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Abstract. In possibility theory, the degree of inconsistency is commonly used
to measure the level of conflict in information from multiple sources after merg-
ing, especially conjunctive merging. However, as shown in [HL05,Liu06b], this
measure alone is not enough when pairs of uncertain information have the same
degree of inconsistency, since it is not possible to tell which pair contains in-
formation that is actually better, in the sense that the two pieces of information
in one pair agree with each other more than the information does in other pairs.
In this paper, we investigate what additional measures can be used to judge the
closeness between two pieces of uncertain information. We deploy the concept
of distance between betting commitments developed in DS theory in [Liu06a],
since possibility theory can be viewed as a special case of DS theory. We present
properties that reveal the interconnections and differences between the degree of
inconsistency and the distance between betting commitments. We also discuss
how to use these two measures together to guide the possible selection of various
merging operators in possibility theory.

1 Introduction

Pieces of uncertain information that come from different sources often do not agree with
each other completely. There can be many reasons for this, such as, inaccuracy in sensor
data reading, natural errors occurring in experiments, and unreliability of sources. When
inconsistent information needs to be merged, assessing the degree of conflict among
information plays a crucial role when deciding which combination mode would suit the
best [DP94].

In possibility theory, the two basic combination modes are conjunctive and disjunc-
tive, each of which has some specific merging operators. Some conjunctive operators
also have reinforcement effects and they are more suitable to combine information that
is highly consistent. In general, conjunctive operators are advised to combine infor-
mation that is reliable and consistent and disjunctive operators are advised to merge
inconsistent information [BDKP02]. The degree of inconsistency of merged informa-
tion is widely used to judge how consistent that two (or multiple) pieces of possibilistic
information are. Clearly, this value is not sufficient when multiple pairs of uncertain
information have the same degree of inconsistency. We need additional approaches to
measuring the degree of agreement (or conflict) between two pieces of possibilistic



information in order to accurately decide which merging operator is more suitable, es-
pecially when an reinforcement operator is to be used.

In this paper, we take the advantage that possibility theory can be regarded as a
special case of Dempster-Shafer theory and investigate how the degree of agreement
(or conflict) between possibilistic uncertain information can be assessed by the concept
of distance between betting commitments proposed in [Liu06a]. We particularly study
the relationships between these two measures and are able to provide the following
findings.

First, when a pair of possibilistic uncertain information is totally contradictory with
each other, both measures give the same result, i.e., the maximum value of conflict.
Second, when a pair of possibilistic uncertain information appears to be consistent, i.e.,
the degree of inconsistency is zero, the range of values of the distance between bet-
ting commitments can vary from zero to almost one. This finding is important since it
tells that these two measures reveal two different aspects of the information involved.
Third, when the degree of inconsistency is sufficiently large, the distance between bet-
ting commitments increases proportionally, that is the latter is a function of the former.
Based on these findings, we are able to provide a set of more detailed guidelines as
which conjunctive (or reinforcement) merging operator is more suitable for combining
a given pair of uncertain information.

We will proceed as follows: in Section 2, we review the basics in possibility theory
and DS theory and their connections. In Section 3, we investigate the relationships
between the degree of inconsistency and the distance between betting commitments. In
Section 4, we first review the general guidelines about how to select a merging operator
in possibility theory (or possibilistic logic), we then provide a set of refined guidelines
for this purpose. Finally in Section 5, we summarize the main contributions of the paper.

2 Preliminaries
2.1 Possibility theory

Possibility theory (or possibilistic logic) is a popular choice for representing uncertain
information (or knowledge) ([DP82,BDP97], etc). At the semantic level, a basic func-
tion in possibility theory is a possibility distribution denoted as π which assigns each
possible world in set Ω a value in [0, 1] (or a set of graded values).

From a possibility distribution, a possibility measure (denoted as Π) and a necessity
measure (denoted as N ) can be derived as

Π(A) = max({π(ω)|ω ∈ A}) and N(A) = 1−Π(Ā), Ā = Ω \A (1)

The former estimates to what extent the true event is believed to be in the subset and
the latter evaluates the degree of necessity that the subset is true.

