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Abstract. In this paper, we present a general revision model on
epistemic states based on plausibility measures proposed by Fried-
man and Halpern. We propose our revision strategy and give some
desirable properties, e.g., the reversible and commutative properties.
Moreover, we develop a notion called plausibility kinematics and
show that our revision strategy follows plausibility kinematics. Fur-
thermore, we prove that the revision following plausibility kinemat-
ics satisfies the principle of minimal change based on some distance
measures. Finally, we discuss a revision operator defined for plausi-
bility functions and its relationship with iterated belief revision pro-
posed by Darwiche and Pearl. We show that the revision operator
satisfies all the DP postulates when it is Max-Additive.

1 Introduction

Belief revision [AGM85, KM91, DP97] is a significant subarea of
artificial intelligence and philosophy. It depicts the process that an
agent revises its beliefs upon receiving new evidence, under the as-
sumption that an agent always takes the new information as the most
reliable one and uses it to revise its current beliefs to reach a new
consistent set of beliefs.

In recent years, many researchers realized that epistemic states
(not just their belief sets) should play an important, even fundamen-
tal role in iterated belief revision [DP97, B+00, NPP03, B+05, JT07].
These papers are concerned with the logic of iterated revision with
the integration of epistemic states. More precisely, an agent’s cur-
rent beliefs are modeled with epistemic states and new evidence is in
the form of propositional logic formula. In contrast to the above ap-
proaches to epistemic state revision derived from the AGM revision
framework in logics, epistemic state revision has also been studied in
numerical settings. In [Spo88], ordinal conditional functions (OCFs,
also known as ranking functions [Hal03]) are introduced to render
the dynamics of the change of epistemic states (i.e., epistemic state
revision). In [DP93], a counterpart in possibility theory was proposed
by Dubois and Prade.

In this paper, we present a generalized model for the dynamics
(strategies) of epistemic state revision under the framework of plausi-
bility measures introduced by Friedman and Halpern [FH95, Hal01],
which takes OCFs and possibility measures as its special cases. We
also investigate if our revision strategy is optimal such that it satis-
fies the principle of minimal change. Moreover, we want our general
model satisfying all the iterated belief revision postulates, e.g., DP
postulates [DP97]. We prove that it requires the plausibility measure
to be Max-Additive in order to satisfy DP postulates.
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The remainder of this paper is organized as follows. Section 2 pro-
vides some preliminary knowledge of OCFs, possibility functions,
and plausibility measures. Section 3 introduces our general revision
model and its properties. We also show that the revision model satis-
fies the principle of minimal change. In section 4, we use the iterated
belief revision postulates in [DP97] to verify our model. Finally, in
Section 5, we draw a conclusion of the paper.

2 Preliminaries
2.1 Ordinal Conditional Functions
An ordinal conditional function [Spo88], also known as a ranking
function [Hal03] or a kappa-function, commonly denoted as κ, is
a function from a set of possible worlds, W , to the set of ordinal
numbers. Function κ is normalized (consistent) if there exists at least
one possible world s.t. κ(w) = 0. Value κ(w) is understood as the
degree of disbelief of world w. So the smaller the value, the more
plausible the world is. The ranking value of a set A (i.e. a proposition
µA) is defined as:

κ(A) = minw∈Aκ(w)
or κ(µ) = minw|=µκ(w), Mod(µ) = A.
The conditioning of ordinal conditional function is defined as:

κ(B|A) = minw∈A∩B(κ(w))− κ(A) = κ(A ∩B)− κ(A).

Note that in [Spo88], κ(∅) = ∞. So when A∩B = ∅, κ(B|A) =
∞.

In [Spo88], the (A, α)-conditionalization, also commonly consid-
ered as (A, α)-revision, is proposed as follows. Let an agent’s current
belief be represented by an OCF κ, and let new evidence concerning
event A be given as κ

′
(A) = 0 and κ

′
(A) = α (where A = W \A),

then the revised κ (by κ′) is defined as:

κr(w) =

{
κ(w|A) for w ∈ A

α + κ(w|A) for w ∈ A
(1)

2.2 Possibility Theory
Semantically, a possibility distribution π is a mapping from W to
[0, 1]. It induces a possibility measure Π : 2W → [0, 1] and a neces-
sity measure N : 2W → [0, 1] as follows:

Π(A) = maxw∈Aπ(w) and N(A) = 1−Π(A).

