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Abstract. Most operators for merging multiple knowledge bases (where each is
a set of formulae) aim to produce a knowledge base as output that best reflects
the information available in the input. Whilst these operators have some valuable
properties, they do not provide explicit information on the degree to which each
formula in the output has been, in some sense, supported by the different knowl-
edge bases in the input. To address this, in this paper, we first define the degree
of support that a formula receives from input knowledge bases. We then provide
two ways of determining formulae which have the highest degree of support in
the current collection of formulae in KBs, each of which gives a preference (or
priority) over formulae that can be used to stratify the formulae in the output.
We formulate these two preference criteria, and present an algorithm that given a
set of knowledge bases as input, generates a stratified knowledge base as output.
Following this, we define some merging operators based on the stratified base.
Logical properties of these operators are investigated and a criterion for selecting
merging operators is introduced.

1 Introduction
The notion of priority (preference) is important in inconsistency-tolerant reasoning
(such that for potentially inconsistent knowledge-based systems [B+04], belief updat-
ing [Gad88], analyzing inconsistent regulations [BB04]; and analyzing social networks
[KG06]). Priorities can be encoded in two different ways, one way is to prioritize these
sources according to their reliability and another is to attach priorities to items of knowl-
edge within each source [BDP96]. Both approaches usually would require that infor-
mation on priorities is available explicitly, especially for the reliability of sources.

Merging operators for multiple knowledge bases therefore can be characterized for
whether they are designed to merge flat (e.g., [BKMS92,KLM04]) or stratified knowl-
edge/belief bases (e.g.,[B+98,DDL06]). Often, the result of merging, no matter whether
for stratified or for flat knowledge bases, is simply a flat base1. However, even if the
original knowledge bases are not prioritized, some items of knowledge (i.e., some for-
mulae) receive more support (i.e. more preferred) then others. This information is often
ignored when a merged result is obtained.

1 We only consider merging in the context of propositional logic. As for possibilistic logic, the
merged result is a new possibilistic knowledge base which can be regarded as prioritized.



The importance of differentiating more preferred (w.r.t. support) from less pre-
ferred formulae can be seen in many applications such as in requirements engineer-
ing or in analyzing findings from clinical trials. In requirements engineering, com-
mon requirements from different sources are in general selected first before resolving
conflicting requirements [Dav05]. Assume that there are four stakeholders involved in
building a new computer system. Stakeholder A (sales person) prefers the new sys-
tem to be open and fashionable, stakeholder B (system security) prefers the system
to be authorized and not open, stakeholder C (programmer) prefers open and fashion-
able, and stakeholder D (investor) prefers open, and fashionable and easy to use. We
can construct four knowledge bases as follows where p = open, q = fashionable,
s = authorized and r = easy to use, KA = {p, q}, KB = {¬p, s}, KC = {p, q},
and KD = {p, q ∧ r}. A combination method in [BKMS92] generates two possible
solutions M1 = {p, q, q ∧ r, s} and M2 = {¬p, q, q ∧ r, s}. With these two maxi-
mal consistent subsets, it is not possible to decide whether it should be p or ¬p in the
merged result, although p has support from three bases. The merging operators pro-
posed in [Kon00] overcome this problem. For instance, one of the three operators in
[Kon00] selects M1 = {p, q, q ∧ r, s} in the above example since this subset is consis-
tent with three of the four original bases. However, current merging operators cannot
tell which formulae are more preferred in the merged base. In this example, proposi-
tion p (the new system should be open) is directly required by three stakeholders, while
proposition s is only supported by one stakeholder, nevertheless, they are all treated
equally in the merged knowledge base. Furthermore, q is directly given in two bases
and is entailed from another base. This extra information is not retained either after
merging. We believe that the degree of support for p (no matter whether directly given
or implicitly entailed) from these sources should be reflected in a merged base, so the
output of merging also states that p is preferred to q and q is preferred to s.

