
preference among formulae, irrespective of whether the original knowledge bases are
flat or stratified. If a stratified knowledge base can be obtained as the result of merging,
the preference over formulae can be very useful to resolve conflicts, that is, a more
preferred formula should be retained in preference to a less preferred one if the two are
in conflict.

Intuitively, it seems straightforward that a stratified merged base should be con-
structed easily from a model-based merging method using the preference relation over
interpretations obtained after merging. However, our study of the merging methods in
[8, 10] shows that such a method is not adequate.

In [8], the commensurability assumption is required, and so a number1 assigned to
an interpretation (possible world) can be compared with another number assigned to
another interpretation. On the other hand, although the commensurability assumption is
not explicitly required in [10], each interpretation is still assigned a vector of numbers,
each of which is the priority (or the absolute position) of the interpretation in the strati-
fication of interpretations in relation to an individual knowledge base, and the numbers
assigned in different stratifications are assumed comparable in order to establish the
pre-order relation over vectors of numbers.

We argue that the numbers about distances or priorities obtained from different strat-
ifications should not be comparable if we do not have the commensurability assumption,
especially when knowledge bases are designed independently.

Inspired by the Condorcet method in voting systems, we provide an alternative
method to define a preference relation, called relative preference relation, over inter-
pretations. A relative preference relation considers whether an interpretation is more
preferred than another collectively from a set of pre-order relations (or stratifications)
over interpretations obtained from individual knowledge bases, but is independent of
the absolute priority ([10]) or the distance ([8]) of an interpretation in relation to each
single knowledge base, since these numbers are not assumed comparable. Then, the
stratification of interpretations is constructed from this relative preference relation.

1 This number can be the sum of distances between an interpretation and all the original knowl-
edge bases or a vector of numbers each of which is the distance between the interpretation and
a knowledge base.



Following this, we provide two families of methods, namely syntax-based and model-
based, to construct a merged stratified knowledge base from the stratification of inter-
pretations. The syntax-based methods assume that formulae in the stratified knowledge
base are picked from the original bases. A disadvantage of these methods is that some
implicit beliefs are lost. The model-based methods use models to reconstruct formu-
lae in the merged base. These methods retain all the original knowledge and may also
introduce additional formulae which do not appear in any original knowledge bases.

This paper is organized as follows. In Section 2, we introduce the preliminaries. In
Section 3, we first explore a straightforward approach to constructing the stratification
of interpretations after merging and to constructing a merged stratified knowledge base.
We then provide an alternative approach to constructing the stratification of interpreta-
tions after merging by defining the concept of relative preference relation. In Section
4, we provide syntax-based methods for constructing a stratified knowledge base from
a stratification of interpretations. Then, in Section 5, we provide model-based methods
for constructing a stratified knowledge base. Finally, a brief comparison with related
work and a short summary of the paper are given in Section 6.

2 Preliminary

2.1 Stratified knowledge base

We consider a propositional language L defined on a finite setA of propositional atoms,
which are denoted by p, q, r etc. A proposition φ is constructed by propositional atoms
with logic connections ¬,∧,∨,→ in the standard way. An interpretation ω (or possible
world) is a function that maps A onto the set {0, 1}. The set of all possible interpre-
tations on A is denoted as Ω. Function ω can be extended to any proposition in L in
the usual way, ω : L → {0, 1}. An interpretation ω is a model of (or satisfies) φ iff
ω(φ) = 1, denoted as ω |= φ.

A (flat) knowledge base is a finite set of propositional formulae. A knowledge base
K is consistent iff there is at least one interpretation that satisfies all propositions in K,
and such interpretations are models of K. We use Mod(K) to denote the set of models
for K. K |= φ iff each model of K is a model of φ. For a set of models M , there exists
a proposition φM s.t. Mod(φM ) = M . Theoretically, φM is non-deterministic since
syntactically there can be more than one proposition that is satisfied by all the models
in M .