Π(A) estimates the degree an agent believes the true world can be in
A while N(A) estimates the degree the agent believes the true world
should be necessarily in A.



There are several conditioning methods in possibility theory, and
we adopt the following one in this paper [DP93].

Π(B|A)
def
=

Π(B ∩A)

Π(A)
(2)

A counterpart of Spohn’s (A, α)-conditionalization was suggested
in [DP93] in possibility theory such that if new evidence suggests that
Π
′
(A) = 1 and Π

′
(A) = 1 − α (which implies that N

′
(A) = α),

then the belief change of an agent’s current belief π can take the
following form

πr(w) =

{
π(w|A) for w ∈ A

(1− α)π(w|A) for w ∈ A
(3)

where π(w|A) = π(w)/Π(A) which can be derived from Equation
2 with B being a singleton, i.e., B = {w}.

2.3 Plausibility Measure
Definition 1 [FH95, Hal03] A plausibility space is a tuple S =
(W, F , D, P l), where W is a set of possible worlds, F is an algebra
over W 2, D is a domain of plausibility values partially ordered by a
relation ≤D , and Pl maps sets in F to D. D is assumed to contain
two special elements,> and⊥, such that⊥ ≤D d ≤D > for all d ∈
D. Besides, the plausibility measure Pl should satisfy the following
conditions:

Pl1 Pl(∅) = ⊥
Pl2 Pl(W ) = >
Pl3 If U ⊆ V , then Pl(U) ≤D Pl(V )

For example, if Pl is reduced to a probability measure, then ⊥ =
0, > = 1 and ≤D is ≤. If Pl is reduced to an OCF, then ⊥ = +∞,
> = 0 and ≤D is ≥, and if ≤ is reduced to a possibility measure,
then ⊥ = 0, > = 1 and ≤D is ≤.

In [Hal01], a plausibility measure Pl is additive with respect to
⊕ such that Pl(U ∪ V ) = Pl(U) ⊕ Pl(V ) for disjoint U, V ∈ F
where ⊕ is a mapping from D×D to D. The conditioning of Pl on
A, denoted as Pl(·|A), is defined as satisfying

CPl1 Pl(∅|A) = ⊥
CPl2 Pl(W |A) = >
CPl3 If U ⊆ V , then Pl(U |A) ≤D Pl(V |A)
CPl4 Pl(U |A) = Pl(U ∩A|A)

Furthermore, Pl is said algebraic if it satisfies the following:

Alg1 If U ∩ V = ∅, then Pl(U ∪ V |V ′
) = Pl(U |V ′

) ⊕
Pl(V |V ′

)

Alg2 Pl(U ∩ V |V ′
) = Pl(U |V ∩ V

′
)⊗ Pl(V |V ′

)
Alg3 ⊗ distributes over⊕; more precisely, a⊗(b1⊕b2⊕ . . .⊕

bn) = (a⊗ b1)⊕ (a⊗ b2)⊕ . . .⊕ (a⊗ bn)
Alg4 a⊗ c ≤D b⊗ c and c 6= ⊥ implies a ≤D b

where ⊗ is a mapping from D ×D to D.
To put operators ⊕ and ⊗ into perspective with respect to prob-

ability measures, OCFs, and possibility measures, we have (⊕ =
+,⊗ = ×) for a probability measure Pr, (⊕ = min,⊗ = +) for
an OCF κ, and (⊕ = max,⊗ = ×) for a possibility measure Π
respectively.

2 An algebra over W is a set of subsets of W closed under complementation
and union.

Proposition 1 Let d ∈ D, we have d⊗> = >⊗ d = d.