In this paper, we investigate how the above two types of support to a formula can
be identified when multiple knowledge bases are present. For this, we first define the
degree of support that a formula receives from a profile, we then define both the notion
of most primed formulae and the most entailed formulae and propose methods to select
them. A formula with the highest degree of support in a set of knowledge bases (a pro-
file) is either a most primed or a most entailed formula in the profile. We also propose
an algorithm to stratify the union of formulae from multiple knowledge bases based on
the degree of support a formula receives, with the result being a stratified base. A strat-
ified base induces a total preorder relation which ranks a more preferred formula ahead
of less preferred ones. The significance of such a base can be shown in several aspects.
First, common beliefs (knowledge) from the majority of sources are given higher prior-
ities than other beliefs in a profile. Second, it can be used to determine which merging
result is better in terms of retaining more important formulae. Third, it can be taken as
a prioritized observation base and merging operators tailored towards such a base can
be applied [DDL06].

The paper is organized as follows. The preliminaries are introduced in Section 2.
Two conceptualizations of most preferred formulae which have the highest degree of
support in the current profile are presented, namely, the most primed and the most en-
tailed formulae in Section 3. A stratification algorithm and its properties are studied



in Section 4. In Section 5, some new merging operators are proposed and their logical
properties are discussed. Comparisons with related work and conclusions are given in
Section 6.

2 Preliminaries

2.1 Propositional logic

We consider standard finite classical propositional logic here. We denote atoms as
p, q, r, etc. and formulas as φ, ψ, γ,, etc.. A literal is an atom p or its negation ¬p and
is denoted as li. The classical consequence relation is denoted as `. An interpretation
(possible world), ω, is a function from A (the set of atoms) to {0, 1} and is denoted as
the conjunction of literals l1 ∧ ... ∧ l|A|, where |A| means the cardinality of set A. ω is
a model of a formula φ iff ω(φ) = 1. Two formulae φ and ϕ are said to be equivalent
(or equal), denoted as φ ≡ ϕ, iff they have the same set of models. In this paper, we say
φ is in Ki iff there exists a ϕ ∈ Ki such that φ ≡ ϕ regardless of their syntax. Also,
∧Ki ` φ denotes ∧ϕj ` φ where ϕj ∈ Ki.

A knowledge base, K, is a collection of propositional formulae and a knowledge
profile, E = {K1, ...,Kn} contains a set of knowledge bases which are not necessarily
distinct. In the following, we let E∪ = K1 ∪ ...∪Kn and let E∩ = K1 ∩ ...∩Kn where
∪ and ∩ are usual set-based union and intersection operators. A subset E of knowledge
profile E itself in turn is a knowledge profile and E∪ and E∩ are similarly defined. In
subsequent sections, we always use E to denote an original knowledge profile, and use
E (possibly with subscript) to denote a subset of E .

2.2 Stratified knowledge bases

A stratified knowledge base, also called a ranked knowledge base [Bre04] or a prior-
itized knowledge base [B+93] models a set of formulae with explicit preferences (or
priorities) among the formulae. Let K be a knowledge base containing a set of propo-
sitional formulae, (K,�) is a stratified base if there is a total preorder relation � on
K. � is a total preorder on K iff for any φ, ϕ ∈ K, either φ � ϕ or ϕ � φ holds. A
preorder relation,�, is transitive and reflexive and its associated strict preorder relation,
≺, is defined as φ ≺ ϕ iff φ � ϕ but ϕ 6� φ. φ � ϕ is interpreted as φ is at least as
preferred (or plausible) as ϕ and φ ≺ ϕ as φ is more preferred than ϕ. Two preorder
relations �1 and �2 are equivalent, denoted as �1≡�2, if for any two formulae φ and
ϕ, φ �1 ϕ implies φ �2 ϕ and vice versa.

For simplicity, in the following we use SK to denote a stratified version of a knowl-
edge base K without mentioning the total preorder relation on K and SK can be equiv-
alently represented as a tuple SK = 〈S1, ..., Sm〉 such that Si 6= ∅, (i = 1, ...,m) and
Si contains all the most preferred elements in K \ (∪i−1

j=1Sj) w.r.t �, that is, Si = {φ ∈
K \ (∪i−1

j=1Sj), s.t.,∀ϕ ∈ K \ (∪i−1
j=1Sj), φ � ϕ}. Each Si is called a stratum of K and

index i is the priority level of formulae in Si. Therefore, the lower the index is, the more
preferred a formula is. A stratified knowledge baseK can be inconsistent and the degree
of inconsistency of K is defined as Inc(SK) = i, i > 0s.t.,∪i−1

j=1Sj 6` ⊥,∪i
j=1Sj ` ⊥.