A stratified knowledge base [3, 2] is a finite set K of propositional formulae with a
total pre-order relation¹ on K (a pre-order relation is a reflective and transitive relation,
and ¹ on K is total iff for all φ and ψ in K, either φ ¹ ψ or ψ ¹ φ holds). Intuitively,
if φ ¹ ψ then φ is regarded as more certain, more preferred or more important than
ψ. From the pre-order relation ¹ on K, K can be stratified as K = (S1, . . . , Sn),
where Si contains all the minimal propositions of set

⋃n
j=i Sj w.r.t. ¹, i.e., Si = {φ ∈

K \ (∪i−1
j=1Sj) : ∀ϕ ∈ K \ (∪i−1

j=1Si), φ ≤ ϕ}. Each Si is called a stratum of K and is
non-empty. In the rest of this paper, we denote

⋃
K =

⋃n
i=1 Si. It is clear that for all φ

and ψ in K, φ ¹ ψ iff φ ∈ Si, ψ ∈ Sj , and i ≤ j. For simplicity, when we mention a
knowledge base it is actually a stratified knowledge base unless it is stated otherwise in
the rest of this paper.



2.2 Model based semantics

In [3, 2], some model-based semantics are provided for stratified knowledge bases. In
these methods, a pre-order relation on interpretations is induced from a knowledge base
by an ordering strategy, and the minimal ones are regarded as the models of the knowl-
edge base. Therefore, a non-classical consequence relation can be defined as K °X φ
iff ω(φ) = 1 for all ω such that ω is minimal w.r.t the pre-order relation ¹X over
Ω, where ¹X is induced by K under the ordering strategy X . A strict relation ≺X is
defined as ω ≺X ω′ iff ω ¹X ω′ and ω′ 6¹X ω.

There are three widely used ordering strategies known as the best out, the maxsat,
and the leximin. For a knowledge base K = (S1, . . . , Sn), these ordering strategies are
defined as follows.

– best out ordering [2] Let rBO(ω) = mini{ω 6|= Si}. Define mini∅ = +∞.
ω ¹bo ω′ iff rBO(ω) ≥ rBO(ω′).

– maxsat ordering [3] Let rMO(ω) = mini{ω |= Si}. ω ¹maxsat ω′ iff rMO(ω) ≤
rMO(ω′).

– leximin ordering [2]: let Ki(ω) = {φ ∈ Si | ω |= φi}. Then the leximin ordering
¹leximin on Ω is defined as: ω ¹leximin ω′ iff
• |Ki(ω)| = |Ki(ω′)| for all i, or
• there is an i s.t. |Ki(ω)| > |Ki(ω′)|, and |Kj(ω)| = |Kj(ω′)| for all j < i;

where |Ki| denotes the cardinality of set Ki.

Example 1. Let K = ({p}, {q}) be a knowledge base.

Table 1. Ranks calculated by different ordering strategies

ω rBO rMO r̄Leximin

00 1 +∞ 〈00〉
01 1 2 〈01〉
10 2 1 〈10〉
11 +∞ 1 〈11〉

The i-th digit in vector r̄Leximin(ω) represents |Ki(ω)|. For example, let ω = {01}
represent possible world ¬pq, then r̄Leximin(ω) = 〈01〉 means that K1(ω) = 0 and
K2(ω) = 1. Then {11} is the set of minimal models w.r.t the pre-order relations≺bo and
≺leximin, and set {11, 10} contains all the minimal models w.r.t the pre-order relation
≺maxsat. Therefore, K °BO p ∧ q, K °Maxsat p, and K °Leximin p ∧ q.

From a pre-order relation ¹X generated by the ordering strategy X from K, the
interpretations in Ω can be stratified as ΩK,X = (Ω1, . . . , Ωm), where each Ωi contains
all the minimal interpretations from

⋃n
j=i Ωj w.r.t. ¹X . Given ΩK1 = (Ω1, . . . , Ωn)

and ΩK2 = (Ω′
1, . . . , Ω

′
n), ΩK1 = ΩK2 iff Ωi = Ω′

i for all i where 1 ≤ i ≤ n. In the
following, we may omit subscripts K,X from ΩK,X when they are implicitly given.

As shown above, based on different ordering strategies, different conclusions are
drawn from the same knowledge base K. Thus, selecting an ordering strategy for a
given knowledge base is important. Also, it is possible that the same stratification on
interpretations can be induced from different knowledge bases under different ordering
strategies.