To make the subsequent discussion easier, we have the following: let
A be any set, for any binary relation ≤ over A × A, < is defined as
a < b iff a ≤ b and b 6≤ a, and = is defined as a = b iff a ≤ b and
b ≤ a, for a, b ∈ A.

3 Epistemic State Revision by Plausibility
Measures

Here we present a revision model for epistemic state change using
plausibility measures. This model is general enough to subsume the
conditionalization of ordinal conditional functions, Jeffrey’s rule of
probability updating, and the revision operator (Equation 3) in pos-
sibility theory introduced above.

For this purpose, we need to define some simple and rational prop-
erties for operator ⊗ mentioned in the last section.

Definition 2 Let S = (W, F , D, P l) be a plausibility space, a, b, c
be any elements in D and ⊗ be a mapping from D × D to D, then
⊗ is called

reversible iff there exists a mapping⊗−1 such that a⊗−1 b⊗b = a
and a⊗ b⊗−1 b = a for b 6= ⊥.

commutative iff a⊗ b = b⊗ a.
associative iff a⊗ (b⊗ c) = a⊗ b⊗ c
equal-ranking iff a⊗ b⊗−1 c = a⊗−1 c⊗ b for c 6= ⊥.
right-sign-keeping iff a⊗ c <D b⊗ c for a <D b.
left-sign-keeping iff c⊗ a <D c⊗ b for a <D b.
sign-keeping iff ⊗ is both right-sign-keeping and left-sign-keeping.

Property equal-ranking says that an operation⊗ and its reversing
operation ⊗−1 have the same level of operation grade, such as, ‘+’
and its reverse ‘-’ have the same level of arithmetic calculation grade
and they are a grade lower than ‘×’ and ‘/’.

Note that if ⊗ is reversible, then by setting V ′ = W in Alg2, we
obtain a conditional plausibility as follows.

Pl(U |V ) = Pl(V ∩ U)⊗−1 Pl(V ). (4)

The reason we need to have both the right-sign-keeping and left-
sign-keeping conditions is that some operators may not be associa-
tive, so these two conditions are not totally equivalent.

Proposition 2 Let S = (W, F , D, P l) be a plausibility space and
⊗ be a reversible and right-sign-keeping mapping from D×D to D,
then ⊗−1 is right-sign-keeping.

Note that if ⊗ is commutative, then ⊗ is right-sign-keeping iff ⊗ is
left-sign-keeping. But we still differentiate the two situations as there
may be non-commutative operators, e.g., ⊗−1.

Definition 3 Let S = (W, F , D, P l) be a plausibility space and ⊗
be a mapping from D×D to D, then⊗ is called a rational mapping
iff it satisfies reversible, commutative, associative, equal-ranking, and
sign-keeping.

Proposition 3 Let S = (W, F , D, P l) be a plausibility space and
⊗ be a rational mapping from D×D to D, then for any a, b, c, d ∈ D
and b, c 6= ⊥, we have

1. a⊗−1 b⊗−1 c = a⊗−1 c⊗−1 b,
2. a⊗ (d⊗−1 c) = a⊗ d⊗−1 c,
3. b⊗−1 b = >,



In fact, when probability functions, OCFs and possibility functions,
are viewed as plausibility functions, the corresponding⊗s (which are
‘+’, min, and max respectively) are indeed rational mappings. More
formally, we have the following lemma.

Lemma 1 (Part of this lemma can be found in [Hal01]) Let Pr be
a probability function, κ be an OCF, and Π be a possibility func-
tion. When considered as a plausibility function Pl, it satisfies the
followings:

1. Pl is additive with respect to the corresponding ⊕.
2. The conditioning PlA(B) can be written as Pl(A∩B)⊗−1Pl(A)

and PlA is also a probability function (resp. OCF κ, possibility
measure Π) if the original Pl is Pr (resp. κ, Π).

3. ⊗ is a rational mapping (Def 3).
4. ⊗ distributes over ⊕ (Alg1).

We define the revision model by plausibility measures as follows.

