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Abstract

This paper presents an efficient algorithm for leaning Bayesian
belief networks from databases. The dgorithm takes a database
as inpu and constructs the belief network structure & outpt.
The @nstruction processis based onthe cmputation d mutual
information o attribute pairs. Given a data set that is large
enouwgh, this algorithm can generate abelief network very close
to the underlying model, and at the same time, enjoys the time
complexity of O(N*) on condtional independence (Cl) tests.
When the data set has a normal DAG-Faithful (seeSedion 32)
probability distribution, the dgorithm guarantees that the
structure of a perfed map [Peal, 1989 of the underlying
dependency model is generated. To evaluate this algorithm, we
present the experimental results on three versions of the well-
known ALARM network database, which has 37 attributes and
10,000records. The results show that this algorithm is acarrate
and efficient. The proof of corredness and the analysis of
computational complexity are dso presented.

1 Introduction

The Bayesian belief network is a powerful knowledge
representation and reasoning tool under condtions of uncertainty.
A Bayesian belief-network is adireded acgyclic graph (DAG) with
a ondtiona probability distribution for eady node. The DAG
structures of such networks contain nodes representing domain
variables, and arcs between nodes representing probabili stic
dependencies. On constructing Bayesian networks from
databases, we use nodes to represent database dtributes.

In recett yeas, many belief network construction agorithms
have been developed. Generdly, these dgorithms can be grouped
into two caegories. one cdegory of agorithms uses heuristic
seaching methods to construct a model and then evauates it
using a scoring method This process continues urtil the score of
the new model is nat significantly better than the previous one.

Different scoring criteria have been applied in these dgorithms,
such as, Bayesian scoring method [Cooper and Herskovits, 1992
Hedkerman et al., 1994, entropy based method [Herskovits,
1997, and minimum description length method [Suzuki, 1994 .
The other caegory of algorithms constructs Bayesian networks by
analyzing dependency relationships among nodes. The
dependency relationships are measured by using some kind o
condtional independence (Cl) test. The dgorithms described in
[Spirtes et al., 1991, Wermuth and Lauritzen, 1983 Srinivas et
al., 1997 and the dgorithm proposed in this paper belong to this
caegory. Both o these two caegories of agorithms have their
advantage and dsadvantage: Generally, the first caegory of
agorithms has lesstime cmplexity in the worst case (when the
underlying DAG is densely conreded), but it may not find the
best solution de to its heuristic nature; The seacond category of
agorithms is usually asymptoticdly corred when the probability
distribution d data satisfies certain asaumption, but as Cooper et
al. pointed out in [Cooper and Herskovits, 1997, Cl tests with
large @ndtion-sets may be unreliable unlessthe volume of datais
enormous.

On developing this algorithm, we take the following two fads
into consideration. First of al, red world situations usualy yield
sparse networks, and densely conreded networks reved very few
independence relationships and thus contain little valuable
information. Therefore, the dgorithm shoud be particularly
efficient when the database has a sparse underlying network.
Semndy, since Cl tests with large @ndtionsets are
computational expensive and may be unreliable, we try to avoid
Cl tests with large condtion-sets and we & few Cl tests as
possble. Considering the aove discussgon, we developed a novel
agorithm that can avoid many unrecessary Cl tests with large
condition-sets and al so reduce the number of ClI tests.

Generdly, this agorithm has two major advantages over other
Cl test based agorithms. First of al, it constructs Bayesian
networks through three phases, drafting, thickening and thinning.
This is a natural extension d the well-known Chow and Liu's
agorithm [Chow and Liu, 196§ to multi-conreded network. In
the cae where the node ordering is known, this algorithm even

preserves the merit of Chow and Liu’'s algorithm that only O(N 2)
times of Cl tests are needed. Secondy, unlike other Cl methods
which use )(2 tests [Spirtes et al., 1991 Wermuth and Lauritzen,

1983 to chedk if two variables are dependent, we use mutua
information as Cl test which can tell us not only if two variables



are dependent but also how close their relationship is. Therefore,
our agorithm has the aility to compare the results of Cl tests
quantitatively. As showed later in this paper, this is the very

resson that our algorithm requires Cl tests only O(N*) times. (N

is the number of nodes in the network.)

The remainder of this paper is organized as follows. In Sedion
2, we give the badground information and introduce our
information theory based algorithm. In Sedion 3 we present our
agorithm in detail and give the proof of corrednessand anaysis
of complexity. Sedion 4 contains the experimenta results on
three data sets of the darm network. Findly, in Sedion 5 we
discussthe related work and the important feaures of our work.