For a given π, if there exists ω0 ∈ Ω such that π(ω0) = 1, then π is said to be
normal, otherwise, π is not normal. The value 1−maxω∈Ωπ(ω) is called the degree of
inconsistency of the information (or possibility distribution).

In possibility theory, the two families of merging operators are conjunctive and
disjunctive. Examples of conjunctive operators are min, product and linear product
and an example of disjunctive operator is max. Given two possibility distributions



π1 and π2, the semantic results of applying these operators are ∀ω ∈ Ω, πmin(ω) =
min(π1(ω), π2(ω)), π×(ω) = π1(ω) × π2(ω), π⊗(ω) = max(0, π1(ω) + π2(ω) − 1),
and πmax(ω) = max(π1(ω), π2(ω)), where we use × and ⊗ for product and linear
product operators respectively.

2.2 Basics of Dempster-Shafer theory

In the Dempster-Shafer theory of evidence (DS theory) [Sha76], a piece of uncertain in-
formation is represented by a basic probability assignment (or called a mass function)
m on a set (Ω) containing mutually exclusive and exhaustive solutions to a question. Ω
is called the frame of discernment.

A mass function m : 2Ω → [0, 1] satisfies m(∅) = 0 and
∑

A⊆Ω m(A) = 1
(though condition m(∅) = 0 is not strictly required in the Transferable Belief Model
(TBM) [SK94]).

From m, a belief function, Bel(A) : 2Ω → [0, 1] is defined as Bel(A) = ΣB⊆Am(B).
When m(A) > 0, A is referred to as a focal element of the belief function (by abuse
of language, we simply say A is a focal element of mass function m in the rest of
the paper). A plausibility function Pl : 2Ω → [0, 1] from m is defined as Pl(A) =
ΣB∩A 6=∅m(B).

Two mass functions from distinct sources are usually combined using Dempster’s
combination rule. The rule is stated as follows.

Definition 1. Let m1 and m2 be mass functions, and let m1 ⊕ m2 be the combined
mass function.

m1 ⊕m2(C) =
ΣA∩B=C (m1(A)×m2(B))

1−ΣA∩B=∅ (m1(A)×m2(B))

when ΣA∩B=∅ (m1(A)×m2(B)) 6= 1.
∑

B∩C=∅m1(B)m2(C) is the mass of the combined belief assigned to the emptyset
before normalization and we denote it as m⊕(∅). In the following, whenever we use
m⊕(∅), we always associate it with this explanation unless otherwise explicitly stated.

Definition 2. [Sme04] Let m be a mass function on Ω. Its associated pignistic proba-
bility function BetPm : Ω → [0, 1] is defined as

BetPm(ω) =
∑

A⊆Ω,ω∈A

m(A)
|A|

where |A| is the cardinality of subset A.

The transformation from m to BetPm is called the pignistic transformation. In the
original definition [Sme04], when m(∅) 6= 0, m(A) is replaced by m(A)

1−m(∅) in the above
definition. Furthermore, BetPm(A) =

∑
ω∈A BetPm(ω) for A ⊆ Ω.

Definition 3. ([Liu06a]) Let m1 and m2 be two mass functions on frame Ω and let
BetPm1 and BetPm2 be their corresponding pignistic probability functions respec-
tively. Then

difBetPm2
m1

= maxA⊆Ω(|BetPm1(A)− BetPm2(A)|)
is called the distance between betting commitments of the two mass functions.



Value (|BetPm1(A)−BetPm2(A)|) is the difference between betting commitments to A
from the two sources. The distance of betting commitments is therefore the maximum
extent of the differences between betting commitments to all the subsets. difBetPm2

m1
is

simplified as difBetP when there is no confusion as which two mass functions are being
compared.