Definition 4 Let S = (W, 2W , D, P l) be a plausibility space for
the prior, and Se = (W, Fe, D, P le) be the plausibility space for
new evidence where Fe = 2{A1,...,An} is the powerset of a partition
of W , then the revised plausibility measure, denoted as Plre, is

Plre(w) = Ple(Ai)⊗−1 Pl(Ai)⊗ Pl(w), w ∈ Ai, 1 ≤ i ≤ n.

Proposition 4 Let S = (W, 2W , D, P l) be a plausibility space for
the prior, and Se = (W, Fe, D, P le) be the plausibility space for
new evidence where Fe = 2{A1,...,An}, then we have

Plre(Ai) = Ple(Ai), 1 ≤ i ≤ n.

This proposition shows that the above definition indeed reserves the
value Ple(Ai) from the evidence, so it satisfies the general require-
ment in revision that the new evidence has to be preserved.

Here are some general properties of the revision by plausibility
measures.

Proposition 5 Let S = (W, F = 2W , D, P l) be a plausibility
space for the prior state and Se1 = (W, Fe1, D, P le1), Se2 =
(W, Fe2, D, P le2) be two plausibility spaces for two new pieces
of evidence such that Fe1 = Fe2 = 2{A1,...,An}, then we have
(Plre1)re2 = Plre2.

This proposition reveals that if two pieces of evidence are about the
same event but differ on the strengthes, then the evidence arriving
later will suppress the former.

When new evidence is given on Fe = 2{A,A} within a plausibility
measure, the above revision is reduced to the well known (A, α)-
revision with OCFs [Spo88, DP93] which is the revision when Se =

(W, 2{A,A}, D, P le) such that Pl(A) = > and Pl(A) = α. Thus
we have

Proposition 6

PlA,α(w) =

{
Pl(w)⊗−1 Pl(A) for w ∈ A,

α⊗−1 Pl(A)⊗ Pl(w) for w ∈ A.
(5)

For the (A, α)-revision, we have the following corollary.

Corollary 1 (Reversible) Let S = (W, F = 2W , D, P l) be a plau-
sibility space and A ∈ F \ {∅, W} such that Pl(A) = > and
Pl(A) = β, then we have (PlA,α)A,β = (PlA,α)A,β = Pl.

This corollary is a direct generalization of Theorem 3 in [Spo88] for
OCFs.

Definition 5 Let⊕ be a mapping from D×D to D, then⊕ is called
bounded-additive if and only if it follows: > ⊕ d = d ⊕ > = > for
all d ∈ D.

For convenience, if Pl is associated with a bounded-additive⊕, then
we simply call Pl is bounded-additive.

It is clear to see that OCFs and possibility measures are bounded-
additive, but unfortunately, the probability function is not bounded-
additive.

Lemma 2 Let κ be an OCF and Π be a possibility measure. When
considered as plausibility measures, they are bounded-additive.

For bounded additive Pl, we have the following theorem.

Proposition 7 (Commutative) Let Pl be a bounded-additive plausi-
bility measure and A, B∈ A \ {∅, W} such that Pl(A ∩ B) =
Pl(A ∩ B) = Pl(A ∩ B) = >, then we have (PlA,α)B,β =
(PlB,β)A,α.

In Theorem 4 [Spo88], Spohn pointed out that accumulated epis-
temic revision on events satisfying certain conditions (κ(A ∩ B) =
κ(A ∩ B) = κ(A ∩ B) = 0) should be commutative. Here we
generalize the theorem to the plausibility case and give the above
proposition which is the counterpart of the theorem.

The revision by Definition 4 can be equivalently rewritten as

Plre(w)⊗−1 Pl(w) = Plre(Ai)⊗−1 Pl(Ai), w ∈ Ai

It is a counterpart of so called probability kinematics [Jef65] in prob-
ability theory. In [CD05b], it is proved that Jeffrey’s Rule and Pearl’s
virtual evidence method (a kind of revision on Bayesian networks)
both follow probability kinematics. Hence here our revision strategy
can be called plausibility kinematics.

