
Learning Belief Networks from Data: An Information Theory Based Approach

Jie Cheng, David A. Bell, Weiru Liu

School of Information and Software Engineering
University of Ulster at Jordanstown

United Kingdom, BT37 0QB
Email: { j.cheng, da.bell , w.liu} @ulst.ac.uk
Tel: 44 1232 366500 Fax: 44 1232 366068

Abstract
This paper presents an eff icient algorithm for learning Bayesian
belief networks from databases. The algorithm takes a database
as input and constructs the belief network structure as output.
The construction process is based on the computation of mutual
information of attribute pairs. Given a data set that is large
enough, this algorithm can generate a belief network very close
to the underlying model, and at the same time, enjoys the time

complexity of O N()4 on conditional independence (CI) tests.
When the data set has a normal DAG-Faithful (see Section 3.2)
probabilit y distribution, the algorithm guarantees that the
structure of a perfect map [Pearl, 1988] of the underlying
dependency model is generated. To evaluate this algorithm, we
present the experimental results on three versions of the well -
known ALARM network database, which has 37 attributes and
10,000 records. The results show that this algorithm is accurate
and eff icient. The proof of correctness and the analysis of
computational complexity are also presented.

1 Introduction
The Bayesian belief network is a powerful knowledge
representation and reasoning tool under conditions of uncertainty.
A Bayesian belief-network is a directed acyclic graph (DAG) with
a conditional probabilit y distribution for each node. The DAG
structures of such networks contain nodes representing domain
variables, and arcs between nodes representing probabili stic
dependencies. On constructing Bayesian networks from
databases, we use nodes to represent database attributes.

In recent years, many belief network construction algorithms
have been developed. Generally, these algorithms can be grouped
into two categories: one category of algorithms uses heuristic
searching methods to construct a model and then evaluates it
using a scoring method. This process continues until the score of
the new model is not significantly better than the previous one.

Different scoring criteria have been applied in these algorithms,
such as, Bayesian scoring method [Cooper and Herskovits, 1992;
Heckerman et al., 1994], entropy based method [Herskovits,
1991], and minimum description length method [Suzuki, 1996].
The other category of algorithms constructs Bayesian networks by
analyzing dependency relationships among nodes. The
dependency relationships are measured by using some kind of
conditional independence (CI) test. The algorithms described in
[Spirtes et al., 1991; Wermuth and Lauritzen, 1983; Srinivas et
al., 1990] and the algorithm proposed in this paper belong to this
category. Both of these two categories of algorithms have their
advantage and disadvantage: Generally, the first category of
algorithms has less time complexity in the worst case (when the
underlying DAG is densely connected), but it may not find the
best solution due to its heuristic nature; The second category of
algorithms is usually asymptotically correct when the probabilit y
distribution of data satisfies certain assumption, but as Cooper et
al. pointed out in [Cooper and Herskovits, 1992], CI tests with
large condition-sets may be unreliable unless the volume of data is
enormous.

On developing this algorithm, we take the following two facts
into consideration. First of all , real world situations usually yield
sparse networks, and densely connected networks reveal very few
independence relationships and thus contain littl e valuable
information. Therefore, the algorithm should be particularly
eff icient when the database has a sparse underlying network.
Secondly, since CI tests with large condition-sets are
computational expensive and may be unreliable, we try to avoid
CI tests with large condition-sets and use as few CI tests as
possible. Considering the above discussion, we developed a novel
algorithm that can avoid many unnecessary CI tests with large
condition-sets and also reduce the number of CI tests.

Generally, this algorithm has two major advantages over other
CI test based algorithms. First of all , it constructs Bayesian
networks through three phases, drafting, thickening and thinning.
This is a natural extension of the well -known Chow and Liu’s
algorithm [Chow and Liu, 1968] to multi -connected network. In
the case where the node ordering is known, this algorithm even

preserves the merit of Chow and Liu’s algorithm that only O N()2

times of CI tests are needed. Secondly, unlike other CI methods

which use χ 2 tests [Spirtes et al., 1991; Wermuth and Lauritzen,

1983] to check if two variables are dependent, we use mutual
information as CI test which can tell us not only if two variables

are dependent but also how close their relationship is. Therefore,
our algorithm has the abilit y to compare the results of CI tests
quantitatively. As showed later in this paper, this is the very

reason that our algorithm requires CI tests only O N()4 times. (N
is the number of nodes in the network.)