2.3 DS theory versus possibility theory

It has long been recognized that possibility theory is a special case of DS theory in the
sense that from a possibility distribution, a mass function with nested focal elements can
be recovered from it (e.g., [DP82]). In this case, a belief function is a necessity measure
and a plausibility function is a possibility measure. The actual procedure to recover a
mass function (and hence a belief function) is stated in the following definition.

Definition 4. ([DP82,DP88]) Let π be a possibility distribution on frame of discern-
ment Ω and be normal. Let the set of values π(ωi) be {αi|i = 1, ..., p} and they are
arranged as α1 = 1 ≥ α2 ≥ α3, ...,≥ αp > 0 and αp+1 = 0. Let

1. Ai = {ω|π(ω) ≥ αi} for i = 1, 2, ..., p, then subsets A1, A2, .., Ap are nested;
2. m(Ai) = π(ωi)− π(ωi+1) for i = 1, 2, ..., p, where ωi ∈ Ai, ωi+1 ∈ Ai+1.

Then m is a mass function recovered from π with focal elements Ai (i = 1..., p).

Example 1. Let π be a possibility distribution on Ω = {ω1, ..., ω4} where

π(ω1) = 0.7, π2(ω2) = 1.0, π2(ω3) = 0.8, π2(ω4) = 0.7

Then the focal elements are A1 = {ω2}, A2 = {ω2, ω3}, and A3 = Ω. The corre-
sponding mass function is m(A1) = 0.2, m(A2) = 0.1, and m(A3) = 0.7.

3 Relationship between Inc(π), difBetP and m⊕(∅)

Since Inc(π), difBetP and m⊕(∅) are developed for measuring inconsistency/conflict
in possibility theory and DS theory respectively, and these two theories have some in-
terconnections, we study formally the relationships among these three values.

Proposition 1. ([Liu06b]) Let π be a possibility distribution on frame of discernment
Ω and be normal. Let BetPm be the pignistic probability function of the corresponding
mass function m derived from π. Then BetPm(ωi) ≥ BetPm(ωj) iff π(ωi) ≥ π(ωj).

This proposition says that the more plausible a possible world is, the more betting com-
mitment it carries. It is consistent with the ordinal faithfulness [Dub06] where a proba-
bility distribution preserves the ordering of possibilities of elementary events1.

1 It should be noted that in [Dub06], ordinal faithfulness refers to the preservation of the ordering
of elementary events after transforming a probability distribution to a possibility distribution.
Since obtaining BetPm from a π satisfies this feature, we think it is worth to mention it here.



Example 2. (Con’t Example 1) Following Example 1, the pignistic probability function
for the given possibility distribution is

BetPm(ω1) = 0.7/4; BetPm(ω2) = 0.2 + 0.1/2 + 0.7/4;
BetPm(ω3) = 0.1/2 + 0.7/4; BetPm(ω4) = 0.7/4.

That is BetPm(ω2) > BetPm(ω3) > BetPm(ω1) = BetPm(ω4) which is consistent
with the ordering of π(ω2) > π(ω3) > π(ω1) = π(ω4).

Proposition 2. Let π1 and π2 be two possibility distributions on frame of discernment
Ω and be normal. Let πmin, π× and π⊗ be their merged results using the min, the
product, and the linear product operators respectively. Then the following properties
hold

Inc(πmin) = 1 iff Inc(π×) = 1 iff Inc(π⊗) = 1

Inc(πmin) = 0 iff Inc(π×) = 0 iff Inc(π⊗) = 0

The proof of this proposition is straightforward and it enables us to prove the following
propositions by using the min as the representative of conjunctive operators.

