
Computational-workload based binarization and partition of
qualitative Markov trees for belief combination

Weiru Liu, Xin Hong, and Kenny Adamson
School of Computing and Mathematics, University of Ulster at Jordanstown, UK

w.liu@ulster.ac.uk
Abstract. Binary join trees have been a popular structure to compute the impact of multi-
ple belief functions initially assigned to nodes of trees or networks. Shenoy has proposed
two alternative methods to transform a qualitative Markov tree into a binary tree. In this
paper, we present an alternative algorithm of transforming a qualitative Markov tree into a
binary tree based on the computational workload in nodes for an exact implementation of
evidence combination. A binary tree is then partitioned into clusters with each cluster being
assigned to a processor in a parallel environment. These three types of binary trees are ex-
amined to reveal the structural and computational differences.

1 Introduction
Expensive computational cost of Dempster’s rule in DS theory led to a stream of study
on efficient implementations of the rule over the last two decades. The proposed ap-
proaches have emphasized either exact implementations of the rule (e.g., [1], [6], [10],
[11], [13], [17], etc.) or its approximations (e.g., [2], [3], [4], [15], [16], etc.), under
the assumption that evidence distributions follow certain structures.
 Among all these approaches, the method on belief propagation in qualitative
Markov trees has been popular. As proved in [11], with this method, the exponential
computational complexity in the size of total variables is reduced to the size of the
largest node in a tree, a node with the largest number of variables. The major tech-
nique supporting the method is local computation [14], which was initiated for
propagating probabilities in Bayesian causal trees by Pearl [8]. Local computation
refers to computation that involves only a small number of nodes in a large tree (or
network). The basic idea of local computation is message passing among neighboring
nodes in a qualitative Markov tree to compute marginals of the joint belief distribu-
tion without actually calculating the joint belief distribution. The sizes of nodes in a
qualitative Markov tree determine how efficient the local computation can be. If a
node has a large number of neighbors, even local computation can be very inefficient.
To solve this problem, concept binary joint trees (or simply binary trees) was pro-
posed by Shenoy in [12], in which every non-leaf node performs at most one combi-
nation, and the corresponding algorithm was introduced. Using this algorithm, any
qualitative Markov tree can be first transformed into a binary join tree on which local
computation can be carried out. Subsequently, Shenoy improved this transformation
algorithm in [13]. The improved algorithm constructs a binary tree based on a one-
step lookahead technique which looks for an optimal order of variables being deleted.
Given a qualitative Markov tree, these two algorithms construct rather different join
trees, with the second tree bearing little resemblance to the original Markov tree.
Furthermore, the one-step lookahead algorithm adds many more nodes in the trans-
formation procedure than the first algorithm. These extra nodes will increase the
computational costs in terms of calculating marginals for them.

In this paper, we propose a different method to transform a qualitative Markov
tree into a binary tree, based on the amount of combinations at each sub-tree. A bi-

nary tree derived in this way is almost balanced in respect to the workload of com-
bining evidence. We then partition a binary tree into a set of clusters with the inten-
tion that each cluster will be assigned to a processor in a parallel processing environ-
ment. The appearance of our binary tree is similar to the tree obtained from Shenoy’s
first approach, except that Shenoy’s tree may have more added nodes because this
tree permits only one combination in each node. However, our study on these two
similar types of binary trees shows that Shenoy’s tree requires less amount of com-
putation than ours since it eliminates some duplicate combinations. Our study on
Shenoy’s second approach reveals that a binary tree obtained in this way (it permits
one combination per node as well) is very complex and adds much extra computation
due to a large number of added nodes, comparing to his first approach.