Let SK1 = 〈S1, ..., Sm〉 and SK2 = 〈T1, ..., Tn〉 be two tuples, the concatenation of
them is defined as SK1 ⊕ SK2 = 〈S1, ..., Sm, T1, ..., Tn〉. In particular for any tuple



SK , SK ⊕ 〈〉 = 〈〉 ⊕ SK = SK . Also, we write SK1 ≈ SK2 iff m = n and for
each i where Si = {β1, ..., βp} and Ti = {β′1, ..., β′p} it is the case that βj = β′j , for
j = 1, ..., p.

3 Most preferred formulae
To characterize that some formulae are more preferred than others in a collection of
knowledge bases, we first define the degree of support of a formula. The rational of this
definition is that there could be many ways to define a function from formulae to [0,1]
and some of them are not acceptable as formalizing the amount of support a formula
gets from a knowledge base. So we only give some constraints about what a degree of
support function shall obey, rather than specify a single function.

Definition 1. Let E be a knowledge profile and let φ be a formula. A real function SE
is a degree of support function for E iff it satisfies the following two conditions.

1. If |E| = 1 and φ ∈ E∪ then SE(φ) = 1
2. If E∪ 6` ⊥ and φ ∈ E∪ then SE(φ) > 0, where E∪ 6` ⊥ means E∪ is consistent.

φ is a most preferred formula if ∀ϕ ∈ E∪, abs(SE(φ)) ≥ abs(SE(ϕ)) holds, where
abs(SE(φ)) returns the positive value (the absolute value) obtained from SE(φ).

This definition contains two constraints. The first says that when a knowledge pro-
file contains a single knowledge base then every formula in the base should have the
maximum support, and the second states that when a knowledge profile is consistent
then every formula appearing in the profile should have a positive degree of support.
We now provide some subsidiary definitions that we will use to define two possible
definitions of a degree of support functions. Let Atoms(E∪) be the set of atoms that
appear in the formulae in E∪. We can use the power set of Atoms(E∪) to denote the set
of interpretations of E∪. For any I ⊆ Atoms(E∪), if α ∈ I then α is true in I , otherwise
α is false in I .

Definition 2. For a set of formulae X , the set of models of X in the context of E ,
denoted ME(X), is defined as ME(X) = {I ⊆ Atoms(E∪) | I |= ∧X}

Definition 3. Let K be a consistent set of formulae and let φ be a consistent formula.
The degree of entailment of K for φ in the context of E , denoted EE(K,φ), is defined
as EE(K,φ) = |ME(K∪{φ})|

|ME(K)| .

For instance, let K = {p, q∧ r}, then EE(K, p) = 1, EE(K, p∧ q) = 1, EE(K, q∧ r∧
s) = 1

2 .
The Dalal distance (Hamming distance) betweenwi andwj , denoted Dalal(wi, wj),

is the difference in the number of atoms assigned true (i.e. Dalal(wi, wj) = |wi − wj |+
|wj −wi|). To evaluate the conflict between two formulae, we take a pair of models, one
for each formula, such that the Dalal distance is minimized. The degree of conflict is
this distance divided by the maximum possible Dalal distance between a pair of models.

Definition 4. Let X and Y be sets of formulae, each of which is consistent. The set of
distances between X and Y , denoted DistE(X,Y ) is defined as

DistE(X, Y ) = {Dalal(wx, wy) | wx ∈ ME(X) ∧ wy ∈ ME(Y )}



Definition 5. Let K be a consistent set of formulae and let φ be a consistent formula.
The degree of conflict of K for φ in the context of E , denoted CE(K,φ), is defined as
follows:

CE(K, φ) =
Min(DistE(K, {φ}))

|Atoms(E∪)|

Once again, letK = {p, q∧r}, thenCE(K, p) = CE(K, p∧q) = 0,CE(K, q∧¬r∧s) =
1/4.

We now define two instances of a degree of support.

Definition 6. Let E be a knowledge profile and let φ be a formula. The drastic degree
of support, denoted Sd

E , is defined as

Sd
E(φ) =

∑
K∈E,EE(K,φ)=1

EE(K,φ)

Definition 7. Let E be a knowledge profile and let φ be a formula. The balanced degree
of support, denoted Sb

E , is defined as

Sb
E(φ) =

∑
K∈E

EE(K,φ)−
∑
K∈E

CE(K,φ).