Proposition 3. ([Liu06b]) Let π1 and π2 be two possibility distributions on Ω and be
normal. Let π∧ be their conjunctively merged possibility distribution. Assume m1 and
m2 are the mass functions derived from π1 and π2 respectively. Then the following
properties hold

1. Inc(π∧) = 0 iff m⊕(∅) = 0
2. Inc(π∧) = 1 iff m⊕(∅) = 1
3. Inc(π∧) > 0 iff m⊕(∅) > 0

If we have two pairs of possibility distributions and we use π1
∧ and π2

∧ to denote their
conjunctively merged possibility distributions, then Inc(π1

∧) ≥ Inc(π2
∧) does not imply

m1
⊕(∅) ≥ m2

⊕(∅) in general, where m1
⊕ and m2

⊕ are the combined mass functions from
the two pairs of mass functions derived from corresponding possibility distributions.
This is demonstrated by Example 4 (in Section 4) where the two sets of possibility dis-
tributions have the same degree of inconsistency (0.2) but with different values assigned
to the emptyset after combination (0.07 versus 0.23).

Proposition 4. Let π1 and π2 be two possibility distributions and normal and let their
conjunctively combined possibility distribution be π∧. Furthermore, let m1 and m2 be
their corresponding mass functions. Then we have the following property

Inc(π∧) = 1 iff difBetPm2
m1

= 1

Proof We take π∧ = πmin below without losing generality (see Proposition 2).
We first prove that Inc(π) = 1 implies difBetPm2

m1
= 1.

Let π1 and π2 be two possibility distributions, where πmin is the conjunctively
merged distribution using min. When Inc(πmin) = 1, π1 and π2 are totally inconsistent,
then for any ω ∈ Ω either π1(ω) = 0 or π2(ω) = 0 or both. Let Ap and Aq be the largest



focal elements of m1 and m2 respectively, then Ap ∩Aq = ∅, and both BetPm1(Ap) =
1 and BetPm2(Aq) = 1 hold. So we have BetPm1(Ap) − BetPm2(Ap) = 1, since we
must have BetPm2(Ap) = 0 when BetPm2(Aq) = 1 (remember BetP is a probability
function). Therefore difBetPm2

m1
= 1 must be true.

Next, we prove that difBetPm2
m1

= 1 implying Inc(π) = 1. When difBetPm2
m1

= 1,
there exists a subset A ⊂ Ω such that BetPm2(A) = 1 and BetPm1(A) = 0 (or vise
versa). This means that A is the largest focal element for m2 which implies ∀ω ∈ A,
π2(ω) 6= 0 and ∀ω 6∈ A, π2(ω) = 0. On the other hand, BetPm1(A) = 0 tells us that
∀ω ∈ A, π1(ω) = 0. Therefore, we have

∀ω ∈ A, πmin(ω) = min(π1(ω), π2(ω)) = 0, since π1(ω) = 0, and
∀ω 6∈ A, πmin(ω) = min(π1(ω), π2(ω)) = 0, since π2(ω) = 0.
That is ∀ω ∈ Ω, πmin(ω) = 0. So Inc(πmin) = 1, and so is Inc(π∧) = 1.
¦
Propositions 3 and 4 together tell us that if two pieces of information contradict with

each other completely, any of the three measures (i.e., Inc(π), m⊕(∅), or difBetPm2
m1

) is
sufficient to quantitatively justify it.

In general, Inc(π∧) = 0 ⇒ difBetPm2
m1

= 0 does not hold as shown below.

Example 3. Let two possibility distributions be

π1(ω1) = 1.0, π1(ω2) = 0.1, π1(ω3) = 1.0, π1(ω4) = 0.8;

π2(ω1) = 1.0, π2(ω2) = 0.9, π2(ω3) = 0.2, π2(ω4) = 0.1.

Then the degree of inconsistency between them is 0 if they are merged conjunctively.
Their corresponding mass functions are

m1({ω1, ω3}) = 0.2,m1({ω1, ω3, ω4}) = 0.7,m1({Ω}) = 0.1;

m2({ω1}) = 0.1,m2({ω1, ω2}) = 0.7,m2({ω1, ω2, ω3}) = 0.1,m2({Ω}) = 0.1.

As we can see at least BetPm2(ω2) − BetPm1(ω2) > 0, so difBetPm2
m1

= 0 does not
hold.