2 An Information Theory Based Approach

Our agorithm constructs beief networks by anayzing
condtional independence reationships among nodes. To
introduce our approach, we first review the mncept of d-
separation [Peal, 1989, which plays an important role in ou
agorithm. For any threedigoint node sets X, Y, and Z in a beli ef
network, X is sid to be d-separated from Y by Z if there is no
adive adjacency path between X and Y. An adjacency path is a
path between two nodes without considering the dirediondlity of
the acs. A path between X and Y is adive given Z if: (1) every
collider [Spirtes et al., 1994 in the path is in Z or has a
descendant in Z; (2) every other nock in the path is outside Z. A
collider of a path is a node where two arcs in the path med at
their endpants. In a belief network, if thereis an arc from a to b,
we say that aisaparent of b and b is a dhild of a. We dso say
that aisin the neighbarhood d b and b isin the neighbarhood d
a. To uncerstand d-Separation, we can use an analogy, which is
similar to the one suggested in [Spirtes et al., 199. We view a
belief network as a network system of information channels,
where eab noceisavalvethat is either adive or inadive and the
vaves are onreded by noisy information channels. The
information flow can passan adive valve but nat an inadive one.
When all the valves (nodes) on ore adjacency path between two
nodes are adive, we say this path is open. If any one valve in the
path is inadive, we say the path is closed. When al paths
between two nocks are closed given the statuses of a set of valves
(nodks), we say the two nodes are d-separated by the set of
nodes. The statuses of vaves can be danged through the
instantiation o a set of nodes. The anourt of information flow
between two nodes can be measured by using mutual information
when no nods are instantiated, or condtiona mutua
information when some other nodes are instantiated.

In information theory, the mutual information o two nocdes
X\ X; is defined as

P(Xi,X;)

(X, X;) = P(x,x;)logQ———; Q)
A &,zx,. U P ) P(X)
and the condtiona mutual informationis defined as
_ P(XI lxllc)
L(Xi, X;IC) =Y  P(x,x;,c)log 2

XX € P(x;[c), P(x;c) ,
where X;, X; are two nodks and C is a set of nodes. In our
agorithm, we use @ndtional mutual information as Cl tests to
measure the average information between two nodes when the

statuses of some valves are changed by the ondtion-set C. When
I(Xj, X;|C) is snaller than a cetain threshold valuee , we say

that X;, X; ared-separated by the ondtion-set C, and they are

condtionally independent.

Using mutual information in probabili stic model construction
can be tracal bad to Chow and Liu’'s tree onstruction algorithm
[Chow and Liu, 196§. In 1987 Rebane and Peal extend Chow
and Liu’'s algorithm to causal polytree onstruction [Peal, 198§.
Our agorithm extends those dgorithms further to Bayesian beli ef
network construction.

This algorithm also makes the following two assumptions: (1)
The database atributes have discrete values and there ae no
misdng values in al the records. (2) The volume of data is large
enowgh for reliable Cl tests.

3 The Construction Algorithm

This algorithm has threephases: drafting, thickening and thinning.
Thefirst phase of our algorithm is esentialy Chow and Liu' s tree
construction agorithm; the second and the third phese ae
designed to extend tree onstruction to general Bayesian belief
network construction. In the first phase, this algorithm computes
mutual information d ead pair of nodes as a measure of
closeness and credes a draft based onthis information. The draft
is asingly conreded graph (a graph withou loops). In a speda
case when the Bayesian network is a tree or polytree this phase
can construct the network corredly and the second and third phase
will not change awything. So, Chow and Liu's agorithm and
Rebane and Peal’s agorithm can be viewed as peda cases of
our algorithm. In the seacond plase, the dgorithm adds edges when
the pairs of nodes canna be d-separated. The result of Phase Il
has the structure of an independence map (I-map) [Peal, 1989 of
the underlying dependency model given the underlying model is
normal DAG-Faithful. In the third phese, ead edge of the I-map
isexamined using Cl tests and will be removed if the two nodes of
the elge can be d-separated. The result of Phase Il has the
structure of a perfed map [Peal, 1988 when the underlying
model is normal DAG-Faithful. At the end d the third phese, our
agorithm aso caries out a procedure to arient the alges of the

graph.
3.1 TheAlgorithm

Phase|: (Drafting)

1. Initiate agraph G(V,E) where V={al the nodes of a data
set}, E={} . Initiate an empty list L.

2. For eat pair of nodes (v;,v;)where v;,v; LV, compute

mutual information 1(v;,v;) using equation (1). For all the

pairs of nodes that have mutual information greaer than a
cetain small vaue €, sort them by their mutual information
and pu these pairs of nodes into list L from large to small.
Crede apointer p that paintsto the first pair of nodesin L.