Proposition 1. Let E be a knowledge profile and let φ and ψ be formulae.

1. If φ ` ψ then Sd
E(φ) ≤ Sd

E(ψ)
2. If E 6` ⊥ and φ ` ψ, then Sb

E(φ) ≤ Sb
E(ψ)

Example 1. Let E = {KA,KB ,KC ,KD} where KA = {p, q}, KB = {¬p, s},
KC = {p, q}, and KD = {p, q ∧ r} (as defined in the Introduction). Then the drastic
degrees of support and the balanced degree of support for formulae p, q, ¬p, s, and q∧r
respectively are

p q ¬p s q ∧ r
Sd
E(•) 3 3 1 1 1
Sb
E(•) 11

4
7
2

1
4

5
2

9
4

Formulae p and q have the highest drastic degree of support from these bases while q
is the only formula in E∪ that has the highest balanced degree of support. The balanced
degrees of support for p and ¬p are both less than their drastic degrees of support
because one of them contributed to the degree of conflict of the other. Sd

E(q ∧ r) = 1
is increased to Sb

E(q ∧ r) = 9/4 because q ∧ r is partially entailed by KA and KC ,
and it is not in conflict with KB . If we consider the drastic degree of support, p and
q are among the most preferred formulae. It should be pointed out that p is directly
given in three bases while q is given in two and is entailed by another, although they
have the same degree of support. We want to differentiate these two types of formulae
when their degrees of support are the same, since we believe that p (as an individual
statement) holds more support than q (if we assume stakeholder D really prefers that
both q and r be true, not just q).

In this paper, we will only consider the drastic degree of support and we conceptu-
alize these two types of most preferred formulae which have the highest drastic degree
of support in the current profile, namely the most primed and the most entailed.



Definition 8. Let E = {K1, ...,Kn} be a knowledge profile. We define a total preorder
relation �p on E∪ as follows.

∀φ, ϕ ∈ E∪, φ �p ϕ iff Sdp
E (φ) ≥ Sdp

E (ϕ)

where Sdp
E (φ) = |](E)|s.t., ](E) = {K ∈ E|EE(K, φ) = 1 and φ ∈ K}.

Sdp
E (φ) is a variant of Sd

E(φ) in which we not only require that EE(K,φ) = 1 but
also φ ∈ K, so Sdp

E (φ) is more restricted than Sd
E(φ). For instance, with Example 1, we

have Sd
E(q) = 3 whilst Sdp

E (q) = 2, because q 6∈ KD although EE(KD, q) = 1.

Definition 9. Let E = {K1, ...,Kn} be a knowledge profile. φ ∈ E∪ is called a most
primed formula in E∪ iff φ �p ϕ,∀ϕ ∈ E∪.

The most primed formulae are knowledge profile dependent, since a formula can
be a most primed formula in one profile but not in another. For example, if we have a
knowledge profile E = {K1,K2,K3} such that K1 = {p, q, r},K2 = {p, r, s}, and
K3 = {p, q,¬r}, then the most primed formula in E∪ is p. However, if we delete p
from K3, then the most primed formulae are {p, q, r}.

Definition 10. Let E = {K1, ...,Kn} be a knowledge profile. We define a total preorder
relation �e on E∪ as follows

∀φ, ϕ ∈ E∪, φ �e ϕ iff Sd
E(φ) ≥ Sd

E(ϕ)

φ is a most entailed formula in E∪ iff ∀ψ ∈ E∪, φ �e ϕ.

Like the most primed formulae in E∪, the most entailed formulae are dependent on
which knowledge profile is under consideration. A formula can be a most entailed for-
mula in one knowledge profile but is not in another.

It is obvious that given E = {K1, ...,Kn}, ∀φ ∈ E∪, Sdp
E (φ) ≤ Sd

E(φ).

Example 2. Let E1 = {K1,K2,K3} with K1 = {p, q}, K2 = {p ∧ q, r} and K3 =
{p, s}, then, Sd

E(p) = 3 and Sdp
E (p) = 2, Sd

E(q) = 2 and Sdp
E (q) = 1, and Sd

E(r) =
Sdp
E (r) = 1, Sd

E(s) = Sdp
E (s) = 1.