Other algorithms that binarizing a qualitative Markov tree into a binary tree in-
clude a straight-forward binarization procedure for approximate computation in Baye-
sian networks [2] and a computational workload based algorithm for executing a
parallel program using multiple processors [7]. Our algorithm is similar to the proce-
dure in [2] in respect to the structure of the tree, that is, each node has maximum two
children. However, our algorithm is more comprehensive because it assesses the
amount of computation at each sub-tree before merging two sub-trees together. As a
result, our binary tree is a balanced one while a tree from [2] can be extremely unbal-
anced (see the example in Section 3). If there are many processors available to proc-
ess some nodes (sub-trees) in parallel [5], a balanced tree provides a good structure to
partition it into clusters so as to assign workloads to processors evenly. Our algorithm
is also similar to the binarization procedure in [7] in the sense that the latter considers
workloads on sub-trees as well when merging two sub-trees (units of a parallel pro-
gram). The difference between them is that our algorithm needs to consider the
amount of computation being carried out in added nodes (which may affect the total
workload of a sub-tree with this added node as the root). While the algorithm in [7]
does not involve computation in added nodes (only message passing).

The rest of the paper is organized as follows. Section 2 introduces the basics of
DS theory and the terminology for belief propagation in qualitative Markov trees.
Section 3 provides the algorithm that transforms a qualitative Markov tree into a bi-
nary join tree and partitions a binary tree into clusters for parallel processing. Section
4 reviews the two algorithms on binarization proposed by Shenoy, with examples.
Section 5 provides a detailed analysis and comparison of our algorithm with that of
Shenoy’s and concludes the paper.

2 DS theory and qualitative Markov trees
2.1 Basics of DS Theory
In the Dempster-Shafer theory of evidence (DS theory) [9], a piece of information is
described as a mass function on a set of mutually exclusive and exhaustive elements,
known as a frame of discernment (or simply a frame), denoted as Θ. A mass function
m: 2Θ → [0,1], represents the distribution of a unit of belief over a frame, Θ, satisfying
the following two conditions: m(Φ) = 0 and ΣA⊆Θ m(A)=1. A belief function over Θ is
a function Bel: 2Θ → [0,1], satisfying Bel(A)= ΣB⊆ A m(B). When several belief func-
tions are obtained through distinct sources based on the same frame of discernment, a

new belief function representing the consensus of them can be produced. Assume that
Bel1 and Bel2 are two such obtained belief functions on the same frame Θ, the com-
bined impact of them is calculated using the Dempster’s rule of combination, Bel =
Bel1 ⊕ Bel2. The computational complexity of combining two belief functions over a
frame is exponential to the size of the initial frame.

2.2 Qualitative Markov trees
Qualitative Markov trees: We use graph-oriented terminology and notation for
qualitative Markov trees here. Let a pair {V, E} be a graph, with V a finite set of
nodes (or variables) and E a set of unordered pairs of distinct nodes in V. A qualita-
tive Markov tree is a graph which has no cycles, and any variable in two nodes should
be in any node in the path linking them. Elements in V are denoted using capital let-
ters, such as A, B, S, and subsets of V are denoted with lower cases, such as, x, y, z. A
qualitative Markov tree can either be derived from a Bayesian network [2, 13] or
from a diagnostic tree [11, 14] as shown in Fig.1a and Fig.1b respectively.

Figure 1. Two examples of qualitative Markov trees.
When a qualitative Markov tree is constructed from a diagnostic tree, the collection

of all leaf nodes defines the overall frame of discernment represented by the root. Any
non-leaf node, such as e, contains all the leaf nodes in the sub-tree with this node as
the root. The corresponding frame for belief combination is {e, ¬e}={A, B, C, ¬e}.
While the frame for a node in Fig.1a is the Cartesian product of its variable frames. In
the rest of the paper, we use a qualitative Markov tree in the form of Fig.1b. Our
algorithm and discussions are equally applicable to a tree in the form of Fig.1a.

Variables and Configurations: Let x be a node in a qualitative Markov tree repre-
senting a set of variables and Θx be the frame corresponding to x. Elements of Θx are
referred to as configurations of x, denoted by bold-faced lower cases, such as, g, f, h.

Projection and Extension: Let g and h be two sets of variables, h ⊆ g, and g is a
configuration of g. The projection of g to Θh, denoted by g↓h is a configuration of h.
Let G be a non-empty subset of Θg, the projection of G to h, denoted by G↓h, is ob-
tained by G↓h = {g ↓h g ∈ G}. If g and h are two sets of variables, h ⊂ g, and H is a
subset of Θh, then the extension of H to g, denoted by H↑g, is H × Θg-h.