The remainder of this paper is organized as follows. In Section
2, we give the background information and introduce our
information theory based algorithm. In Section 3, we present our
algorithm in detail and give the proof of correctness and analysis
of complexity. Section 4 contains the experimental results on
three data sets of the alarm network. Finally, in Section 5, we
discuss the related work and the important features of our work.

2 An Information Theory Based Approach
Our algorithm constructs belief networks by analyzing
conditional independence relationships among nodes. To
introduce our approach, we first review the concept of d-
separation [Pearl, 1988], which plays an important role in our
algorithm. For any three disjoint node sets X, Y, and Z in a belief
network, X is said to be d-separated from Y by Z if there is no
active adjacency path between X and Y. An adjacency path is a
path between two nodes without considering the directionality of
the arcs. A path between X and Y is active given Z if: (1) every
colli der [Spirtes et al., 1996] in the path is in Z or has a
descendant in Z; (2) every other node in the path is outside Z. A
colli der of a path is a node where two arcs in the path meet at
their endpoints. In a belief network, if there is an arc from a to b,
we say that a is a parent of b and b is a child of a. We also say
that a is in the neighborhood of b and b is in the neighborhood of
a. To understand d-Separation, we can use an analogy, which is
similar to the one suggested in [Spirtes et al., 1996]. We view a
belief network as a network system of information channels,
where each node is a valve that is either active or inactive and the
valves are connected by noisy information channels. The
information flow can pass an active valve but not an inactive one.
When all the valves (nodes) on one adjacency path between two
nodes are active, we say this path is open. If any one valve in the
path is inactive, we say the path is closed. When all paths
between two nodes are closed given the statuses of a set of valves
(nodes), we say the two nodes are d-separated by the set of
nodes. The statuses of valves can be changed through the
instantiation of a set of nodes. The amount of information flow
between two nodes can be measured by using mutual information
when no nodes are instantiated, or conditional mutual
information when some other nodes are instantiated.

In information theory, the mutual information of two nodes
X Xi j, is defined as

I X X P x x
P x x

P x P xi j i j
i j

i jx xi j

(,) (,) log
(,)

() (),
= ∑ ; (1)

and the conditional mutual information is defined as

I X X C P x x c
P x x c

P x c P x ci j
x x c

i j
i j

i ji j

(, |) (, ,) log
(, |)

(|), (|), ,
= ∑ , (2)

where Xi , X j are two nodes and C is a set of nodes. In our

algorithm, we use conditional mutual information as CI tests to
measure the average information between two nodes when the
statuses of some valves are changed by the condition-set C. When
I X X Ci j(, |) is smaller than a certain threshold valueε , we say

that Xi , X j are d-separated by the condition-set C, and they are

conditionally independent.
Using mutual information in probabili stic model construction

can be traced back to Chow and Liu’s tree construction algorithm
[Chow and Liu, 1968]. In 1987, Rebane and Pearl extend Chow
and Liu’s algorithm to causal polytree construction [Pearl, 1988].
Our algorithm extends those algorithms further to Bayesian belief
network construction.

This algorithm also makes the following two assumptions: (1)
The database attributes have discrete values and there are no
missing values in all the records. (2) The volume of data is large
enough for reliable CI tests.

3 The Construction Algorithm
This algorithm has three phases: drafting, thickening and thinning.
The first phase of our algorithm is essentially Chow and Liu’s tree
construction algorithm; the second and the third phase are
designed to extend tree construction to general Bayesian belief
network construction. In the first phase, this algorithm computes
mutual information of each pair of nodes as a measure of
closeness, and creates a draft based on this information. The draft
is a singly connected graph (a graph without loops). In a special
case when the Bayesian network is a tree or polytree, this phase
can construct the network correctly and the second and third phase
will not change anything. So, Chow and Liu’s algorithm and
Rebane and Pearl’s algorithm can be viewed as special cases of
our algorithm. In the second phase, the algorithm adds edges when
the pairs of nodes cannot be d-separated. The result of Phase II
has the structure of an independence map (I-map) [Pearl, 1988] of
the underlying dependency model given the underlying model is
normal DAG-Faithful. In the third phase, each edge of the I-map
is examined using CI tests and will be removed if the two nodes of
the edge can be d-separated. The result of Phase III has the
structure of a perfect map [Pearl, 1988] when the underlying
model is normal DAG-Faithful. At the end of the third phase, our
algorithm also carries out a procedure to orient the edges of the
graph.