3. Get thefirst two pairs of nodes of list L and remove them from
it. Add the arrespondng edges to E. Move the pointer p to
the next pair of nodes.

4. Get the pair of nodes from L at the position o the pointer p. If
there is no adjacency path between the two nodes, add the
correspondng edge to E and remove this pair of nodes from L.

5. Move the painter p to the next pair of nodes and go bad to
step 4 uressp is pointing to the end o L or G contains n-1
edges. (nisthe number of nodesin G.)

In order to ill ustrate this algorithm’s working medanism, we
use asimple multi-conreded network example borrowed from
[Spirtes et al., 199§. Suppce we have a database that has



underlying Bayesian network as Figure l.a, our task is to
rediscover the underlying network structure from data. After step
2, we can get the mutual information o al 10 pair of noces.
Suppcee we have I(B,D) = I(C,E) 2I(B,E) =I(AB) =1(B,C)
21(CD) =zI(D,E) 2I(AD) =I(AE) =I(AC), and dl the
mutual information is greder thane, we can construct a draft
shown in Figure 1.b after step 5. Please note that the order of
mutual information between nodes can na be abitrary. For
example, from information theory, we have I(AC) <
Min(1(A,B),I(B,C)). This is also the reason why Phase | can
construct a graph close to the original graph to some extent. In
fad, if the underlying graph is a singly conreaed graph, Phase |
of this algorithm is esentialy the dgorithm of [Chow and Liu,
1969, and it guarantees the mnstructed network structure is the
same & the origina one. In this example, (B,E) is wrongly added
and (D,E) and (B,C) are mising because of the existing
adjacency paths (D-B-E) and (B-E-C). The draft creaed in this
phaseis the base for next phase.

Phasell: (Thickening)

6. Movethe pointer p to thefirst pair of nodein L.

7. Get the pair of nodes from L at the position d the pointer p.
Call procedure try_to_separate A (current graph, nodel,
node2) to seeif this pair of nodes can be separated in current
graph. If so, go to next step; otherwise, conred the pair of
nodes by adding a @rrespondng edge to E. (Procedure
try_to_separate A will be presented later in this sibsedion.)

8. Move the pointer p to the next pair of nodes and go bad to
step 7 uressp is pointing to the end o L.

In ou example, the graph after Phase Il is shown in Figure 1.c.
Edge (B,C) and (D,E) are alded becaise procedure
try_to_separate A canna separate these pairs of nodes using Cl
tests. Edge (A,C) is not added becaise Cl test can reved that A
and C are independent given block set {B}. Edge (A,D), (C,D)
and (A,E) are not added for the same reason.

In this phase, the dgorithm examines all pairs of nodes that
have mutual information greaer than ¢ and are not diredly
conreded. An edge is not added orly when the two nodks are
independent given certain block set. However, it is posshle that
some alges are wrongly added in this phase. The reasons are &
follows. 1. Some red edges may be still missng urtil the end o
this phase, and these missng edges can prevent procedure
try_to_separate A from finding the crred condtion-set. 2.
Because Procedure try_to_separate A uses a heuristic method,
it may not be ale to find the mrred condtion-set for a spedal
group d structures. (The detall i sdiscussed later in this dion.)

Phaselll: (Thinning)

9. For eah edgein E, if there ae other paths besides this edge
between the two nodks, remove this edge from E temporarily
and cdl procedure try to separate A (current graph,
nodel, node2). If the two nodks are dependent, add this edge
bad to E; otherwise remove the alge permanently.

10. For eat edge in E, if there ae other paths besides this edge
between the two nodks, remove this edge from E temporarily
and cdl procedure try to separate B (current graph,
nodel, node2). If the two nodks are dependent, add this edge
badk to E; otherwise remove the ealge permanently.
(Procedure try_to_separate B will be presented later in this
subsedion.)

11 Cal procedure orient_edges (current graph). (This
procedure will be presented later in this subsedion.)

The ‘thinned’ graph d our example is $own in Figure 1.d,
which has the same structure of the origina graph. Edge (B,E) is
removed because B and E are independent given { C,D}. Given the
underlying dependency model has a normal DAG-faithful
probability distribution, the structure generated by this procedure
is exadly the same @ the structure of the underlying model. This
phase can also arient edge (C,E) and edge (D,E) corredly.