We give the formal definition of plausibility kinematics as follows:

Definition 6 Suppose that two plausibility measures Pl and Pl
′

disagree on the plausibility values they assign to a set of mutually
exclusive and exhaustive events A1, A2, . . . , An. The distribution
Pl

′
is said to be obtained from Pl by plausibility kinematics on

A1, A2, . . . , An, iff for any w ∈ Ai, 1 ≤ i ≤ n, we have

Pl
′
(w)⊗−1 Pl(w) = Pl

′
(Ai)⊗−1 Pl(Ai).

Obviously, the revision strategy in Definition 4 shows that the revised
plausibility measure is obtained from the prior plausibility measure
by plausibility kinematics.

Next we prove that our revision strategy does achieve the minimal
change. Namely, we show that among all revision strategies, the plau-
sibility measure obtained by plausibility kinematics has the shortest
distance to the prior plausibility measure.

First, we define a distance function which is generalized from its
probability counterpart in [CD05a, CD05b].

Definition 7 Let Pl and Pl
′

be two plausibility measures on 2W ,
then the distance between Pl and Pl

′
is defined as

d(Pl, P l
′
) = ¯(maxwPl

′
(w)⊗−1 Pl(w))

− ¯(minwPl
′
(w)⊗−1 Pl(w)),

where we define here ⊥⊗−1 ⊥ = >, and ¯ is a mapping from D to
R and satisfies the followings.



1. ¯(a⊗−1 b) = ¯a−¯b,
2. if a < b, then ¯a < ¯b,
3. ¯⊥ = ∞.

In fact, if ⊗−1 is −, ¯ can be ≡; while if ⊗−1 is /, ¯ can be ln.
Pl and Pl

′
are said to have the same support [CD05b] if ∀w,

Pl(w) 6= ⊥ iff Pl
′
(w) 6= ⊥. If Pl and Pl

′
do not have the same

support, as ¯⊥ = ∞, we can conclude that d(Pl, P l
′
) = ∞.

Lemma 3 For a, b, c, d ∈ D and a, b, c, d 6= ⊥, if a ⊗−1 b ≥D

c⊗−1 d, we have b⊗−1 a ≤D d⊗−1 c.

Proposition 8 d(Pl, P l
′
) defined in Definition 7 is a distance func-

tion.

A common perspective on revision strategies is to have minimal
change between the prior belief (resp. epistemic state) and the revised
belief (resp. epistemic state) [RF89], [KM91], [Bou96], [DP97]. The
theorem below shows that our revision strategy is optimal in the sense
that our revision strategy satisfies this common perspective.

Theorem 1 The plausibility distribution Pl1 obtained from Pl by
plausibility kinematics on partition A1, A2, . . . , An of W is op-
timal in the following sense. Among all possible plausibility dis-
tributions that agree with Pl on the plausibility values of events
A1, A2, . . . , An, Pl1 is the closest to Pl according to the distance
measure by Definition 7.

4 A verification using the belief revision postulates
In this section, we use some well known belief revision postulates
to verify the revision operator by plausibility measures. We mainly
adopt the postulates proposed by Darwiche and Pearl [DP97], and
also consider the Recalcitrance postulate [NPP03] and the Indepen-
dence postulate [JT07].

The Darwiche-Pearl iterated belief revision postulates (DP Postu-
lates) [DP97], which stems from the KM postulates [KM91], pro-
vide a general framework as how a belief set shall be obtained af-
ter iterated belief revision. There are following postulates for gen-
eral revision in which Φ stands for an epistemic state (usually it
means W plus the preorder ≤Φ on W ) and Φ ◦ µ is a new epis-
temic state after revising Φ with revision operator ◦. For each epis-
temic state Φ, there is a belief set Bel(Φ) and it is defined as
Bel(Φ) = ψ, where Mods(ψ) = min(W,≤Φ). In the following
when an epistemic state Φ is embedded in a logical formula, it actu-
ally represents its corresponding belief set. For example, Φ∧µ stands
for Bel(Φ) ∧ µ.