3 Approaches to Stratifying the Set of Interpretations

In a model-based merging method, a pre-order relation on interpretations is constructed
and a set of models (the minimal ones) is obtained as the result of merging flat or strat-
ified knowledge bases. The resulting knowledge base is a flat base. Intuitively, it seems
reasonable to recover a stratified merged knowledge base from the pre-order relation
over interpretations. Following this idea, we take merging operators in [10, 8] as exam-
ples and investigate if this approach is feasible. Our study below in Section 3.1 shows
that a stratified merged knowledge base obtained this way can be counterintuitive. To
overcome this problem, we propose an alternative method to stratify a set of interpreta-
tions using the concept of relative preference relation in Section 3.2.

3.1 A simple approach

In [10], a model-based merging method is proposed for merging stratified knowledge
bases, however, the result is a flat knowledge base not a stratified one. The idea in the
paper can be stated as follows. From each stratified knowledge base K with a chosen
ordering strategy X , a stratification of interpretations is induced ΩK,X . In this way, an
interpretation has a priority level w.r.t each K which is its priority level in ΩK,X . Then,
each interpretation is associated with a vector of priority levels in relation to all the
knowledge bases. Finally, a pre-order relation over interpretations is defined based on
the lexicographical ordering over vectors of priorities and the interpretations which are
minimal w.r.t this ordering relation are regarded as the models of the merged knowledge
base. A straightforward approach to obtaining a stratified merged knowledge base is to
construct strata directly from this pre-order relation over interpretations. Unfortunately,
such a method is not as good as one may expect, as shown in the following example.

Example 2. Let K1 = ({p}, {q}, {r}) and K2 = ({r}, {q}, {p}) be two knowledge
bases. Using the leximin ordering strategy, two pre-order relations on interpretations
can be induced from them respectively, and a pre-order relation for the merged knowl-
edge base can be calculated under the leximin aggregation function as shown in Table
2. In Table 2, values in vector l̄ are obtained by concatenating the numbers in the second
and the third columns in ascending order.

Based on the lexicographical ordering over vectors of priorities, a pre-order rela-
tion is defined on Ω and it is stratified as Ω = ({111}, {110, 011}, {101}, {001, 100},
{010}, {000}). The minimal model is 111, so, the merged flat knowledge base is equiv-
alent to {p∧ q ∧ r}, which seems reasonable. Note, in this paper we denote each model
by a bit vector consisting of truth values of atoms e.g. (p, q, r) in this example. So
ω1 = {000} means p, q and r are all false.

From this stratified Ω, we can infer that p ∧ ¬q ∧ r is less preferable than q ∧ (p ∨
r) ∧ (¬p ∨ ¬r) which means that, if only two of p, q, r are true, then q must be true. In
other words, q is more certain than both p and r. On the other hand, ¬p∧ q∧¬r is less
preferable than ¬q ∧ (p ∨ r) ∧ (¬p ∨ ¬r) which implies that when only one of p, q, r
holds, it should not be q, that is, q is less certain than both p and r now. This contradicts
with the previous inference. Therefore, taking the stratification of interpretations as a
way to construct a merged knowledge base may imply counterintuitive results.



Table 2. Constructing the stratification of interpretations.

ω ΩK1,leximin ΩK2,leximin l̄

000 8 8 〈88〉
001 7 4 〈47〉
010 6 6 〈66〉
011 5 2 〈25〉
100 4 7 〈47〉
101 3 3 〈33〉
110 2 5 〈25〉
111 1 1 〈11〉

If we take a flat knowledge base as a special case of a stratified knowledge base
with only one stratum, the merging methods in DA2 family [8] can be viewed as special
cases of merging stratified knowledge bases. Similarly, in these methods, a set of models
for a flat knowledge base is given as the result of an operator.

Example 3. Let K1 = K2 = K3 = K4 = K5 = {p} and K6 = K7 = K8 = K9 =
{¬p} be nine knowledge bases. Five of them say that p is true and four say that p is
false. Merging by δdD,sum1,sum2 , a specific operator in DA2 [8], the model with p is
true (having true value 1) is the only model for the merged knowledge base. In this
merging operator, dD is a distance measure between a formula and a possible world
and it is defined as dD(ω, φ) = 0 if ω |= φ, otherwise dD(ω, φ) = 1. sum1(ω,Ki) =
Σφ∈KidD(ω, φ) and sum2(ω, P ) = ΣKi∈P sum1(ω, Ki), which is the sum of distances
between knowledge bases Ki in a knowledge profile P (a knowledge profile is a finite
set of knowledge bases) and a possible world. In Table 3, values in the second to the
tenth columns are the distances between an interpretation and a knowledge base (using
sum1), values in the eleventh column are from sum2.