Since procedure try_to_separate A uses heuristic method to
find the condtion-set, it may not aways be ale to separate two d-
separated nockes. In order to guaranteethat a crred structure can
adways be generated, we have to use a o©rred procedure
try _to_separate B at step 10 to re-examine the airrent edges.
Theoreticdly, we can use procedure try_to_separate B to replace
procedure try_to_separate A in Phase Il and remove step 9 in
Phase Il since they do the same thing and bdh of them have

complexity O(N?4) on ClI test. But in pradice procedure

try_to_separate A usually uses fewer Cl tests and requires
smaller condtion-sets. Therefore we try to avoid using procedure
try_to_separate B whenever it is possble.
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Figure 1. A ssimple multi-connected network.
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Proceduretry_to_separate A (current graph, nodel, node2)

1. Find the neighbas of nodel and node2 that are on the
adjacency paths between nodel and node2. Put them into two
sets N1 and N2 respedively.

2. Remove the aurrently known child-nodes of nodel from N1
and child-nodes of node2 from N2.

3. If the cadindlity of N1 is greaer than that of N2, swap N1 and
N2.

4. UseNL1 ascondtion-set C.

5. Condwt a Cl test using equation (2). Let v =
I(nodel,node2|C). If v< ¢, return (‘d-separated’).

6. If C contains only one nodk, go to step 8 otherwise, for eat

i, let G =C\ {the i "node of C}, Vv, = I(nodel,node2| C, ).
Find the smallest value v, of v;,V,,...

7. If v, <¢g, return (‘d-separated’); otherwise, if v,,> v go to
step 8elseletv=v,,,C=C,,gotostep 6.

8. If N2 has nat been used, use N2 as condtion-set C and go to
step 5; otherwise, return (‘failed’).

From the definition d Bayesian belief network [Peal, 198§ we
know that if two nodes a, b in the network are not conreded, they
can be d-separated by the parent nodes of b which are in the paths
between those two nodes. (We asume that node a appeas ealier
in the node ordering than b.) Those parent nodes form a set P
which is a subset of N1 or N2 of the &ove procedure. If node
ordering is known, we can get P immediately and orly one CI test
is required to ched if two nodes are d-separated. Since this
information is usualy not given, we have to use agroup d ClI
teststo find such P. By asauming that removing a parent noce of b



will not increase the mutua information between a and b, the
above procedure try to find set P by identifying and removing the
child-nodes and irrelevant nodes from N1 and N2 once atime
using a group d computations and comparisons of condtional
mutual information. However, this assumption may nat be true
when the underlying structure satisfies the following condtions:
(1) There «ists at least one path from a to b through a dild-node
of b and this child-noce is a collider on the path. (2) In such
paths, there ae one or more colli ders besides the child-noce and
al these colliders are the parents or ancestors of b. In such
structures, procedure try_to_separate A may identify a parent-
noce of b as a dhild-node of b and remove it erroneously. As a
result, the procedure fail s to separate two d-separated nodes. To
ded with these structures;, a @rred  procedure
try_to_separate B isintroduced.

Proceduretry_to_separate B (current graph, nodel, node2)

1. Find the neighbas of nodel and node2 that are on the
adjacency paths between nodel and node2. Put them into two
sets N1 and N2 respedively.

2. Find the neighbas of the nodes in N1 that are on the
adjacency paths between nodel and node2, and do no
belong to N1. Put theminto set N1'.

3. Find the neighbas of the nodes in N2 that are on the
adjacency paths between nodel and node2, and do no
belong to N2. Put them into set N2'.

4. If [NL+NI'| < |N2+N2'| let set C=N1+N1'" else let
C=N2+N2'.

5. Condwt a Cl test using equation (2). Let v =
I(nodel,node2|C). If v< ¢, return (‘d-separated’).

6. Let C'=C. For eath i [L[C]], let G =C\ {the i" noce of
C}, v, = I(nodel,node2| G ). If v, < & return (‘d-separated’)

dseif v < v+e then C'=C'\{the i"node of C}. (eis a

small value)
7. 1If |C|<|C]| then let C=C’, go to step 5 otherwise, return
(‘failed).

The mgjor difference between procedure try_to_separate A
andtry _to separate B isthat in stead of blocking the nodes of
N1 or N2 the latter procedure dso blocks nodes of set N1’ or N2'.
Since blocking two conseautive nodes in a path can aways close
the path, blocking set N1+N1' or N2+N2' can close dl the paths
that conred nocel and node2 through two or more nodes. The
only open paths are those mwnred nodel and node2 through ore
colli der. Under this circumstance, we can remove dl the colli ders
that conreding nodel and node2 without opening any previously
closed paths. Thus, al paths between nodel and node2 in the
underlying model can be dosed. The @rreaness proof of this
procedureisin sedion 32.