R1 Ψ ◦ µ implies µ.
R2 If Ψ ∧ µ is satisfiable, then Ψ ◦ µ ≡ Ψ ∧ µ.
R3 If µ is satisfiable, then Ψ ◦ µ is also satisfiable.
R4 If Ψ1 = Ψ2 and µ1 ≡ µ2, then Ψ1 ◦ µ1 ≡ Ψ2 ◦ µ2.
R5 (Ψ ◦ µ) ∧ φ implies Ψ ◦ (µ ∧ φ).
R6 If (Ψ◦µ)∧φ is satisfiable, then Ψ◦(µ∧φ) implies (Ψ◦µ)∧φ.

and the following postulates for iterated belief revision:

C1 If α |= µ, then (Ψ ◦ µ) ◦ α ≡ Ψ ◦ α.
C2 If α |= ¬µ, then (Ψ ◦ µ) ◦ α ≡ Ψ ◦ α.
C3 If Ψ ◦ α |= µ, then (Ψ ◦ µ) ◦ α |= µ.
C4 If Ψ ◦ α 6|= ¬µ, then (Ψ ◦ µ) ◦ α 6|= ¬µ.

The following two theorems are the representation theorems for the
DP postulates.

Theorem 2 ([DP97]) A revision operator ◦ satisfies postulates R1-
R6 precisely when the total pre-order ≤Ψ induced on the epistemic
state Ψ satisfies:

Mods(Bel(Ψ ◦ µ)) = min(Mods(µ),≤Ψ), and

1. w1, w2 |= Bel(Ψ) implies w1 =Ψ w2.
2. w1 |= Bel(Ψ) and w2 |= ¬Bel(Ψ) implies w1 ≤Ψ◦µ w2.
3. Ψ1 = Ψ2 implies ≤Ψ1=≤Ψ2 .

Theorem 3 ([DP97]) Suppose that a revision operator ◦ satisfies
postulates R1-R6. Then ◦ satisfies C1-C4 iff:

CR1 If w1 |= µ and w2 |= µ, then w1 ≤Ψ w2 iff w1 ≤Ψ◦µ w2.
CR2 If w1 |= ¬µ and w2 |= ¬µ, then w1 ≤Ψ w2 iff w1 ≤Ψ◦µ w2.
CR3 If w1 |= µ and w2 |= ¬µ, then w1 <Ψ w2 implies w1 <Ψ◦µ

w2.
CR4 If w1 |= µ and w2 |= ¬µ, then w1 <Ψ w2 iff w1 <Ψ◦µ w2.

We extend the plausibility measure Pl to propositions such that
for a proposition µ, we have Pl(µ) = ⊕w|=µPl(w).

A proposition µ is believed by an agent if Pl(¬µ) <D >. An
agent’s belief in the current epistemic state Pl, denoted as Bel(Pl),
is then characterized as follows:

Mods(Bel(Pl))
def
= {w : Pl(w) = >}.

Obviously, a proposition µ is accepted iff its models subsume
Mods(Bel(Pl)), i.e., Mods(Bel(Pl)) ⊆ Mods(µ).

For a new piece of evidence, we assume that the evidence is repre-
sented as Ple(µ) = > and Ple(¬µ) < >. Furthermore, we assume
Ple(¬µ) = β⊗Pl(¬µ) where Pl(¬µ) is the plausibility measure of
a prior belief and β is any value that satisfies β⊗Pl(¬µ) 6= >. Such
β indeed exists, in fact, ⊥ is such a value. Thus a revision operator •
that revises Pl withe formula µ can be defined as

(Pl • µ)(w)
def
=

{
Pl(w)⊗−1 Pl(µ) for w |= µ,
β ⊗ Pl(w) for w |= ¬µ.

(6)

Pl • µ is a new plausibility measure. In fact, (Pl • µ) is equivalent
to the (A, α)-revision PlA,α such that A = Mods(µ) and α =
β ⊗ Pl(¬µ).

Before discussing the relationship between the above revision op-
erator • and the DP postulates, we introduce the following property.