3.1 The Algorithm

Phase I: (Drafting)
1. Initiate a graph G V E(,) where V={ all the nodes of a data

set} , E={ } . Initiate an empty list L.
2. For each pair of nodes (,)v vi j where v v Vi j, ∈ , compute

mutual information I v vi j(,) using equation (1). For all the

pairs of nodes that have mutual information greater than a
certain small value ε , sort them by their mutual information
and put these pairs of nodes into list L from large to small .
Create a pointer p that points to the first pair of nodes in L.

3. Get the first two pairs of nodes of li st L and remove them from
it. Add the corresponding edges to E. Move the pointer p to
the next pair of nodes.

4. Get the pair of nodes from L at the position of the pointer p. If
there is no adjacency path between the two nodes, add the
corresponding edge to E and remove this pair of nodes from L.

5. Move the pointer p to the next pair of nodes and go back to
step 4 unless p is pointing to the end of L or G contains n-1
edges. (n is the number of nodes in G.)

In order to ill ustrate this algorithm’s working mechanism, we
use a simple multi -connected network example borrowed from
[Spirtes et al., 1996]. Suppose we have a database that has

underlying Bayesian network as Figure 1.a, our task is to
rediscover the underlying network structure from data. After step
2, we can get the mutual information of all 10 pair of nodes.
Suppose we have I(B,D) ≥ I(C,E) ≥ I(B,E) ≥ I(A,B) ≥ I(B,C)
≥ I(C,D) ≥ I(D,E) ≥ I(A,D) ≥ I(A,E) ≥ I(A,C), and all the
mutual information is greater than ε , we can construct a draft
shown in Figure 1.b after step 5. Please note that the order of
mutual information between nodes can not be arbitrary. For
example, from information theory, we have I(A,C) <
Min(I(A,B),I(B,C)). This is also the reason why Phase I can
construct a graph close to the original graph to some extent. In
fact, if the underlying graph is a singly connected graph, Phase I
of this algorithm is essentially the algorithm of [Chow and Liu,
1968], and it guarantees the constructed network structure is the
same as the original one. In this example, (B,E) is wrongly added
and (D,E) and (B,C) are missing because of the existing
adjacency paths (D-B-E) and (B-E-C). The draft created in this
phase is the base for next phase.

Phase II: (Thickening)
6. Move the pointer p to the first pair of node in L.
7. Get the pair of nodes from L at the position of the pointer p.

Call procedure try_to_separate_A (current graph, node1,
node2) to see if this pair of nodes can be separated in current
graph. If so, go to next step; otherwise, connect the pair of
nodes by adding a corresponding edge to E. (Procedure
try_to_separate_A will be presented later in this subsection.)

8. Move the pointer p to the next pair of nodes and go back to
step 7 unless p is pointing to the end of L.

In our example, the graph after Phase II is shown in Figure 1.c.
Edge (B,C) and (D,E) are added because procedure
try_to_separate_A cannot separate these pairs of nodes using CI
tests. Edge (A,C) is not added because CI test can reveal that A
and C are independent given block set { B} . Edge (A,D), (C,D)
and (A,E) are not added for the same reason.

In this phase, the algorithm examines all pairs of nodes that
have mutual information greater than ε and are not directly
connected. An edge is not added only when the two nodes are
independent given certain block set. However, it is possible that
some edges are wrongly added in this phase. The reasons are as
follows. 1. Some real edges may be still missing until the end of
this phase, and these missing edges can prevent procedure
try_to_separate_A from finding the correct condition-set. 2.
Because Procedure try_to_separate_A uses a heuristic method,
it may not be able to find the correct condition-set for a special
group of structures. (The detail i s discussed later in this section.)

Phase III: (Thinning)
9. For each edge in E, if there are other paths besides this edge

between the two nodes, remove this edge from E temporarily
and call procedure try_to_separate_A (current graph,
node1, node2). If the two nodes are dependent, add this edge
back to E; otherwise remove the edge permanently.