Marginalization: If m is a mass function on g, and h ⊆ g, h ≠ Φ, the marginal of m
on h, denoted by m↓h, is a mass function on h defined by

∑
Θ⊆

↓↓ =Θ⊆=
hH

g
h HGGmHm }.G ,)({)(h

On the other hand, if m is a mass function on h, and h ⊆ g, h ≠ Φ, the marginal of
m on g, denoted by m↑g, is a mass function on g defined by

 A, B

A, C A, D A, E

(a)

e

DA B C

f

(b)

∑ Θ
Θ⊆

↑↑ =⊆=
gG

g
h

g GHHHmGm }. ,)({)(

Belief propagation: Let {V, E} be a qualitative Markov tree on which a set of be-
lief functions are assigned to its nodes. Given a node x, Vx={i|(i,x)∈ E} denotes the set
of neighbours of x, a set of nodes that are directly linked with x. Belx represents the
initial belief function assigned to node x. To propagate initial belief functions to ob-
tain the final marginal on a designated node (containing a set of variables), the propa-
gation scheme starts with the leaves of a qualitative Markov tree and moves step by
step towards the targeted node. Each time a node x sends a message Mx→i, referring to
the belief function sent by x to i, to each of its neighbors,

 iix
x

xk
x

ix ikMBelM V
↑∩↓→→ −∈⊕⊕=)})})){(|{((()(. (1)

For a leaf node x with only one neighbor i, Mx→i is reduced to
iix

x
ix BelM

↑∩↓→ =))(()(. After the designated node y has received the messages

from all of its neighbors, the marginal Bel↓y for y is obtained as
Bel↓y=Bely

⊕ (⊕ {Mi→y|i∈ Vy
}). As stated in [13], a qualitative Markov tree can always be

re-constructed as a rooted one. In this paper, we concentrate on rooted qualitative
Markov trees. Let node r be the root of a Markov tree, x be a node. Let Chx= {k|k∈ Vx,
k is a child node of x} be the set of children of x, and Px= {p} be the parent of x. The
belief propagation scheme can be carried out in two phases to calculate the combined
beliefs on any node [11]:

Phase I. Propagate messages up the tree: starting at leaf nodes, messages are sent

up step by step. ppx
x

xk
x

px ChkMBelM ↑∩↓→→ ∈⊕⊕=)}))|{((()(.

The maximum number of belief functions accumulated in a non-leaf, non-root
node in this phase is 1+ |Chx|, if this node has an initial belief function and every of its
child node sends a message to it. Therefore the number of combinations is (1+ |Chx|)
–1, i.e. |Chx|. For a leaf node, no combinations are involved. For the root node, there
are maximum 1+ |Chr| belief functions accumulated. Since the root will not send any
messages up, Phase I stops here. After computing the marginal of the root, messages
are then sent back down the tree. Therefore, we will count the total number of combi-
nations in the root in the next phase.

Phase II. Propagate messages down the tree: starting at the root node, messages
are sent back down step by step.

 kkx
x

xjxp
x

kx kjChjMMBelM ↑∩↓→→→ ≠∈⊕⊕⊕=)})),|{((()(. (2)

 For a non-root, non-leaf node x, the maximum number of belief functions accu-
mulated for propagating down to its child node k is 1+ |Px| + (|Chx|-1), so the number
of combinations is |Chx| (with |Px|=1), if we have stored every Mj→x in Phase I. The
maximum total number of combinations in x is |Chx|×|Chx|. Its final marginal is

 })|{(x
xixp

x
x ChiMMBelBel ∈⊕⊕⊕= →→↓ . (3)

 If the marginal of the joint for x from Equation (2) is reserved before it is projected
to node k, then it can be incorporated into Equation (3) to replace all the messages

except Mk→x. Equation (3) can be rewritten as Bel↓x=(Mx→k)↑x⊕ Mk→x. Therefore, there is
only one extra combination to obtain the final marginal for a node.
 Because a root has maximum 1+ |Chr| belief functions, the maximum number of
combinations for propagating a message down a branch is |Chr|-1 (the message from a
branch to which the message is being sent will not be combined with the rest). The
maximum total number of combinations is (|Chr|-1)×|Chr|. The root needs one combi-
nation for its final marginal. A leaf node also needs one combination for its final mar-
ginal. The total number of combinations in a qualitative Markov tree is the sum of
numbers of combinations of all the nodes.