It should be noted that although the concept of most entailed formulae subsumes the
concept of most primed formulae, we still prefer to have these two types of prefer-
ences defined separately. One advantage of this is that we would be able to distinguish
a formula that is directly given by several knowledge bases (that is, this element of
knowledge is explicitly believed and supported) from a formula which is inferred from
the same number of knowledge bases (that is, this element of knowledge is implicitly
believed and supported), if these two formulae have the same degree of support. For
instance, for p and q in Example 1 we have Sd

E(p) = Sd
E(q) = 3, however, p holds

more confidence in the four knowledge bases than q does. Therefore, we believe that p
is more preferred than q in the profile and this rationale is used in the algorithm in the
following section.



4 Stratification of a Knowledge Profile
The algorithm below ranks a more preferred formula (using the most primed and the
most entailed formulae) ahead of a less preferred formula. SMPE(E) stands for an algo-
rithm for Stratification based on the Most Primed and/or Entailed formulae in E∪.

Algorithm: SMPE(E)
1 Input: a knowledge profile E
2 Output: a stratified version of E∪, denoted SE
3 begin
4 Let SE = 〈〉, i = 1.
5 while E∪ 6= ∅ do
6 Sup1 = max{Sdp

E (φ)|φ ∈ E∪}.
7 Sup2 = max{Sd

E(φ)|φ ∈ E∪}.
8 if Sup1 = Sup2

9 then do
10 Si = {φ|Sdp

E (φ) = Sup1, s.t., φ ∈ E∪}.
11 SE = SE ⊕ 〈Si〉.
12 i = i + 1.
13 E∪ \ Si.
14 end of then
15 else do
16 Si = {φ|Sd

E(φ) = Sup2, s.t., φ ∈ E∪}.
17 SE = SE ⊕ 〈Si〉.
18 i = i + 1.
19 E∪ \ Si.
20 end of else
21 end of while
22 end

Example 3. Let E = {K1, ...,K7} where K1 = K2 = K3 = {p}, K4 = K5 = K6 =
{q ∧ r} and K7 = {p, s}. Then SMPE(E) returns SE = 〈{p}, {q ∧ r}, {s}〉.

The stratification makes it explicit that if a formula (statement) is more primed or
more entailed, then it should be more preferred in a merged result than other formulae.
Therefore, it has the obvious advantage over using a merging operator that gives a flat
base. This is especially useful when knowledge bases are inconsistent.

Example 4. (Continue Example 1) Let E = {KA,KB ,KC ,KD}, then the stratified
base from the algorithm is SE = 〈{p}, {q}, {¬p, s, q ∧ r}〉 which clearly shows that p
gathers more support from these sources.

Algorithm SMPE(E) can be modified to stratify a knowledge profile based on the criteria
of the most primed (resp. the most entailed formulae) only by using value Sup1 (resp.
Sup1) alone. The following example reveals the subtle difference between the algorithm
and its variants.

Example 5. Let E = {K1,K2,K3,K4} where K1 = {p, q ∧ r}, K2 = {p, q ∧ r, s},
K3 = {p, q, s}, and K4 = {p, q, s}. The stratification of E∪ from the exact algorithm
is SE = 〈{p}, {q}, {s}, {q ∧ r}〉. The stratification of E∪ when only the most primed
formulae are considered (only Sup1 is used) is SE = 〈{p}, {s}, {q, q ∧ r}〉. On the
other hand, when only the most entailed formulae are used (only Sup2 is considered),
the result is SE = 〈{p, q}, {s}, {q ∧ r}〉.



Definition 11. Let E be a knowledge profile and every knowledge base in E be con-
sistent. We define an ordering relation �MPE on E∪ induced by SE from SMPE(E) as
φ �MPE ψ, iff φ ∈ Si, ψ ∈ Sj , and i ≤ j.

Proposition 2. Let �MPE be defined as above, then φ �MPE ϕ iff one of the following
conditions is true

Sdp
E (φ) = Sd

E(φ) = Sdp
E (ϕ) = Sd

E(ϕ);
Sd
E(φ) = Sd

E(ϕ) > Sdp
E (ϕ);

Sd
E(φ) > Sd

E(ϕ).