Definition 8 Let⊕ be a mapping from D×D to D, then⊕ is called
Max-Additive iff it satisfies: a⊕ b =D a for a, b ∈ D and a ≥D b.

For convenience, if Pl is associated with a Max-Additive⊕, we sim-
ply call Pl is Max-Additive.

It is easy to find that if Pl is Max-Additive, then it is bounded-
additive. And in fact it means that ⊕ is actually the max operator
with respect to the total pre-order ≤D . Obviously, OCFs and pos-
sibility measures satisfy this property, but probability functions do
not. Intuitively this is not surprising, as OCFs and possibility mea-
sures have their belief sets whilst for probability functions, there are
no corresponding belief sets.

Proposition 9 Let S = (W, F = 2W , D, P l) be a plausibility
space and the total pre-order on the set of interpretations is defined
as

w1 ≤Pl w2
def
= Pl(w1) ≥D Pl(w2).

Then we have:



1. w1, w2 |= Bel(Pl) implies w1 =Pl w2.
2. w1 |= Bel(Pl) and w2 |= ¬Bel(Pl) implies w1 ≤Pl•µ w2.
3. Pl1 = Pl2 implies ≤Pl1=≤Pl2 .

and we also have

Mods(Bel(Pl • µ)) = min(Mods(µ),≤Pl)

iff Pl is Max-Additive.

Proposition 10 Let ≤Pl and ≤Pl•µ be total pre-orders induced by
Pl and Pl • µ respectively, then we have:

PlR1 If w1 |= µ and w2 |= µ, then w1 ≤Pl w2 iff w1 ≤Pl•µ w2.
PlR2 If w1 |= ¬µ and w2 |= ¬µ, then w1 ≤Pl w2 iff w1 ≤Pl•µ

w2.
PlR3 If w1 |= µ and w2 |= ¬µ, then w1 <Pl w2 implies w1 <Pl•µ

w2.
PlR4 If w1 |= µ and w2 |= ¬µ, then w1 <Pl w2 iff w1 <Pl•µ w2.

With Propositions 9 and 10, we immediately get that our revision
operator satisfies all DP postulates (with the help of Theorems 2 and
3). Thus, for the Max-Additive plausibility measures, we have

Theorem 4 The revision operator • defined in Equation 6 satisfies
the DP postulates R1-R6 and C1-C4.

The Recalcitrance (Rec) postulate [NPP03] and Independent (Ind)
postulate [JT07] are presented as follows.

Rec If α 6|= ¬µ, then (Φ ◦ µ) ◦ α |= µ.
Ind If Φ ◦ ¬α 6|= ¬µ, then (Φ ◦ µ) ◦ ¬α |= µ.

Semantically, postulate Rec and Ind correspond to the following
conditions ([NPP03] and [JT07]).

RecR If w1 |= µ and w2 |= ¬µ, then w1 <Φ◦µ w2.
IndR If w1 |= µ and w2 |= ¬µ, then w1 ≤Φ w2 only if w1 <Φ◦µ

w2.

Thus, the following proposition shows that • operator defined by
Equation 6 satisfies the Independence postulate.

Proposition 11 Let ≤Pl and ≤Pl•µ be total pre-orders induced by
Pl and Pl • µ, then we have:

PlIndR If w1 |= µ and w2 |= ¬µ, then w1 ≤Pl w2 only if
w1 <Pl•µ w2.

hence the revision operator • defined in Equation 6 satisfies the In-
dependence Postulate.

And the following example shows that the Recalcitrance postulate
is not satisfied by •.

Example 1 Let W = {w1, w2, w3}, Pl be an OCF κ (thus ⊗ is +)
over W such that κ(w1) = 3, κ(w2) = 0 and κ(w3) = 1, and µ be
a formula such that Mods(µ) = {w1, w3} (thus κ(µ) = 1), then let
β = 1, we have (κ •µ)(w1) = 2 > 1 = (κ •µ)(w2) which violates
the RecR condition.