Table 3. Merging knowledge bases using an operator in DA2

ω K1 K2 K3 K4 K5 K6 K7 K8 K9 sum2

¬p 1 1 1 1 1 0 0 0 0 5
p 0 0 0 0 0 1 1 1 1 4

Now if we revise K6, ..., K9 as K ′
6 = K ′

7 = {¬p,¬p ∧ q} and K ′
8 = K ′

9 =
{¬p,¬p ∧ ¬q} respectively, then semantically, these four knowledge bases together
state the same conclusion as K6, ..., K9 do. That is, both sets of knowledge bases say
p is false. However, when we replace K6, ...,K9 with K ′

6, ..., K
′
9 and merge them with

K1, ...,K5, we get a different merged knowledge base K ′, whose models are {00, 01}
as shown in Table 4. Obviously, K ′ |= ¬p, K ′ 6|= q and K ′ 6|= ¬q.

The reason is that, in DA2, the commensurability assumption is required. Un-
der this assumption, although K ′

6, ..., K
′
9 collectively draw the same conclusion as

K6, ...,K9, when they are merged with the other bases, the preferability of the state-
ment p is implicitly decreased. That is why the merged result is changed.

To summarize, we believe that using the information on stratification over interpre-
tations from a merging operator to construct a stratified knowledge base can not return
a satisfactory result.



Table 4. Merging knowledge bases with an operator in DA2

ω K1 K2 K3 K4 K5 K′
6 K′

7 K′
8 K′

9 sum

00 1 1 1 1 1 1 1 0 0 7
01 1 1 1 1 1 0 0 1 1 7
10 0 0 0 0 0 2 2 2 2 8
11 0 0 0 0 0 2 2 2 2 8

3.2 Stratifying interpretations by relative preference relation

In the methods discussed above, an interpretation is associated with a number (or a vec-
tor of numbers) about its priority level(s) that determines which stratum (or strata) it is
in and this number (or a vector of numbers) is the absolute position(s) (stratum/strata)
it reflects. We argue that, the absolute position of an interpretation in a stratification is
not so important, since one could not tell how the preferences among items of beliefs
in other knowledge bases are determined. For instance, when one knowledge base re-
gards that Mod(p) are more preferable than Mod(q) and Mod(q) are more preferable
than Mod(r), then Mod(r) \ (Mod(p) ∪Mod(q)) are the third level of models to be
preferred. If other knowledge bases do not consider q, then these models (which are for
r) are underestimated if a merging process considers only the absolute position that a
model occurs in each stratification of interpretations.

We believe that only the relative preferences between interpretations induced from
a knowledge base by ordering strategy is meaningful in a merging process:

Definition 1 (Relative Preference Relation). Let {ΩK1,X1 , . . . , ΩKn,Xn} be a multi-
set. We define a binary relative preference relation R : Ω ×Ω as:

R(ω, ω′) iff |{ΩKi,Xis.t.ω ≺i ω′}| < |{ΩKi,Xis.t.ω
′ ≺i ω}| where ≺i is the strict

partial order induced from ΩKi,Xi .

R(ω, ω′) means that more knowledge bases prefer ω than ω′. A relative preference
relation is partial, anti-symmetric and irreflective, and it is not transitive, so it is not a
total pre-order relation.

Definition 2 (Undominated Set). Let R be a relative preference relation over Ω × Ω
and let Q be a subset of Ω. Q is called an undominated set of Ω, if

∀ω ∈ Q,∀ω′ ∈ Ω \Q, R(ω′, ω) does not hold

Q is a minimal undominated set of Ω if for any undominated set P of Ω, P ⊂ Q does
not hold.

We denote the set of minimal undominated sets of Ω w.r.t. R as UR
Ω .

Definition 3. Let R be a relative preference relation. A stratification of interpretations
Ω = (Ω1, . . . , Ωn) can be obtained from R such that Ωi = ∪Q where Q ∈ UR

Ω\∪i−1
j=1Ωj

based on Definition 2.



This way, the stratification of interpretations is independent of absolute priorities
(or positions) of interpretations and the commensurability assumptions is not required.