Figure 2. A rooted qualitative Markov tree with maximum number of combinations in
each node when an initial belief function is assigned to each node and a final marginal is
required for every node.

 (x:↑ t1,↓ t2, 1) indicates that in node x, there are t1 combinations when x sends a mes-
sage to its parent, there are t2 combinations when it sends messages to all of its chil-
dren, and there is one extra combination to obtain the final marginal for x. When t1 or
t2 is zero, we have omitted it from the above graph.

3 A Weight-based Binarization Algorithm
When binarizing a qualitative Markov tree, for each non-leaf node x with more than
two children, we repeatedly merge two of its children to get a new one with these two
children carrying the least amount of computation, until x has only two children left.
Such a binary tree should have almost balanced workloads among its branches.

Although a new affiliated node is added whenever two branches are merged, these
newly created nodes will only calculate and store some intermediate results of combi-
nations and no computation is required to calculate their own marginals. In the algo-
rithm below, comb(x) represents the total number of combinations in node x, and
comb(Tx) is the total number of combinations in sub-tree Tx with x as the root.

Algorithm: Binarization of a Qualitative Markov Tree (BQMT)
Input: a qualitative Markov tree with a designated root r.
x←r.
Procedure Binarization (x):
1. If x is a leaf node and x=r Then comb(x) ←0, comb(Tx) ←0. Terminate the Procedure. (The

tree has only one level, the root is also a leaf.)

a:↓6, 1

 b:↑2,↓4,1
D:1

 E:1 g:↑3 ,↓9,1
 H:1 I:1 j:↑2,↓4,1

K:1 I:1 M:1 N:1 O:1

c:↑4, ↓16, 1

 F:1

2. If x is a leaf node and x≠r Then comb(x) ←1, comb(Tx) ←1. Terminate the Procedure. (The
tree has more than one level.)

3. For each child node ci ∈ Chx do Binarization (ci).
4. Sort Chx in ascending order, where Chx={c1, …, ck} satisfying

comb(Tci) ≤ comb(Tcj) if cj is after ci in the ordered set Chx.
5. l←1.
6. While |Chx| > 2 do

6.1 Select c1, c2, the first two elements in Chx;
6.2 Create a new node xl (xl=(c1 ∪ c2)∩x when we use a tree in the form of Figure 1a;

xl=(c1 ∪ c2) when a tree is of the form Figure 1b) to connect c1 and c2, replace
sub-trees Tc1 and Tc2 with the new sub-tree Txl with xl as the root;

6.3. comb(xl) ← 3, comb(Txl)← comb(xl) + comb(Tc1) + comb(Tc2);
6.4. Remove c1 and c2 from Chx, insert xl into Chx in sorted order;
6.5. l=l +1.

7. If |Chx| =1 Then
7.1 If x is the root Then comb(x) ← 1 Else comb(x) ← 3;
7.2 comb(Tx) ← comb(x) + comb(Tc1).

 Else
7.3 If x is the root Then comb(x) ← 3 Else comb(x) ← 7;
7.4 comb(Tx) ← comb(x) + comb(Tc1) + comb(Tc2).

Return (Tr): A binary tree with the same root

For each newly added node, the maximum number of belief functions accumulated
in it is |Chxl| (it has no initial belief function) instead of 1+ |Chxl|, so, the maximum
number of combinations is (↑1,↓2,0)=3. Applying this algorithm to the tree in Fig.2,
we get a balanced binarised tree as in Fig.3 where bold-faced nodes are added nodes.