10. For each edge in E, if there are other paths besides this edge
between the two nodes, remove this edge from E temporarily
and call procedure try_to_separate_B (current graph,
node1, node2). If the two nodes are dependent, add this edge
back to E; otherwise remove the edge permanently.
(Procedure try_to_separate_B will be presented later in this
subsection.)

11. Call procedure orient_edges (current graph). (This
procedure will be presented later in this subsection.)

The ‘ thinned’ graph of our example is shown in Figure 1.d,
which has the same structure of the original graph. Edge (B,E) is
removed because B and E are independent given { C,D} . Given the
underlying dependency model has a normal DAG-faithful
probabilit y distribution, the structure generated by this procedure
is exactly the same as the structure of the underlying model. This
phase can also orient edge (C,E) and edge (D,E) correctly.

Since procedure try_to_separate_A uses heuristic method to
find the condition-set, it may not always be able to separate two d-
separated nodes. In order to guarantee that a correct structure can
always be generated, we have to use a correct procedure
try_to_separate_B at step 10 to re-examine the current edges.
Theoretically, we can use procedure try_to_separate_B to replace
procedure try_to_separate_A in Phase II and remove step 9 in
Phase III since they do the same thing and both of them have

complexity O N()4 on CI test. But in practice, procedure

try_to_separate_A usually uses fewer CI tests and requires
smaller condition-sets. Therefore we try to avoid using procedure
try_to_separate_B whenever it is possible.

(a)

(c) (d)

(b)

A B
C

D

EA B
C

D

E

A B
C

D

E A B
C

D

E

Figure 1. A simple multi-connected network.

Procedure try_to_separate_A (current graph, node1, node2)
1. Find the neighbors of node1 and node2 that are on the

adjacency paths between node1 and node2. Put them into two
sets N1 and N2 respectively.

2. Remove the currently known child-nodes of node1 from N1
and child-nodes of node2 from N2.

3. If the cardinality of N1 is greater than that of N2, swap N1 and
N2.

4. Use N1 as condition-set C.
5. Conduct a CI test using equation (2). Let v =

I(node1,node2|C). If v < ε , return (‘d-separated’) .
6. If C contains only one node, go to step 8; otherwise, for each

i, let Ci =C \ { the i th node of C} , vi = I(node1,node2| Ci).

Find the smallest value vm of v1 , v2 ,…

7. If vm < ε , return (‘d-separated’) ; otherwise, if vm > v go to

step 8 else let v vm= , C Cm= , go to step 6.

8. If N2 has not been used, use N2 as condition-set C and go to
step 5; otherwise, return (‘ failed’) .

From the definition of Bayesian belief network [Pearl, 1988] we
know that if two nodes a, b in the network are not connected, they
can be d-separated by the parent nodes of b which are in the paths
between those two nodes. (We assume that node a appears earlier
in the node ordering than b.) Those parent nodes form a set P
which is a subset of N1 or N2 of the above procedure. If node
ordering is known, we can get P immediately and only one CI test
is required to check if two nodes are d-separated. Since this
information is usually not given, we have to use a group of CI
tests to find such P. By assuming that removing a parent node of b

will not increase the mutual information between a and b, the
above procedure try to find set P by identifying and removing the
child-nodes and irrelevant nodes from N1 and N2 once a time
using a group of computations and comparisons of conditional
mutual information. However, this assumption may not be true
when the underlying structure satisfies the following conditions:
(1) There exists at least one path from a to b through a child-node
of b and this child-node is a colli der on the path. (2) In such
paths, there are one or more colli ders besides the child-node and
all these colli ders are the parents or ancestors of b. In such
structures, procedure try_to_separate_A may identify a parent-
node of b as a child-node of b and remove it erroneously. As a
result, the procedure fails to separate two d-separated nodes. To
deal with these structures, a correct procedure
try_to_separate_B is introduced.

Procedure try_to_separate_B (current graph, node1, node2)
1. Find the neighbors of node1 and node2 that are on the

adjacency paths between node1 and node2. Put them into two
sets N1 and N2 respectively.

2. Find the neighbors of the nodes in N1 that are on the
adjacency paths between node1 and node2, and do not
belong to N1. Put them into set N1’ .