Since from a stratification of interpretations, a total pre-order relation can be in-
duced, the above definition also defines a total pre-order relation over interpretations.

Example 4. Let K1 = ({p}, {q}, {r}) and K2 = ({r}, {q}, {p}) be two knowledge
bases. If we apply ordering strategy leximin on both bases, we get two stratifications on
Ω as

ΩK1,leximin = ({111}, {110}, {101}, {100}, {011}, {010}, {001}, {000})
ΩK2,leximin = ({111}, {011}, {101}, {001}, {110}, {010}, {100}, {000})
Then a relative preference relation over Ω can be defined based on them. From this

relative preference relation, we can get a final stratification on Ω as
Ω = ({111}, {110, 011, 101}, {001, 010, 100}, {000}).
Obviously, p, q, r are symmetric and thus are equally preferred and this stratifica-

tion is better than that obtained in Example 2.

4 Syntax-Based Approaches to Constructing Stratified Knowledge
Bases

Based on the stratification of interpretations obtained in the above section, we explore
approaches to stratifying a merged knowledge base. We discuss syntax-based methods
in this section and investigate model-based methods in the next section.

In the syntax-based methods, we assume that we pick some (may not be all) propo-
sitions from the original knowledge bases and stratify them based on a stratification of
interpretations.

Definition 4. Let Ω = (Ω1, ..., Ωn) be a stratification of interpretations and S be a set
of propositions. Let X be an ordering strategy. A stratified knowledge base KX,Ω

S =
(S1, ..., Sm) is an X dominated construction from S w.r.t. Ω if

⋃m
i=1 Si ⊆ S and

ΩKX,Ω
S ,X = Ω.

Definition 5 (best out construction). Let Ω = (Ω1, . . . , Ωn) be a stratification of
interpretations and S be a set of propositions. We define Kbo,Ω

S = (S1, . . . , Sn−1)
where Si = {φ ∈ S | ∀ω ∈ Ωj , ω |= φ, ∀ j ∈ [1, n− i]} \⋃i−1

j=1 Sj and Si 6= ∅.

Proposition 1. Let Ω be a stratification of interpretations and S be a set of proposi-
tions. If there exists a stratified knowledge base K s.t. ΩK,bo = Ω and

⋃
K ⊆ S, then

Kbo,Ω
S defined in Definition 5 is a best out dominated construction from S w.r.t. Ω, that

is
⋃n−1

i=1 Si ⊆ S and ΩKbo,Ω
S ,bo = Ω.

Example 5. Let Ω = ({011}, {111}, {101}, {000, 010, 100, 110, 001}) and let the set
of propositions be S = {p∨ q, r, q∨¬r,¬p∨¬r,¬p∧¬q}, then we can get a stratified
knowledge base based on S as Kbo,Ω

S = ({p ∨ q, r}, {q ∨ ¬r}, {¬p ∨ ¬r}) which
satisfies ΩKbo,Ω

S ,bo = Ω. This implies that there is a stratified knowledge base K such
that

⋃
K ⊆ S and ΩK,bo = Ω.



However, if we have S′ = {p ∨ q, r,¬q ∨ ¬r,¬p ∨ ¬r,¬p ∧ ¬q,¬p ∨ q}, then
we have Kbo,Ω

S′ = ({p ∨ q, r}, {¬p ∨ q}, {¬p ∨ ¬r}). In this case, ΩKbo,Ω

S′ ,bo =
({011}, {111}, {001, 101}, {000, 010, 100, 110}) 6= Ω, which means that @K such
that ΩK,bo = Ω and

⋃
K ⊆ S′.

Definition 6 (maxsat construction). Let Ω = (Ω1, . . . , Ωn) be a stratification of in-
terpretations and S be a set of propositions. We define Kmaxsat,Ω

S = (S1, . . . , Sn)
where Si = {φ ∈ S | ∀ω ∈ Ωi, ω |= φ} \⋃i−1

j=1 Sj and Si 6= ∅.

Proposition 2. Let Ω be a stratification of interpretations and S be a set of proposi-
tions. If there exists a stratified knowledge base K s.t. ΩK,maxsat = Ω and

⋃
K ⊆ S,

then Kmaxsat,Ω
S is a maxsat-dominated construction from S w.r.t. Ω, that is

⋃n−1
i=1 Si ⊆

S and ΩKmaxsat,Ω
S ,maxsat = Ω.