5 Conclusion
In this paper, we presented a general revision model for epistemic
state using plausibility measures and this model generalizes Spohn’s
and Dubois and Prade’s results on revision in ordinal conditional

functions and possibility theory. The reversible and commutative
properties are proved to be held in our model. Moreover, we pro-
posed a notion of plausibility kinematics which is a generalization
of probability kinematics [Jef65] and showed that the revision using
plausibility kinematics satisfies the principle of minimal change, so
that our revision model to some extent is optimal. Finally, we used
the DP postulates [DP97] to verify our revision operator and proved
that our revision strategy and the DP postulates are compatible when
plausibility measures satisfy the Max-Additive property.

In [Hal01], Halpern showed that variety of uncertainty measures
can be represented by plausibility measures. Therefore, it would be
interesting to see if our revision model can be applied to those uncer-
tainty measures. Another issue for future research is that Darwiche
and Pearl’s iterated belief revision cannot be applied to probability
measures, because there does not exist a belief set from a probabil-
ity distribution. Therefore, more general revision postulates maybe
required purely on epistemic states other than on their associated be-
lief sets.
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Revision by Epistemic States: Axioms, Semantics and Syntax.
Procs. of ECAI 2000, 13-17, 2000.

[B+05] S Benferhat, S Lagrue, and O Papini. Revision of Partially
Ordered Information: Axiomatization, Semantics and Iteration.
Procs. of IJCAI 2005, 376-381, 2005.

[Bou96] C Boutilier. Iterated Revision and Minimal Change of Con-
ditional Beliefs. Journal of Philosophical Logic, 25:263-305,
1996.

[CD05a] H Chan and A Darwiche. A distance measure for bounding
probabilistic belief change. Internat. J. Approx. Reason., 38(2),
149-174, 2005.

[CD05b] H Chan and A Darwiche. On the revision of probabilistic be-
liefs using uncertain evidence. Artif. Intel., 163, 67-90, 2005.

[DP93] D Dubois and H Prade. Belief Revision and Updates in Nu-
merical Formalisms: An Overview, with New Results for the
Possibilistic Framework. Procs. of IJCAI 1993, 620-625, 1993.

[DP97] A Darwiche and J Pearl. On the logic of iterated belief revision.
Artif. Intel., 89, 1-29, 1997.

[FH95] N Friedman and J Y Halpern. Plausibility measures: a user’s
guide. Procs. of UAI 1995, 175-184, 1995.

[Hal01] J Y Halpern. Plausibility measures: A general approach for rep-
resenting uncertainty. Procs. of IJCAI 2001, 1474-1483, 2001.

[Hal03] J Y Halpern. Reasoning about Uncertainty. The MIT Press,
Cambridge, Massachusetts, London, England, 2003.

[Jef65] R C Jeffrey. The Logic of Decision. McGraw-Hill, New York,
1965. (2nd edition) University of Chicago Press, Chicago, IL,
1983. (Paperback correction) 1990.

[JT07] Y Jin and M Thielscher. Iterated belief revision, revised. Artif.
Intel., 171, 1-18, 2007.

[KM91] H Katsuno and A O Mendelzon. Propositional knowledge base
revision and minimal change. Artif. Intel., 52, 263-294, 1991.

[NPP03] A C Nayak, M Pagnucco, and P Peppas. Dynamic belief revi-
sion operators. Artif. Intel., 146:193-228, 2003.

[RF89] A S Rao and N Y Foo. Minimal Change and Maximal Co-
herence: A Basis for Belief Revision and Reasoning about Ac-
tions. Procs. of IJCAI 1989, 966-971, 1989.

[Spo88] W Spohn. Ordinal Conditional Functions: A Dynamic Theory
of Epistemic States. In W.Harper and B.Skyrms (Eds.), Cau-
sation in Decision, Belief Change, and Statistics, 2, 105-134,
1988 by Kluwer Academic Publishers.

[Wil94] M.A. Williams. Transmutations of Knowledge Systems. Procs.
of KR 1994, 619-629, 1994.