In bah procedure try to separate A and procedure
try_to_separate B, we have to compare the mutual information
on dfferent condtion-sets. If we do nd use quantitative Cl tests,
we can na compare the results of different Cl tests and therefore
can nd remove irrelevant nodes. By reducing the cadinality of
the condtion-set after ead iteration, we can avoid to test on
every subset of the initial condtionset and thus avoid
exporentia number of Cl tests. However, quditative Cl test
based algorithms have to carry out the test on every subset of Cin
order to separate two nodkes, so the number of Cl tests in such
agorithms must be exporential in the worst case.

Procedure orient_edges ( current graph)

1. For any two nodks sl and 2 that are not diredly conneded
and there is at least one node that is the neighbar of both sl
and s2, find the neighbas of sl and s2 that are on the
adjacency paths between sl and s2. Put them into two sets N1
and N2 respedively.

2. Find the neighbas of the nodes in N1 that are on the
adjacency paths between sl and s2, and do nd belong to N1.
Put them into set N1'.

3. Find the neighbas of the nodes in N2 that are on the
adjacency paths between sl and s2, and do nd belong to N2.
Put them into set N2'.

4. If |N1+NI'| < |N2+N2'| let set C=N1+N1' else let
C=N2+N2'.

5. Condwt a Cl test using equation (2). Let v =
I(nodel,node2|C). If v< £ gotostep 8.

6. Let C'=C. For eath i O[L|C[], let G =C\ {the i" noce of
CH V= I(sL,2| G ). If V, < v+e then C'=C'\{the i " noce

of C}, let sl and s2 be parents of the i"node of C. If vV,< g,

goto step 8 (eisasmall value.)

If |C'|<|C| then let C=C’, go to step 5.

Go badk to stepl urtil al pairs of nodes are examined.

For any threenodes a, b, ¢, if aisaparent of b, b and c are

adjacet, and a and ¢ are not adjacent and edge (b, ¢) is not

oriented, let b be aparent of c.

10. For any edge (a, b) that is not oriented, if there is a direded
path fromato b, let a be aparent of b.

11. Go bad to step 9 urtil nomore edges can be oriented.

© © N

Among the nodes in Bayesian networks, only colliders can let
information pass them when they are instantiated. We use this
feaure in step 6 to identify colli ders. All other edge orientations
are virtually based onthese identified colliders. The ideabehind
this procedure is the same & that in procedure
try_to_separate B, i.e., by blocking al the paths that have length
equal to o greder than threg we can always identify the colli ders
from C in a cetain order. The @rreanessproof of this procedure
isin sedion 32. The colli der based edge orientation methods have
aso been studied in [Peal, 1988 Spirteset al., 1994 .

3.2 Correctness

Before we present the crredness proof, we give the definition o
normal DAG-faithful.

Definition 1 In a DAG-faithful [Spirtes et al., 1999 probability
model, for any two nodes that are cnreded by at least two
adjacency paths, under an arbitrary situation where some paths
between the two nodes are closed by a ondtion-set, if we can
only increase the mutual information by opening any previously
closed paths between the two nodes withou closing any
previously opened paths, we say that this probability model is
normal DAG-faithful.

In red world situations, most DAG-faithful models are dso
normal DAG-faithful. We mnjedure that the violations of normal
DAG-faithfulness only happen when the probability distributions
are ‘nea’ the violations of DAG-faithfulness In such situations,
other algorithms may also have difficulties to generate the true
underlying model.

Given a data set that has a normal DAG-faithful underlying
model and satisfies the two asaumptions of Sedion 2 our
agorithm presented in previous subsedion can always generate



the exad structure of the underlying dependency model M. We
prove the mrredness of our agorithm by the following
propasitions.

Proposition 1 Graph G2 generated after Phase Il has the
structure of anl-map o M.

Proof: Phase | and Phase Il of our agorithm examined all the
edges between any two nodes that are not independent. An edge
is not added orly if these two nodks are d-separated by a set of
other nodes. Hence any pair of not conneded nodes of G2 are
condtional independentinM.  Q.E.D.