Definition 7 (leximin construction). Let Ω = (Ω1, . . . , Ωn) be a stratification of in-
terpretations and S be a set of propositions. We define Kleximin,Ω

S = (S1, . . . , Sn)
where Si = {φ ∈ S | ∀ω ∈ Ωi, ω |= φ, where ∀j > i,∀ω ∈ Ωj , ω 6|= φ} and Si 6= ∅.

Proposition 3. Let Ω be a stratification of interpretations and S be a set of proposi-
tions. If there exists a stratified knowledge base K = (S1, . . . , Sn) s.t. each Si is a
singleton set, ΩK,leximin = Ω and

⋃
K = S, then Kleximin,Ω

S is a leximin dominated
construction from Ω, i.e. ΩKleximin,Ω

S ,leximin = Ω.

In this proposition, it is required that
⋃

K = S, because the leximin ordering strat-
egy is more syntax sensitive than best out and maxsat.

Example 6. Let Ω = ({011}, {101, 111}, {000, 010, 100, 110}, {001}) and let S =
{(p∨ q)∧ r, q∨¬r,¬p∨¬r}. Then we have a stratified knowledge base Kleximin,Ω

S =
({(p ∨ q) ∧ r}, {q ∨ ¬r}, {¬p ∨ ¬r}) which satisfies ΩKleximin,Ω

S ,leximin = Ω. This
implies that ∃K such that ΩK,leximin = Ω and

⋃
K = S.

For the above three methods, it is assumed that we know what propositions should
appear in the merged stratified knowledge base. This assumption comes from the intu-
ition that when merging stratified knowledge bases, only those propositions that appear
in some knowledge bases would be considered. This is consistent with the ideas in
syntax-based merging operators. However when merging knowledge bases, some im-
plicit knowledge can be drawn and such knowledge does not necessarily appear in any
of the individual knowledge bases.

Example 7. Let K1 = ({p ∧ q}) and K2 = ({¬p ∧ q}). From this, we can get two
stratifications on Ω using ordering strategy leximin as

ΩK1,leximin = ({11}, {00, 01, 10})
ΩK2,leximin = ({01}, {00, 10, 11})

Based on these two stratifications, it is possible to define a relative preference rela-
tion R, and then Ω can be stratified as

ΩK = ({01, 11}, {00, 10})



Through this stratification, we can infer that q should be true and p be unknown (or
undefined) in the merged base, if we take the models in the first stratum as the models
of merging. But q as a proposition does not appear in K1 or K2. If we attempt to
reconstruct a stratified merged knowledge base from the set S = K1∪K2 = {p∧q,¬p∧
q} directly with either best out, or maxsat, or leximin, we can only get KΩK ,X

S = (∅).

So, if we restrict S to be as S ⊆ ⋃
i(∪Ki) then implicit knowledge will be lost. One

way to overcome this is to allow S to be a bigger set, such as (a trivial one) S could be⋃
Cn(

⋃
K), where Cn is the classical deductive closure operator.

5 Model Based Approaches to Constructing Stratified Knowledge
Bases

An alternative to the syntax-based family of methods is to construct propositions for the
merged knowledge base directly from the stratification of interpretations Ω = (Ω1, . . . ,
Ωn), rather than picking propositions from the original knowledge bases. In this section,
we investigate how such an approach can be established.

Definition 8. Let Ω = (Ω1, . . . , Ωn) be stratification of interpretations. Define Kbo,Ω =
(S1, . . . , Sn−1), where Si = φ(

⋃n−i
j=1 Ωj)

, i = 1, . . . , n− 1.

Proposition 4. Let Ω be a stratification of interpretations. Then ΩKbo,Ω ,bo = Ω.

Example 8. Let Ω = ({11}, {10}, {00, 01}). Then Kbo,Ω = ({p}, {p ∧ q}), and
ΩKbo,Ω ,bo = Ω.

Definition 9. Let Ω = (Ω1, . . . , Ωn) be a stratification of interpretations.
Define Kmaxsat,Ω = (S1, . . . , Sn−1), where Si = φ(

⋃i
j=1 Ωj)

, i = 1, . . . , n− 1.

Proposition 5. Let Ω be a stratification of interpretations. Then ΩKmaxsat,Ω ,maxsat =
Ω.