Proposition 5. Let π1 and π2 be two possibility distributions on Ω and normal, and let
their conjunctively combined possibility distribution be π∧. Furthermore, let m1 and
m2 be their corresponding mass functions. When Inc(π∧) = 0 we have

0 ≤ difBetPm2
m1
≤ (n− 1)

n
, where n = |Ω| .

Proof When two possibility distributions π1 and π2 are identical, Inc(π∧) = 0 must
be true. Also, they generate the same mass function, and the same pignistic probability
function, so difBetPm2

m1
= 0 holds in this situation. We have shown that difBetPm2

m1
> 0

is possible when Inc(π∧) = 0 in Example 3, therefore, 0 ≤ difBetPm2
m1

is true for any
pair of possibility distributions when Inc(π∧) = 0.

Now, we prove that difBetPm2
m1
≤ (n−1)

n .
Inc(π∧) = 0 implies that there is at least one ω ∈ Ω such that π1(ω) = 1 and

π2(ω) = 1.



First, we consider a situation where there is only one element in Ω, denoted as
ω1 such that π1(ω1) = 1 and π2(ω1) = 1. We further assume that for all ωi ∈ Ω,
π1(ωi) = 0 if ωi 6= ω1 and π2(ωi) = 1. Then the two mass functions from these two
possibility distributions are m1({ω1}) = 1 and m2(Ω) = 1. Therefore

difBetPm2
m1

=
(n− 1)

n

because BetPm1(Ω \ {ω1}) = 0 and BetPm2(Ω \ {ω1}) = (n−1)
n .

Before proving that for any two possibility distributions that difBetPm2
m1
≤ (n−1)

n
holds, we need to prove that for a positive integer n > 2, the following inequality is
true

n− 1
n

>
n− 2
n− 1

This is obvious since (n− 1)2 > n(n− 2). Therefore, we have

n− 1
n

>
n− 2
n− 1

>
n− 3
n− 2

> ... >
1
2

(2)

Next, we proof that for any π1 and π2 with their Inc(π∧) = 0, difBetPm2
m1
≤ (n−1)

n .
For this case, we still assume that π1(ω1) = 1 and π2(ω1) = 1, because we have the

assumption Inc(π) = 0 which means ∃w ∈ Ω, such that π1(ω) = π2(ω) = 1. Without
losing generality, we assume that BetPm2(w1) ≤ BetPm1(w1) (since m1 and m2 are
symmetric) and we can also assume that there exists a subset A such that difBetPm2

m1
=

BetPm2(A)−BetPm1(A) holds (otherwise if difBetPm2
m1

= BetPm1(A
′
)−BetPm2(A

′
),

we let A = Ω \ A
′

and the equation still holds). Let the sets of focal elements for m2

be A1, .., Ap where A1 ⊂ A2 ⊂ ... ⊂ Ap and let A′p = Ap \ {ω1}, we get

BetPm2(A
′
p) =

|A1| − 1
|A1| m2(A1) + ... +

|Ap| − 1
Ap

m2(Ap)

≤ |Ap| − 1
Ap

m2(A1) + ... +
|Ap| − 1

Ap
m2(Ap)(see Equation 2)

=
|Ap| − 1

Ap
(m2(A1) + ... + m2(Ap))

≤ |Ap| − 1
Ap

, (since m2(A1) + ... + m2(Ap) ≤ 1)

≤ n− 1
n

(because Ap ⊆ Ω, where |Ω| = n) (3)

Then BetPm2(A
′
p) is the largest value possible among all BetPm2(B) where B ⊆

Ω \ {ω1}.
When w1 ∈ A, we have

difBetPm2
m1

= BetPm2(A)− BetPm1(A)
= BetPm2(A \ {w1}) + BetPm2({w1})



−BetPm1(A \ {w1})− BetPm1({w1})
≤ BetPm2(A \ {w1})− BetPm1(A \ {w1})
≤ BetPm2(A

′
p)− 0 ≤ n− 1

n
(4)