However, if we do not merge the two branches with the lightest workloads each
time during the binarization procedure, we could end up with a tree that is totally
unbalanced. For example, an alternative binary tree from the qualitative Markov tree
in Fig.2 can be in the form as shown in Fig.4. This unbalanced tree will make the
parallel processing much less efficient if we were to use multiple processors to proc-
ess each part simultaneously [5]. Given a multiple processor environment, it is in
general not possible to assign each node to a processor, due to the fact that either
there are less processors available than the total number of nodes or the communica-
tion cost between processors are too expensive comparing to the calculation.

Figure 3. A Binary tree constructed from a qualitative Markov tree in Figure 2.

a:↓2, 1

(b,d):↑1, ↓2

D: 1b:↑2, ↓4, 1
 g:↑2, ↓4, 1

H: 1 I: 1

j:↑2, ↓4, 1

K: 1 L: 1

 M: 1

 N: 1 O: 1

 E: 1

(h,i,j):↑1, ↓2

(h,i):↑1, ↓2(k, l):↑1, ↓2

 c:↑2, ↓4, 1

 F: 1

Figure 4. An unbalanced binary tree from the qualitative Markow tree in Figure 2.
 Below is a clustering algorithm that partitions a binary tree into clusters and as-
signs each cluster to a processor. In [5], we have been testing the algorithm in a four-
processor environment where a tree in Fig.3 is partitioned into four clusters as illus-
trated with shade. These four processors perform combinations simultaneously start-
ing from leaves. Each sends its results to the processor that contains its parent for
further combination before it calculates final marginals for its nodes. This algorithm
also partitions the tree in Fig.4 into four clusters as shown. However, the processor
that contains node (b,c) has to wait for the result of other three processors which deal
with clusters from its right branch before it can go further. Therefore, the intended
parallel process is reduced to almost a linear one, in addition to the extra cost of
communication between processors.

Algorithm: Clustering a binary tree
Input: r – the binary tree with the root r, N – the number of processors provided
1. Create two empty queues S and St (S is the working queue, St is the temporary queue);
2. S ← {r}, counter m ← 1;
3. While m < N and queue S is not empty, do

 3.1 Select the first element v in S and let S ← S/{v};
 3.2 If v has no children, Then St ← St ∪ {v}; m=m+1;
 Else
 3.2.1 If v has one child, Then
 p ← v
 While p has one child, do p ← the child of p
 Let CL and CR be the children of node p;
 If |comb(TcL)-comb(TcR)| < δ (δ is a threshold saying that both branches

 have almost the same workload)
 Then

 Disconnect TcR from Tp;
 comb(Tp) = comb(Tp)- comb(TcR), comb(Tv) = comb(Tv)- comb(TcR);
 S ← S ∪ {v, CR}, m=m+1;

 Else
 Let w be the root of p’s bigger child subtree;
 Disconnect Tw from Tp, comb(Tv) = comb(Tv)- comb(Tw);

D: 1 (b,c):↑1,↓2

 b:↑2,↓4, 1 c:↑2,↓4, 1

E: 1 F: 1
(h,i):↑1,↓2 (g,j):↑1,↓2

H: 1 I: 1 g:↑2,↓4,1j:↑2,↓4, 1

(k,l):↑1,↓2

L: 1

M: 1N: 1

K: 1

O: 1

a:↓2, 1

 comb(Tp) = comb(Tp)- comb(Tw);
 While |comb(Tv) - comb(Tw)| > δ, do
 Reconnect Tw to Tp;
 comb(Tp) = comb(Tp) + comb(Tw);
 comb(Tv) = comb(Tv) + comb(Tw);
 p ← w;
 Let w be the root of p’s bigger child subtree;
 Disconnect Tw from Tp;
 comb(Tp) = comb(Tp)- comb(Tw);
 comb(Tv) = comb(Tv)- comb(Tw);
 S ← S ∪ {v, w}, m=m+1;

 3.2.2 Else
 Let CL and CR be the children of node v;

 If |comb(TcL) - comb(TcR)| < δ, Then
 Disconnect TcR from Tv;

 comb(Tv) = comb(Tv)- comb(TcR);
 S ← S ∪ {v, CR}, m=m+1;

 Else
 Let w be the root of v’s bigger child subtree;
 Disconnect Tw from Tv; comb(Tv) = comb(Tv)- comb(Tw);
 While |comb(Tv) - comb(Tw)| > δ, do