Conditions 1 and 3 correspond exactly to the if and else statements of lines 8 and line
15 respectively. For Condition 2, when Sdp

E (φ) = Sd
E(φ), it has the same effect as

Condition 3, i.e., φ is one stratum lower than ϕ; however when Sdp
E (φ) < Sd

E(φ), it has
the same effect as Condition 1, i.e., φ and ϕ are in the same stratum. For instance, in
Example 5, we have Sd

E(p) = Sd
E(q) > Sdp

E (q) (and Sd
E(p) = Sdp

E (p)), so Condition 2
is met and p is ranked ahead of q.

Definition 12. Let�p
MPE be a variant of�MPE on E∪ such that SMPE(E) considers only

the most primed formulae in E∪ for stratification.

Proposition 3. Let �p be as defined in Definition 8, then �p
MPE≡�p.

Definition 13. Let�e
MPE be a variant of�MPE on E∪ such that SMPE(E) considers only

the most entailed formulae in E∪ for stratification.

Proposition 4. Let �e be as defined in Definition 10, then �e
MPE≡�e.

Propositions 3 and 4 show that there is a stratification method corresponding to each of
the two total preorder relations defined in Section 3.

5 Merging Operators based on Stratification
The result of SMPE(E) is a stratified base which can be inconsistent. This base can
also be viewed as a prioritized observation base [DDL06] where observations in Si

have higher priorities than observations in Sj for j > i. To obtain a consistent subset
from SMPE(E), we need to have suitable operators applicable to a stratified base. We
define two such operators here and call them merging operators. Let E be a knowledge
profile, and K = E∪, then SE = SK = 〈S1, ..., Sn〉 denotes its stratification. Let
A = 〈A1, ..., An〉 such that Ai ⊆ Si, we define A∪ = A1 ∪ ... ∪An.

5.1 New merging operators

Definition 14. Let E be a knowledge profile and SE = 〈S1, ..., Sn〉 be its stratification.
Let A = 〈A1, ..., An〉 be a subset of SE such that Ai ⊆ Si and A∪ 6` ⊥. A lexico-
graphical maximal merging operator, denoted as ∆leximax, is defined as

∆leximax(SE) =
∨
{A∪|if for any A′ = 〈A′

1, ..., A
′
n〉, A′

∪ 6` ⊥, then

either ∀i |Ai| = |A′
i|,

or ∃i, s.t., |Ai| > |A′
i| and for j < i, |Aj | = |A′

j |}



When there is only one stratum in SE , merging operator ∆leximax(SE) is equivalent to
operator Comb4(E ,>) in [BKMS92] and operator ∆C4

> (E) in [Kon00] (when we let
the integrity constraint IC be a tautology >). However, when SE has more than one
stratum, ∆leximax(SE) preserves more information.

Example 6. Let E = {K1, ...,K5} where K1 = {¬p, q}, K2 = {p, q}, K3 = {p, q →
r}, K4 = {¬p, s}, and K5 = {¬p,¬s}. Then SE = 〈{¬p}, {p, q}, {q → r, s,¬s}〉.
Applying operator∆leximax, we have∆leximax(SE) = ∨{{¬p, q, q → r, s}, {¬p, q, q →
r,¬s}} which is equivalent to {¬p, q, q → r}.

Definition 15. Let E be a knowledge profile and SE = 〈S1, ..., Sn〉 be its stratification.
Let A = 〈A1, ..., An〉 be a subset of SE such that Ai ⊆ Si and A∪ is consistent. Let
Inc(SE) = i. A maximal-consistency based merging operator ∆conmax, is defined as

∆conmax(SE) =
∨
{A∪| ∪i−1

j=1 Sj ⊆ A∪, s.t.,∀A′ = 〈A′
1, ..., A

′
n〉, A′

∪ 6` ⊥,

if ∪i−1
j=1 Sj ⊆ A′

∪ then |A∪| ≥ |A′
∪|}

This operator guarantees that all the more preferred consistent formulae are selected
first, before considering any further formulae. ∆conmax and ∆leximax are equivalent
when SE has only one stratum, i.e., SE = 〈E∪〉. Furthermore, we define ∆i

conmax as a
variant of ∆conmax such that Inc(SE) = i and ∆i

conmax = S1 ∪ ... ∪ Si−1.