When w1 6∈ A, difBetPm2
m1

= BetPm2(A) − BetPm1(A) ≤ BetPm2(A
′
p) − 0 ≤ n−1

n .
That is, difBetPm2

m1
≤ n−1

n is true for any two possibility distributions.
¦
This proposition is important, since it tells us that two apparently totally consistent

possibility distributions can be very different when we measure their distances between
betting commitments to subsets. This means that the two distributions can have very
different degrees of possibility assigned to some elements, though they totally agree on
some other elements. Therefore, using Inc(π∧) alone may not be accurate enough when
assessing how consistent (close) that two possibility distributions are.

Proposition 6. Let π1 and π2 be two possibility distributions and normal, and let their
conjunctively combined possibility distribution be π∧. Furthermore, let m1 and m2 be
their corresponding mass functions. When Inc(π∧) = ε where ε is sufficiently large (like
0.8), we have

difBetPm2
m1
≥ 2ε− 1

Proof First we assume that the values of π1(ω) for all ω ∈ Ω are arranged as (see
Definition 4)

1 ≥ α1 ≥ ... ≥ αi... ≥ αn > 0

Let αi be the smallest value in the above sequence such that αi > 1 − ε, based on
Definition 4, we have a focal element Ai for m1 as

Ai = {w|π1(w) ≥ αi}
If the other focal elements obtained before Ai are A1, ..., Ai−1, then according to Defi-
nition 4, we have

Σi
j=1m1(Aj) = (1−α1)+ (α1−α2)+ ...+(αi−1−αi) = 1−αi > 1− (1− ε) = ε

By Definition 2, we have BetPm1(Ai) ≥ Σi
j=1m1(Aj) > ε, since Ai ⊂ Ai+1, ..., Ai ⊂

An where Ai+1, ..., An are the remaining focal elements for m1.
Similarly, for π2, there is a subset Bj such that BetPm2(Bj) > ε. Because Inc(π∧) =

ε, Ai∩Bj = ∅must hold (otherwise, there is a ω ∈ Ai∩Bj where min(π1(ω), π2(ω)) >
1− ε, so Inc(π∧) < ε which contradict the original assumption).

Given that BetPm2 is a probability function, BetPm2(Ai) ≤ 1 − ε must hold (be-
cause BetPm2(Bj) > ε and Ai ∩Bj = ∅). Therefore, we have

BetPm1(Ai)− BetPm2(Ai) ≥ ε− (1− ε) = 2ε− 1

Since difBetPm2
m1
≥ BetPm1(Ai) − BetPm2(Ai) (see Definition 3), we have even-

tually difBetPm2
m1
≥ 2ε− 1.

¦
This proposition is meaningful when ε ≥ 0.5 and it states that the distance between

betting commitments increases along with the increase of the degree of inconsistency.



4 Merging Operators Selection Criteria

4.1 Merging operators in possibility theory

The fundamental classes of merging operators in possibility theory (or possibilistic
logic) are conjunctive and disjunctive operators. Typical conjunctive operators are
minimum (min(π1(ω), π2(ω))), product (π1(ω)×π2(ω)), and linear product (max(π1(ω)
+π2(ω)−1, 0)), and their dual are the maximum, the probabilistic sum (π1(ω) +π2(ω)−
π1(ω)π2(ω)), and the bounded sum (min(1, π1(ω)π2(ω))). All these conjunctive and
disjunctive operators are associative, so merging n possibility distributions can be done
recursively, provided that there are no normalizations for the intermediate merging re-
sults.

Since some of these operators have special characteristics, two specialized classes of
merging operators are further defined in [BDKP02], they are respectively idempotent
and reinforcement operators. For example, the product and the linear product operators
are also reinforcement operators, and minimum and maximum are idempotent opera-
tors. Furthermore, some adaptive operators were proposed which aim at integrating
both conjunctive and disjunctive operators when neither of them alone is suitable for
merging.