 If v was w's parent node, Then
 Reconnect Tw to Tv, comb(Tv) = comb(Tv)+ comb(Tw);
 Else
 p ← w's parent node, reconnect Tw to Tp;
 comb(Tp) = comb(Tp) + comb(Tw);
 comb(Tv) = comb(Tv) + comb(Tw);
 p ← w;
 Let w be the root of p’s bigger child subtree;
 Disconnect Tw from Tp;
 comb(Tp)=comb(Tp)-comb(Tw), comb(Tv)=comb(Tv)-comb(Tw);

 S← S ∪ {v, w}, m=m+1;
4. S ← S ∪ St;
5. Each element of S leads a cluster; assign each cluster to a processor.

4 Shenoy’s Binary Trees
Shenoy described an approach to constructing a binary join tree in [12] where each
node accumulates at most two pieces of evidence. This approach was further devel-
oped based on a one-step lookahead heuristic search to construct binary trees [13].

Approach in [12]: For a given qualitative Markov tree (that could be derived from
a valuation network), a designated node is chosen as the root. Starting from the root,
the total number of belief functions that are to be combined in the root is counted, in
order to obtain the marginal for the root. If the root has n children, each sending it a
belief function, in addition to its own, there will be (n+1)-1=n combinations. When
n>2, multiple replicates (n-1 replicates) of the root are created. These multiple copies
and the children of the root are re-organized so that there is only one combination in
each replicate node and in the root. For each tree in the forest obtained by ignoring
the root and all its multiple copies (and the links from them), repeat the above proce-

dure until every node has only one combination. It should be pointed out that this one
combination in a node only contributes to the final marginal of the joint for the root.
That is, this one combination happens in Phase I in Section 2. If the marginals for
some non-root nodes are required, there will be at least another (and at most two)
combination in such a node when messages are propagated down the tree, depending
on whether the node has one child or two. The total number of combinations in each
node is shown in Fig.5, if we assume that a marginal for every node is of interest.

Figure 5. A binary join tree created using Shenoy’s first method based on the original
Markov tree in Figure 2. Bold-faced nodes are added ones. The multiple replicates of a
node are numbered following the name of the original node.

 One-step lookahead heuristic approach in [13]: Given a qualitative Markov
tree, to compute the marginal for a node, alternative sequences of combinations of
belief functions with different amount of computation, can be carried out. The heuris-
tics in the one-step lookahead approach schedules combinations by sequencing dele-
tion of variables from a qualitative Markov tree. The variable to be deleted next is the
one that leads to a combination over the smallest set of configurations [13]. Starting
from the nodes containing variables that should be deleted first, this method con-
structs a binary tree with these nodes as initial leaves, and build the binary tree as
more variables to be deleted. Let Ω be the set containing all the nodes in a Markov
tree (network), we summarize Shenoy’s algorithm as follows.

Step 1. Selecting the variable(s) that should be deleted first, a subset Φ of Ω is
formed with each element in Φ containing this (or these) variable(s). Let Ω=Ω\Φ.

Step 2. A pair of elements in Φ is chosen with the union set of the pair containing
the minimum number of variables among all possible unions of pairs in set Φ. The
elements in the pair are two leaves and removed from Φ. The union set of the pair is
created and inserted into Φ. This new node acts as the parent of the two leaves.

a: 1

D: 1

a1:↑1,↓2,0

a2:↑1,↓2,0

b:↑1,↓1,1

b1:↑1,↓2,0

E: 1 F: 1

c:↑1,↓1,1

c1:↑1,↓2,0

g:↑1,↓1,1 c2:↑1,↓2,0

g1:↑1,↓2,0

K: 1 g2:↑1,↓2,0

L: 1 M: 1

H: 1 c3:↑1,↓2,0

I: 1 j:↑1,↓1,1

j1:↑1,↓2,0

N: 1 O: 1

Step 3. The above step is repeated until Φ has only one node, m, left. Create a new
node, n, containing the remaining variables after deleting the chosen variable(s) from
m and let n be its parent. Let Ω=Ω∪ {n}.