Lemma 1 In procedure try_to_separate B of Phaselll, by using
theinitial condtion-set N1+N1' or N2+N2', we an close all the
paths of the underlying model M between nockl and no@2
excet the paths conneding nodl and nod2 by one llider.
Proof: By using N1+N1' or N2+N2' as the cndtion-set, we
instantiate the nodes in N1 or N2 (the neighbas of nodel or
node2 on the paths between nodel and node2) and N1' or N2'
(the neighbars of nodes of N1 or N2 that are on the paths between
nocel and node?), therefore, at least two conseautive nodes of
any path that has length equal to o larger than three ae
instantiated. Because instantiating two conseautive nodes of a
path can close the path and al the paths of the underlying model
M are in the arrent graph, we can close dl the paths in M
between nodel and node2 that have length equal to or larger than
three The only open paths are those wnneding nocel and node2
by onecollider. Q.E.D.

Lemma 2 Procedure try to separate B does not open ary
previously dosed pah by removing a noa from condtion-set C.
Proof: To prove this lemma, it is aifficient to prove that
removing a noce from C canna open some paths while dose
other paths at the same time, since if removing a node can ony
open some paths, by the asumption o normal DAG-faithful, it
must increase the mutual information and the procedure will not
remove such nock. Therefore, the paths canna be opened. Now,
we will prove that removing anode from C canna open and close
paths smultaneously. From lemma 1 we know that initially the
only open paths are those mwnreding nodel and node2 by one
collider. For anoce in C that is not a dild-node of bath nodel
and node2 or a descendent of such child-node, removing it may
open some paths but cannat close the paths conneding nodel and
node2 by acollider. For anocevin C that isa cild-node of bath
nodel and node2 or a descendent of such child-node, if one of
the descendents of v are in C, then removing v canna close the
path conneding nodel and node2 by the dhild-node. If nore of its
descendents are in C, removing v may close the path conreding
nocel and node2 by the diild-node but canna open a path
because the would-be opened path must go through a colli der that
is a descendent of v. Since nore of the descendents of visin C,
such path cannat beopened.  Q.E.D.

Lemma 3 Procedure try to separate B can remove all the
descendents of both noctl and no@2 from C.

Proof: Suppcse Sis a subset of set C and the dl the nodesin S
are the descendents of both nodel and node2 and canna be
removed, then there must exist a node vOOS and v is not a
ancestor of any other nodes in S Since v canna be remove,
removing it must incresse mutual information. From the
assumption o normal DAG-faithful, we know that removing v
will open at least one path. Therefore, node v is nat a collider in

such path and such path must go through at least one descendent
of v. We dso know that there must exist at least one descendent of
v which is a collider in such path. To make such path open, this
collider has to be in S This contradicts our assumption that v is
not a ancestor of any other nodesin S Q.E.D.

Proposition 2 Given that graph G has the structure of anl-map o
the underlying model M, if two nodes a and b ae independent in
M, procedure try to_separate B can dways d-separate them in
G.

Proof: From lemma 1 we know that initially the only open paths
arethose mnneding node a and b by one colli der. From lemma 2
and lemma 3 we know that the procedure does not open any path
when removing nodes from C and all the descendents of both a
and b in C are removed. Therefore, if node a and nodk b are
independent in M, procedure try_to separate B can d-separate
them by closing all the open paths.  Q.E.D.

Proposition 3 Graph G3 generated after Phase Il has the
structure of a perfed map d M.

Proof: Since G2 has the structure of an I-map and an edge is
removed in Phase Il only if the pair of nodes are cndtiona
independent in M, G3 also hes the structure of an I-map of M.
From Propcsition 2 we dso know that if two nodss are
independent in M, our algorithm can aways d-separate them in
G3. Hence, G3 has the structure of aperfed mapof M.  Q.E.D.

Proposition 4 Given that graph G hasthe structure of an perfed
map d the underlying model M, all the wlliders that can ke
identified by procedure orient_edges (G) are the real colliders of
M.

Proof: For any structure sl-a-s2 and sl and s2 are nat direaly
conreded, procedure orient_edges (G) uses dep 1to 7to ched if
a is a collider on the path sl-a-s2. Because step 1to 7 d this
procedure is virtualy the same & procedure try_to_separate B,
from propacsition 2 we know that it can identify a collider
corredly. Since there ae no peeudo-edges in G, step 6 d this
procedure can never orient an edge wrongly. It is also easy to see
that theinferenceof step 9- 11 o procedureiscorred.  Q.E.D.