As discussed in [BDKP02], these five classes of operators are suitable for different
situations. The conjunctive operators are used when it is believed that all the sources
are reliable and these sources agree with each other. When there is a strong agreement
among the sources, reinforcement operators are more suitable. On the other hand, the
disjunctive operators are applied when it is believed that some sources are reliable but
it is not known which of these sources are and when there is a high degree of conflict
among sources. Idempotent operators can deal with redundant information where re-
peated information is only counted once. Since disjunctive operators are too cautious
for merging sources with a low level of inconsistency, adaptive operators are suggested
to integrate the behaviour of both conjunctive and disjunctive operators.

Among the three named conjunctive operators, it is well recognized ([DP01]) that
the product operator is equivalent to the Dempster’s combination rule for the computa-
tion of the plausibility of singletons. Therefore, the condition of applying Dempster’s
rule shall apply to this operator as well, i.e., the information comes from distinct or
independent sources.

Although the above analysis provides a general guideline as which operator is suit-
able for what situation, there are no quantitative measures judging precisely when a
particular operator should be selected. For example, what value of inconsistency is re-
garded as a lower degree of inconsistency?

We are interested in whether it is possible to provide some quantitative approaches
to serving this purpose based on properties we have shown in the previous section,
and hence we propose the following guidelines to recommend how to select a merging
operator.

4.2 Merging operators selection criteria

In the following, we use× and⊗ to denote the product and the linear product operators.



Definition 5. Let π1 and π2 be two possibility distributions and m1 and m2 be their
corresponding mass functions. When Inc(π∧) = 0,

– if difBetPm1
m2

= 0, then operator ⊗ is recommended if the information is from inde-
pendent (distinct) sources; otherwise, operator min is recommended,

– if 0 < difBetPm1
m2

< ε1, then operator × is recommended if the information is from
independent (distinct) sources; otherwise, operator min is recommended,

– if ε1 ≤ difBetPm1
m2

< ε2, then operator × can be applied with caution if the infor-
mation is from independent (distinct) sources; otherwise, operator min is recom-
mended,

– if ε2 ≤ difBetPm1
m2

, then operator min is recommended.

where ε1 is sufficiently small (e.g., 0.3) and ε2 is sufficiently large (e.g., 0.8).

This definition shows that when Inc(π∧) = 0, we do not have to arbitrarily choose
a conjunctive operator, the difBetPm1

m2
value provides additional information as whether

a high reinforcement operator is more suitable. For example, when difBetPm1
m2

= 0, it is
more advisable to use ⊗ than × because the information is highly consistent. As stated
in [DP94], the condition of choosing such a reinforcement operator is the independence
of sources of information. When this condition cannot be guaranteed, min would be a
safer option to use.

Definition 6. Let π1 and π2 be two possibility distributions and m1 and m2 be their
corresponding mass functions. When 0 < Inc(π∧) < ε,

– if difBetPm1
m2

< ε1, then operator × is recommended if the information is from
independent (distinct) sources; otherwise, operator min is recommended,

– if ε1 ≤ difBetPm1
m2

< ε2, then operator × can be applied with caution if the infor-
mation is from independent (distinct) sources; otherwise, operator min is recom-
mended,

– if ε2 ≤ difBetPm1
m2

, then operator min is recommended.

where ε is sufficiently small (e.g., 0.2), and ε1 and ε2 are as defined in Definition 5.

Example 4. let two pairs of possibility distributions be as given below.

π1
1(ω1) = 0.7, π1

1(ω2) = 0.8, π1
1(ω3) = 1.0, π1

1(ω4) = 0.6;

π1
2(ω1) = 1.0, π1

2(ω2) = 0.9, π1
2(ω3) = 0.7, π1

2(ω4) = 0.6.

and
π2

1(ω1) = 0.1, π2
1(ω2) = 0.8, π2

1(ω3) = 1.0, π2
1(ω4) = 0.1;

π2
2(ω1) = 1.0, π2

2(ω2) = 0.9, π2
2(ω3) = 0.2, π2

2(ω4) = 0.1.