Example 9. Let Ω = ({11}, {10}, {00, 01}). Then Kmaxsat,Ω = ({p ∧ q}, {p}), and
ΩKmaxsat,Ω ,maxsat = Ω.

Definition 10. Let Ω = (Ω1, . . . , Ωn) be a stratification of interpretations. Define
Ω′ = (Ω′

0, . . . , Ω
′
2l−1) as:

1. Ω′
i = ∅, i ∈ [0, 2l − n− 1]

2. Ω′
2l−n+i−1 = Ωi, i ∈ [1, n]

where l is the smallest number s.t. 2l ≥ n.
Let Si = φ⋃

π(j,i)=0 Ω′j (1 ≤ i ≤ l), where π(j, i) = 0 if (j mod 2l−i+1) < 2l−i,
otherwise π(j, i) = 1.

Then we define KLeximin,Ω = (S1, . . . , Sl).



In this definition, π(j, i) is in fact the value of ith (from the left hand) digit of j
when j is represented as a binary value with l-bits. For example, if we set l = 3 and
we have j = 3, then j can be represented as a binary value 011, so π(j, 2) = 1, since
the second digit of 011 is 1. We also have (3 mod 23−2+1) = 3 and 3 ≥ 23−2, so
π(3, 2) = 1 too.

Proposition 6. Let Ω be a stratification of interpretations. Then ΩKleximin,Ω ,leximin =
Ω.

Example 10. Let Ω = ({11}, {10}, {00, 01}). Then Kleximin,Ω = ({p∧q}, {p∧¬q}),
and ΩKleximin,Ω ,leximin = Ω.

When the interpretations are stratified into relatively a large number of strata, the
leximin dominated construction method can drastically reduce the number of strata of
the merged knowledge base compared to both best out and maxsat.

Example 11. Let Ω = ({111}, {110}, {101}, {100}, {011}, {010}, {001}, {000}). Then

Kleximin,Ω = ({p}, {q}, {r})
However, the other two strategies both return a knowledge base with a lot more

propositions. That is

Kbo,Ω = ({p∨q∨r}, {p∨q}, {(p∨q)∧(p∨r)}, {p}, {p∧(q∨r)}, {p∧q}, {p∧q∧r})
and

Kmaxsat,Ω = ({p ∧ q ∧ r}, {p ∧ q}, {p ∧ (q ∨ r)}, {p}, {(p ∨ q) ∧ (p ∨ r)}, {p ∨
q}, {p ∨ q ∨ r})

6 Conclusion

In knowledge base merging, most existing methods merge either flat or stratified knowl-
edge bases and produce a flat base (or a set of models) as the result (e.g., [6–8, 10]). We
argue that ideally a stratified merged base would be better since it has additional in-
formation about which formulae are more preferred than others. Motivated by this, we
investigated how such a stratified merged base can be constructed.

We first looked at the possibility of recovering a stratified base based on the strat-
ification of interpretations obtained after applying a merging operator. However, the
results show that such a straightforward method can produce counterintuitive results.
The main reason is that almost all the merging methods, especially the model-based
ones (which return a set of models as the merged results), require an assumption of
commensurability, so the absolute position of each interpretation in each stratification
of interpretations is important. We argue that only the relative position of an interpreta-
tion w.r.t other interpretations is important if we do not require this commensurability.
Based on this, we proposed a method to define a binary relative preference relation
between interpretations and then this relation is used to stratify interpretations given a
set of individual stratifications of interpretations induced from the original knowledge
bases.



Following this, we proposed a family of syntax-based and model-based approaches
to stratifying a merged knowledge base. Properties of these stratification approaches are
also studied.

The idea of constructing a relative preference relation is inspired by Condorcet
methods in voting systems or the social choice theory. The winner of votes by the
Schulze method, an instance of Condorcet methods, is exactly the same as the most
preferred interpretations in our approach to generate the stratification of interpretations
using the relative preference relation, when we treat a candidate as an interpretation and
a boll as a stratification of interpretations.

For future work, we will further investigate appropriate approaches to stratifying
merged knowledge bases and to discuss additional logical properties of our methods. In
contrast with merging flat knowledge bases, we believe that merging stratified knowl-
edge bases should put more emphasize on considering preferences of propositions and
thus should satisfy a different set of constraints or postulates to those for merging flat
bases.
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