When the underlying probability distribution is DAG-faithful
but nat normal DAG-faithful, this algorithm may also be &le to
generate the crred graph. In fad, this algorithm may not be ale
to separate two d-separated nodes only when there is at least one
path that conned the two nodes by a single colli der and removing
anoce in the ondtion-set causes violation d the normal DAG-
faithful assumption. However, sincethis wrongly added edge does
not change the I-mapnress of the graph, the crredness of other
edgesin the graphwill not be dfeced.

In order to get the wrred graph for a DAG-faithful but not a
normal DAG-faithful model, we can always replace procedure
try_to_separate B(current graph, nodel, node2) with a
procedure that try to separate the two nodes by using every subset
of the neighbars of nodel and then the subset of the neighbars of
node2. By the definition d DAG-Faithfulness this procedure is
corred. Theoreticdly, this procedure requires exporential number
of Cl test in the worst case. However, for a sparse network, it only
influences the performance dightly since this procedure is only
used at the end o the third phase. From the experimenta results
shown in sedion 4we can seethat most running time is consumed
in Phase| and Phaselll.



3.3 Complexity Analysis
Suppae adata set has N attributes, the maximum number of
possble values of any attribute is r, by equation (1), eadh

computation d mutual information requires O(r 2) times of basic

operations such as logarithm, multiplicaion and dvision. By
equation (2), ead computation o condtional mutual information

(Cl test) in Phase Il and Ill requires a most O(r") basic

operations in the worst case, when ead Cl test has a ondtion
set on dl the other nodes. Therefore, this agorithm requires
exporentiad number of basic operations in the worst case.
However, the adual complexity is much less than that in red
applicaions which usualy have sparse networks. Since the
number of Cl tests required is a wildly acceted index for the
efficiency of Cl test based agorithms, we analyzethe complexity
of our algorithm as foll ows.

Phase |: Phase | computes mutual information between any two

nodes; it needs N2 mutual information computations. (A mutual
information computation can be viewed as a Cl test with an
empty condtion-set.) Therefore, this phase requires at most

O(N?) times of Cl tests.

Phase I1: This phase tries to add ead edge to the graph and cdl
proceduretry to separate A at most N? times. An exeaution o
procedure try_to separate A requires at most Zzi’ilzi = (N-
2)(N-1) times of CI tests. Therefore, Phase Il requires at most
O(N*) times of Cl tests.

PhaseIll: This phase tries to remove eab edge from the graph by
using  procedure  try_to_separate A and  procedure
try_to_separate B at most N? times. An exeaition o procedure
try_to_separate A requires at most (N-2)(N-1) times of Cl test;
and an exeaution d proceduretry_to_separate B requires Cl test
at most (N-2)(N-1)/2 times. Procedure orient_edges tries to find
colliders by chedking every pair of nodes using a mechanism
similar to procedure try_to_separate B, so it also requires Cl

tet O(N*) times. Therefore, Phase Il requires a most
O(N*) times of Cl tests.
Overall, this algorithm requires Cl test at most O(N*) times.

O
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Figure2. The ALARM belief network



Phase | Edges | Missing Extra No. of Cl Tests Time
Edges Edges
0 1 2 3 4-7 Total (Minute)
I 36 13 3 666 | 48 0 0 0 714 22.0
I 51 1 6 0 128 | 81 25 7 241 11.0
11 46 1{33-27} 1{32-27} | 0O 27 43 31 12 113 5.0
Table 1. Networks constructed at each phase for datasetl of ALARM database.
Data sets Results No. of Cl Tests Time (Minute)
Missing | Extra M.O. [W.O. |0 1 2 3 4+ | Total | Phase | Phase | Phase | Total
Edges Edges I 1 Il
Dataset1 1 1 4 0 666 | 203 | 124 | 56 | 19 | 1068 | 22.0 11.0 5.0 38.0
Dataset2 1 0 4 1 666 | 209 | 88 55 [ 15 | 1033 | 22.0 85 4.7 35.2
Dataset3 | 3(1) 0 5 0 666 | 181 | 84 43 | 12 | 986 22.0 5.7 4.6 32.3

Table 2. Results on dataset1, dataset2 and dataset3.
(M.O. and W.O. in the table stand for ‘missng orientation’ and ‘wrongly oriented’.)

4 Resultson ALARM Network

ALARM network[Beinlich et al., 1989 is a medicd diagnostic
aarm message system for patient monitoring, it contains 37 nods
and 46arcs (seeFigure 2). This belief network has become the de
facto benchmark for evaluating agorithms on belief network
construction. Reseachers in this field use data sets generated
from three versions of this belief network. To make a fair
comparison to other algorithms, we test our algorithm on three
data sets generated from ead o the three versions of ALARM
network which have the same structure and the different
probability distributions. We cdl them datasetl, dataset2 and
dataset3" . Each of them has 10,000 cases. The eperimental
results show that our algorithm constructs the ALARM networks
with fewer errors than ather algorithms on all threedata sets.