Example 7. Let a stratified knowledge profile be SE = 〈{¬p, q}, {q → r, s,¬r,¬r ∧
q}, {r}〉. Then ∆leximax(SE) = {¬p, q, s,¬r,¬r∧ q} and ∆conmax(SE) = ∨{{¬p, q,
s, q → r, r}, {¬p, q, s,¬r,¬r ∧ q}} which is equivalent to {¬p, q, s}. In this case,
∆leximax ` ∆conmax. However, these two operators are not comparable in general.

5.2 Properties

In [DDL06], three merging operators for a prioritized base2 are defined. Among them
operator best-out, ∗bo(SE) is defined as

∗bo(SE) =
∧

(
∧
Sj |j < i, Inc(SE) = i)

for SE = 〈S1, ..., Sn〉 where
∧
Sj =

∧
φ∈Sj

φ.
That is,

∧
Sj is the conjunction of all formulae in Sj and

∧
(
∧
Sj) is the conjunction

of all
∧
Sj for j = 1,..., i− 1.

Let Cons(SE) be the set of all consistent subsets of SE , that is, the set of all stratified
subsets A = 〈A1, ..., An〉, such that Ai ⊆ Si and A∪ is consistent. If � is a strict order
on set Y , then Max(�, Y ) is defined as Max(�, Y ) = {y ∈ Y |∀z ∈ Y, z 6� y}

Definition 16. [DDL06] For S, S′ ∈ Cons(SE), define S′ �discrimin S iff ∃k such
that

(a) 〈S1, ..., Sk〉 ∩ S′ ⊃ 〈S1, ..., Sk〉 ∩ S, and
(b) ∀i < k, 〈S1, ..., Si〉 ∩ S′ = 〈S1, ..., Si〉 ∩ S.
Then ∗discrimin(SE) =

∨
{
∧
S, S ∈ Max(�discrimin,Cons(SE))}

2 Note: in their original paper a prioritized base is represented as σ = 〈σ(1), ..., σ(n)〉 where
σ(i) denotes a set of formulae with rank ki and σ(n) contains the highest ranked formulae. In
this paper, we let S1 (not Sn) denote the set of highest ranked formulae and ignore the rank
itself since it is not used in the merging.



Definition 17. [DDL06] For S, S′ ∈ Cons(E∪), define S′ �leximin S iff ∃k such that
(a) |〈S1, ..., Sk〉 ∩ S′| > |〈S1, ..., Sk〉 ∩ S|, and
(b) ∀i < k, |〈S1, ..., Si〉 ∩ S′| = |〈S1, ..., Si〉 ∩ S|.
Then ∗leximin(SE) =

∨
{
∧
S, S ∈ Max(�leximin,Cons(SE))}

The following logical properties3are given in [DDL06] on merging operators ∗ for
prioritized bases.

(PMon) for i < n, ∗(〈S1, ..., Si+1〉) ` ∗(〈S1, ..., Si〉)
(Succ) ∗(SE) ` ∗(S1)
(Cons) ∗(SE) is consistent
(Taut) ∗(SE ,>) ≡ ∗(SE)
(Opt) if ∧SE is consistent then ∗(SE) ≡ ∧SE
(IS) If SE1 ≈ SE2 then ∗(SE1) = ∗(SE2)
(RA)4 ∗(〈S1, ..., Si〉) = ∗(∗(〈S1, ..., Si−1〉), Si)

Proposition 5. ∆leximax(SE) is equivalent to operator ∗leximin(SE) and variant∆i
conmax

is equivalent to ∗bo(SE).

Proposition 6. Merging operators∆leximax(SE) and∆i
conmax(SE) satisfy all the seven

properties given above. ∆conmax(SE) satisfies (Cons), (Taut), (Opt), (IS) and (RA).

Below we examine how a stratified profile can be used to compare different priori-
tized merging operators.

Definition 18. Let SE = 〈S1, ..., Sn〉 where Inc(SE) = i > 1. Let Γ be the set of
all formula-based merging operators for a prioritized base. Let ∆1 and ∆2 be two
operators in Γ . We define a partial order relation � over Γ as: ∆1 � ∆2 iff one of the
following conditions holds.