Step 4. Repeating Steps 1 to 3 for the next chosen variable(s) that should be de-
leted, until Ω has one element left which will be the root of the created binary tree.

When using Shenoy’s second approach to transforming the qualitative Markov tree
in Fig.2, we assume that each leaf node contains one variable, such as e={E}, and
every non-leaf node contains the collection of variables in the leaves below it, such as
b={E,F}. Based on the deleting sequence {E}, {F}, {K}, {L}, {M}, {H}, {I}, {N}, {O},
and with {D} as the final remaining variable, the binary tree is built as shown in Fig.6.
All the leaf nodes are the initial subsets of variables with original belief functions. All
the other nodes are inserted later in order to either merge two subsets or to delete a
variable(s) from a merged node, with latter being denoted with bold-faced font. If the
final marginal is required for every original subset, the total number of combinations
in each node is shown in Fig.6. In summary, the total numbers of combinations in the
original Markov tree (Fig.2), in the binary tree in Fig.3, and in the binary trees in
Fig.5 and Fig.6 are 64, 53, 50 and 55 respectively.

5 Comparison among these three types of binary trees and Conclusion
Where does binary occur? The binarization in our structure means that each node

in the final tree should contain no more than two child nodes. If a node has its initial
belief function in addition to that from its two children, then there will be three belief
functions requiring two combinations. However, this is not allowed in Shenoy’s ap-
proaches. Since in his structures, there can only be one combination in each node.
Therefore, a replicate of this node will separate the node with its two children. For
example, node a1, a replicate of a, separates nodes a2 (another replicate of a) and D,
in Fig.5. Such a replicate node does not exist in our binary tree.

Structural differences. In Shenoy’s first approach, the number of nodes being
added depends on how initial belief functions are assigned. For instance, if a does not
have its initial belief function, then there will only be one replicate of a, since there is
only one combination. Therefore, the structure (in terms of total number of added
nodes) of a binary tree changes when different sets of belief functions are given ini-
tially. On the contrary, in our algorithm, the number of nodes being added is fixed.
The only difference that alternative sets of initial belief functions make is the ar-
rangement of sub-branches, due to the change of calculations in different branches.

Computational cost. In terms of computational cost, our algorithm has some extra
combinations than Shenoy’s first algorithm. The extra combinations occur when a
node has a belief function from its parent and one of its own. These two belief func-
tions are combined twice before it being combined with that from one of its children
for the purpose of sending the combined belief function to another.

Why there are so many added nodes? The major step in Shenoy’s second ap-
proach is to arrange leaves (all the nodes in the original Markov tree) based on the
deletion sequence, and to construct sub-trees. Each sub-tree results in at least two
newly added nodes, one is the union of variables in the two nodes being merged and
another (the root of the sub-tree) contains variables after deleting selected variables

from the former. All the non-leaf nodes are added ones. In Fig.6, there are 23 added
nodes in comparison to 4 and 9 added nodes in Fig.3 and Fig.5 respectively. Moreo-
ver, these added nodes cause more calculations on marginals. For example, when
propagating up the tree, each bold-faced node requires its marginal from the node
below it after deleting a variable. A marginal is again required the other way round.
Therefore, this method is expensive in both the total number of combinations and in
preparation for combinations.

 Conclusion. In this paper, we proposed a computational workload-based algo-
rithm to transform a qualitative Markov tree into a binary tree and an algorithm for
partitioning the tree into clusters for parallel process. We also compared our binary
tree with that constructed from Shenoy’s two algorithms in [12] and [13] respectively.
The study shows that Shenoy’s first algorithm requires the least amount of combina-
tion and it is the most efficient one if only one processor is used. Our binary trees
require some extra combination than Shenoy’s first type of trees, but should perform
well when multiple processors are available. Shenoy’s second type of trees is expen-
sive both in a single or a multiple processor environment due to large number of
added nodes and additional calculations on marginals for added nodes.