We summarize our experimental results into the foll owing two
tables. Table 1 shows the detail ed testing results of ead phase on
datasetl, and table 2 compares the results of the three data sets.
All these experiments were condwcted on a Pentium 90MHz PC
and the data sets are stored in a Microsoft Access database. To
make CI tests more reli able when the volume of datais not large
enowgh, we dso modified equation (2) by taking the variable's
degreeof freedom into consideration. We use 0.003 as the value
of €.

From table 1, we can andyze the result of eah phese on
datasetl. In Phase |, the mutual information o al 666
(=37x(37-1/2) pars of nodes were mmputed; and ou
agorithm uses this information to construct a draft. In Phase I,
this algorithm condicted 241Cl tests and added 15edges, among
which, 12 o 13 red edges mis=d in the first phase were alded.
In Phase lll, it removed 5 d 6 wrongly added edges. This
agorithm also oriented 42 of 46 edges corredly. The four un-
oriented edges are 18-3, 19-4, 21-10, 16-37. This is due to the
limitation o collider based arientation method In table 2, we
compare the results on dhtasetl, dataset?2 and dhbtaset3. The
difference in the running time is due to the difference in the
obviousness of dependency relationships of the underlying
probability distributions. On datasetl, our algorithm canna find

edge 33-27 because the value of 1(3327(14,34}) is abnamally
small. This missng edge causes that 32-27 be wrongly added. On
dataset? and dhtaset3, edge 11-27 is missng. This is because that
this pair of nodes has very wed relationship when noce 32 a 34
is instantiated. It may suggest that the relationship between this
pair of nodes can be epressd through ather dependency
relationships. The result on dbtaset3 also mised two ather edges;
however, this is due to the fad that 12-32 and 2131 are adualy
independent in dataset3 [Cheng et al., 1997. The independence
between 21 and 31aso causes an extra un-oriented edge 22-31.
From these tables, we can see that our results are very
encouraging. The dgorithm has aso been successully
implemented in several red world applicaions. One of them is a
telecommunication fault diagnosis /stem which has 34 attributes.

From table 1 and table 2, we can see that this algorithm is
efficient and reliable. In the cae of sparse networks like ALARM,

the number of CI tests used is much fewer than N*times. In our
experiments, we found that most running time is consumed by
database engine on query preparation and data retrieving. The
adua computations consume only about 5% of run-time.

5 Discussion

Mutual information hes been used in probabilistic model
construction since 1968 [Chow and Liu, 1968 Peal, 198§.
However, their works are limited to tree and pdytree onstruction.
We gply the ideato Bayesian network construction. Like our
Bayesian network construction agorithm, algorithms presented in
[Spirtes et al., 1997 and [Singh and Vadtorta, 1995 do nd
require node ordering. Other agorithms [Cooper and Herskovits,
1992 Herskovits, 1991, Suzuki, 1996 Wermuth and Lauritzen,
1983 Srinivas et al., 1997 ded with a rather spedal case where
noce ordering is known. In this geda case, our simplified
agorithm [Cheng et al., 1997 require O(N?) times of Cl tests and
is corred when the underlying model is DAG-faithful. On the
three data sets of ALARM network used in this paper, the
simplified algorithm in this geda case runs 25% faster and
constructs the network with fewer errors than that in the general



agorithm presented in this paper, becaise more information is
given.

Algorithms described in [Spirtes et al., 1991 Wermuth and
Lauritzen, 1983 Srinivas et al., 1997 can aso construct a beli ef
network whose structure is a perfed map of the underlying
dependency model when the underlying model is DAG-faithful.

However, as we discussd in sedion 31, these )(2 Cl test based

agorithms must require eporentiadl number of Cl tests.
Comparing to these dgorithms, our algorithms have the foll owing
two fedures. (1) By generating a draft in Phase |, our algorithms
prevent many pseudo-edges from being added in Phase II, and
therefore avoid high order CI tests in Phase Il and IIl, and aso
reduce the number of Cl tests needed in Phase Ill. (2) By using
mutual information and condtional mutual information as a
measure of dependency relationship, our algorithms can compare
two relationships quantitatively, and therefore avoid exporential
compl exity.

Our subsequent research will focus on handing continuows
variable nodes and missng values. We dso pan to develop a
commercia software based on ou algorithms.
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