– S1 ∪ ... ∪ Si−1 ⊆ ∆1(E) and S1 ∪ ... ∪ Si−1 6⊆ ∆2(E);
– S1 ∪ ... ∪ Si−1 ⊆ ∆1(E) and S1 ∪ ... ∪ Si−1 ⊆ ∆2(E), then |∆1(E)| > |∆2(E)|.

∆1 � ∆2 indicates that ∆1 is at least as efficient as ∆2 to merge a knowledge profile.
Here |∆(E)| denotes the cardinality of merging result∆(E). The first condition says that
if an operator can select all the more preferred and consistent formulae while another
cannot, then the former is a better merging operator. The second conditions reveals that
when all the more preferred and consistent formulae are included, the operator with
more additional formulae is better than the other.

3 We only have space in this extended abstract to discuss these properties. In the full paper,
we consider further properties including the logical properties in [KP98] when we view the
input of such an operator as a knowledge profile and the output as a consistent subset without
considering the process of stratification in between. Our operators are also compared with the
Adjustment and the Maxi-Adjustment algorithms in [B+04].

4 Note: Given SE = 〈S1, ..., Sn〉, S1 has the most reliable formulae and it is equivalent to σn

in the original definition of a prioritized base in [DDL06], therefore, the Right Associativity
(RA) property looks like a Left Associativity property.



Proposition 7. Based on Definition 18, we have ∆leximax(SE) � ∆i
conmax(SE) and

∗leximin(SE) � ∗discrimin(SE) � ∗bo(SE). ∆conmax(SE) is not comparable with
∆leximax(SE) or ∗discrimin(SE).

Operator ∆conmax(SE) does not really take into account the priorities of formulae.
Therefore, although it may contain more formulae than other operators, such as,
∆leximax(SE), it is less desirable for a prioritized merging.

6 Related Work and Conclusion

Approaches to stratifying a knowledge base with default rules have been reported in
several research proposals [Pea90,GP91,Bre89,Cho94], all of which are about strati-
fying a single knowledge base with defaults (rules and/or facts). Since we start with
multiple original knowledge bases and aim to merge them into a single knowledge base
with priorities automatically generated, these proposals cannot be applied. The prior-
ities of formulae are calculated based on the degree of support they receive from the
input knowledge bases. A knowledge profile is then stratified based on the priorities of
formulae in the profile, with formulae having the highest priority in the current profile
being the most preferred formulae. In this respect, our idea of stratification is in spirit
similar to Pearl’s method in [Pea90], that is, the more support a formula (rule) gets, the
higher rank it is assigned.

Our method on stratification has some similarities with voting systems. In a voting
system, many voting policies require that a voter simply votes for the chosen candi-
date(s) without requiring preferences over the chosen candidates. In plurality voting,
a voter is allowed to vote for one candidate only, so such a knowledge base contains
one formula (i.e., candidate). In approval voting, a voter can vote for multiple candi-
dates without preferring one over the other, so such a knowledge base contains multiple
formulae. For both cases, when our algorithm is applied to stratify a set of votes (knowl-
edge bases), the algorithm produces the same result as either of the two voting policies.
More specifically, in both voting policies, the candidates who receive the largest num-
ber of votes are the winners (at least for the current round, if a single winner has to be
selected, more rounds of votes are required). These candidates are exactly the formu-
lae selected in the first stratum in our algorithm. When this stratum contains a single
formula, a single winner is selected. Therefore, let E be a knowledge profile and each
knowledge base in E contains votes from a voter following the voting rules in plurality
(resp. approval) voting. Then the first stratum from SMPE(E) is equivalent to the result
of plurality (resp. approval) voting system.

In conclusion, in this paper, we focused on how to extract information provided by
the original sources about which formulae gathered more support. This information is
preserved in the form of a stratified base for formulae in the union of original bases.
Stratifying a knowledge base in this way overcomes the problem of deciding which
formula should be kept when a choice has to be made to resolve a conflict after merging.
An obvious decision is that a higher ranked formula shall be kept. Also, such a merged
base provides a basis for ranking merging operators such as a merging operator that
preserve as many high ranked formulae as possible is certainly better than the one that
cannot.
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