Reference
1. Barnett, J. A.: Computational methods for a mathematical theory of evidence. Proc. of

IJCAI’81, Vancouver, BC, 868-875
2. Cano, A., Moral, S., and Salmeron, A.: Penniless propagation in join trees. International

Journal of Intelligent Systems, Vol. 15, 2000, 1027-1059
3. Dubois, D. and Prade, H.: Inference in possibilistic hypergraphs. Proc. of IPMU’90, 228-30
4. Gordon, J. and Shortliffe, E.H.: A method for managing evidential reasoning in a hierarchi-

cal hypothesis space. Artificial Intelligence, Vol.26, 1985, 323-357
5. Liu, W., Hong, X., and Adamson, K.: Parallel implementation of evidence combination in

qualitative Markov tress. Technical Report, University of Ulster
6. Madsen, A. and Jensen, F.: LAZY propagation: A junction tree inference algorithm based on

lazy propagation. Artificial Intelligence, Vol.113, 1999, 203-245
7. Maheshwari, P. and Shen, H.: An efficient clustering algorithm for partitioning parallel

programs. Parallel Computing, Vol. 24, 1998, 893-909
8. Pearl J.: Probabilistic reasoning in intelligent systems: networks of plausible inference.

Morgan Kaufmann, San Mateo, 1988
9. Shafer, G.: A mathematical theory of evidence. Princeton University Press, 1976
10. Shafer, G. and Logan, R.: Implementing Dempster's rule for hierarchical evidence. Artificial

Intelligence, Vol.33, 1987, 271-298
11. Shafer, G., Shenoy, P. and Mellouli, K.: Propagating belief functions in qualitative Markov

trees. Int. J. of Approx. Reasoning. Vol. 1, 1987, 349-400
12. Shenoy, P.: Binary join trees. Proc. of UAI’96, 492-499
13. Shenoy, P.: Binary join trees for computing marginals in the Shenoy-Shafer architecture.

Int. J. of Approx. Reasoning, Vol. 17, 1997, 239-263
14. Shenoy, P. and Shafer, G.: Propagating belief functions with local computations. IEEE

Expert, Vol. 1, 1986, 43-52
15. Tessem, B.: Approximations for efficient computation in the theory of evidence. Artificial

Intelligence, Vol.61, 1993, 315-329
16.Voorbraak, F.: A computationally efficient approximation of Dempster-Shafer theory. Inter-

national Journal of Man-Machine Studies, Vol.30, 1989, 525-536
17. Wilson, N.: A Monte-Carlo algorithm for Dempster-Shafer belief. Proc. of UAI’91, 414-17

E
: 1

b:
 1

a:
 1

b:
 ↑

1,
↓ 2

a:
 ↑

1,
↓ 2

a\
{E

}

a\
{E

}
:↑

1,
 ↓

2

F:
 1

a\
{E

,F
}

a\
{E

,F
}

: ↑
1,

 ↓
2

K
: 1

g:
 1

c:
 1

g:
 ↑

1,
↓ 2

c:
 ↑

1,
↓ 2

a\
{E

,F
,K

}

a\
{E

,F
,K

}
: ↑

1,
 ↓

2

L
: 1

a\
{E

,F
,K

,L
}

a\
{E

,F
,K

,L
}

: ↑
1,

 ↓
2

M
: 1

a\
{E

,F
,K

,L
,M

}

a\
{E

,F
,K

,L
,M

}
: ↑

1,
 ↓

2

H
: 1

I:
 1

N
: 1

j:
1

O
: 1

D
: 1

j:
 ↑

1,
↓ 2

a\
{E

,F
,K

,L
,M

,H
}

a\
{E

,F
,K

,L
,M

,H
}

: ↑
1,

 ↓
2

{N
,O

,D
}

{N
,O

,D
}

: ↑
1,

 ↓
2

{O
,D

}

{O
,D

}
: ↑

1,
 ↓

2

{D
}

{D
}

: ↑
0,

 ↓
0

F
ig

ur
e

6.
 A

 b
in

ar
y

tr
ee

 c
re

at
ed

 f
ro

m
 S

he
no

y’
s

se
co

nd
 a

pp
ro

ac
h

ba
se

d
on

 F
ig

ur
e

2