We use π1
∧ and π2

∧ to denote the combined possibility distributions from the two
pairs using min. Their degrees of inconsistency are the same, Inc(π1

∧) = Inc(π2
∧) = 0.2

and this value suggests the application of a conjunctive operator based on Definition 6.
The corresponding mass functions from the two pairs of possibility distributions are

m1
1({ω3}) = 0.2,m1

1({ω2, ω3}) = 0.1,m1
1({ω1, ω2, ω3}) = 0.1,m1

1({Ω}) = 0.6;



m1
2({ω1}) = 0.1,m1

2({ω1, ω2}) = 0.2,m1
2({ω1, ω2, ω3}) = 0.1,m1

2({Ω}) = 0.6;

and
m2

1({ω3}) = 0.2,m2
1({ω2, ω3}) = 0.7,m2

1({Ω}) = 0.1;

m2
2({ω1}) = 0.1,m2

2({ω1, ω2}) = 0.7,m2
2({ω1, ω2, ω3}) = 0.1,m2

2({Ω}) = 0.1.

For the first pair of mass functions, we have difBetP
m1

2

m1
1

= 0.25, while for the 2nd pair

we get difBetP
m2

2

m2
1

= 0.525. These two pairs show an obvious difference in difBetP

values. The possibility distributions in the first pair are more consistent with each other
than the two in the 2nd pair. However, this information is not reflected by Inc(π∧).

According to Definition 6, the first pair can be combined with the product operator
(×) if the sources of information are distinct while it is better to merge the second pair
with the minimum operator.

Definition 7. Let π1 and π2 be two possibility distributions and m1 and m2 be their
corresponding mass functions. When Inc(π∧) ≥ ε then a disjunctive operator is recom-
mended to merge π1 and π2, where ε is sufficiently large, e.g., 0.8.

Example 5. Let two possibility distributions be

π1(ω1) = 0.1, π1(ω2) = 0.2, π1(ω3) = 1.0, π1(ω4) = 0.1;

π2(ω1) = 1.0, π2(ω2) = 0.2, π2(ω3) = 0.2, π2(ω4) = 0.1.

Let π∧ be the possibility distribution combining π1 and π2 with min, then the degree of
inconsistency is Inc(π∧) = 0.8 which suggests a high degree of inconsistency. There-
fore, the conjunctive operators are unlikely to be used.

On the other hand, the two corresponding mass functions from the possibility dis-
tributions are

m1({ω3}) = 0.8,m1({ω2, ω3}) = 0.1,m1({Ω}) = 0.1;

m2({ω1}) = 0.8,m2({ω1, ω2, ω3}) = 0.1,m2({Ω}) = 0.1;

and difBetPm2
m1

= 0.72 which also hints a strong conflict among the two pieces of infor-
mation.

The grey area that the above three definitions did not cover is when ε1 ≤ Inc(π∧) ≤
ε2, such that ε1 = 0.3, ε2 = 0.8. In our future work, we will further investigate what
other measures are needed in order to select a suitable merging operator for this situa-
tion.

5 Conclusion

In this paper, we have shown that additional approaches to measuring conflict among
pieces of uncertain information are needed since the only measure used in possibility
theory, e.g., the degree of inconsistency, is not sufficient.



We have studied how the distance between betting commitments developed in DS
theory can be used to measure the inconsistency among pieces of uncertain information
in possibility theory. We have also established a set of properties to show the relation-
ship between the degree of inconsistency and the distance between betting commit-
ments between a pair of uncertain information. We conclude that these two measures
tell us different aspects of the information and both values should be used to select a
suitable merging operator. This investigation can be taken as the refinement of general
discussions on merging operators selection in [BDKP02].

As pointed out in the paper, there is a grey area where it is not clear which merging
operator is best suited. One of our future work is to explore other additional measures
to see if some quantitative measures can be proposed to deal with these cases.
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