3. Find the neighbors of the nodes in N2 that are on the
adjacency paths between node1 and node2, and do not
belong to N2. Put them into set N2’ .

4. If |N1+N1’ | < |N2+N2’ | let set C=N1+N1’ else let
C=N2+N2’ .

5. Conduct a CI test using equation (2). Let v =
I(node1,node2|C). If v < ε , return (‘d-separated’) .

6. Let C’=C. For each],1[Ci ∈ , let Ci =C \ { the i th node of

C} , vi = I(node1,node2| Ci). If vi < ε return (‘d-separated’)

else if vi ≤ v+e then C’=C’ \{ the i th node of C} . (e is a

small value.)
7. If |C’ |<|C| then let C=C’ , go to step 5; otherwise, return

(‘ failed’) .

The major difference between procedure try_to_separate_A
and try_to_separate_B is that in stead of blocking the nodes of
N1 or N2 the latter procedure also blocks nodes of set N1’ or N2’ .
Since blocking two consecutive nodes in a path can always close
the path, blocking set N1+N1’ or N2+N2’ can close all the paths
that connect node1 and node2 through two or more nodes. The
only open paths are those connect node1 and node2 through one
colli der. Under this circumstance, we can remove all the colli ders
that connecting node1 and node2 without opening any previously
closed paths. Thus, all paths between node1 and node2 in the
underlying model can be closed. The correctness proof of this
procedure is in section 3.2.

In both procedure try_to_separate_A and procedure
try_to_separate_B, we have to compare the mutual information
on different condition-sets. If we do not use quantitative CI tests,
we can not compare the results of different CI tests and therefore
can not remove irrelevant nodes. By reducing the cardinality of
the condition-set after each iteration, we can avoid to test on
every subset of the initial condition-set and thus avoid
exponential number of CI tests. However, qualitative CI test
based algorithms have to carry out the test on every subset of C in
order to separate two nodes, so the number of CI tests in such
algorithms must be exponential in the worst case.

Procedure orient_edges (current graph)
1. For any two nodes s1 and s2 that are not directly connected

and there is at least one node that is the neighbor of both s1
and s2, find the neighbors of s1 and s2 that are on the
adjacency paths between s1 and s2. Put them into two sets N1
and N2 respectively.

2. Find the neighbors of the nodes in N1 that are on the
adjacency paths between s1 and s2, and do not belong to N1.
Put them into set N1’ .

3. Find the neighbors of the nodes in N2 that are on the
adjacency paths between s1 and s2, and do not belong to N2.
Put them into set N2’ .

4. If |N1+N1’ | < |N2+N2’ | let set C=N1+N1’ else let
C=N2+N2’ .

5. Conduct a CI test using equation (2). Let v =
I(node1,node2|C). If v < ε go to step 8.

6. Let C’=C. For each],1[Ci ∈ , let Ci =C \ { the i th node of

C} , vi = I(s1,s2| Ci). If vi ≤ v+e then C’=C’ \{ the i th node

of C} , let s1 and s2 be parents of the i th node of C. If vi < ε ,

go to step 8. (e is a small value.)
7. If |C’ |<|C| then let C=C’ , go to step 5.
8. Go back to step1 until all pairs of nodes are examined.
9. For any three nodes a, b, c, if a is a parent of b, b and c are

adjacent, and a and c are not adjacent and edge (b, c) is not
oriented, let b be a parent of c.

10. For any edge (a, b) that is not oriented, if there is a directed
path from a to b, let a be a parent of b.

11. Go back to step 9 until no more edges can be oriented.

Among the nodes in Bayesian networks, only colli ders can let
information pass them when they are instantiated. We use this
feature in step 6 to identify colli ders. All other edge orientations
are virtually based on these identified colli ders. The idea behind
this procedure is the same as that in procedure
try_to_separate_B, i.e., by blocking all the paths that have length
equal to or greater than three, we can always identify the colli ders
from C in a certain order. The correctness proof of this procedure
is in section 3.2. The colli der based edge orientation methods have
also been studied in [Pearl, 1988; Spirtes et al., 1996].

3.2 Correctness
Before we present the correctness proof, we give the definition of
normal DAG-faithful.

Definition 1 In a DAG-faithful [Spirtes et al., 1996] probabilit y
model, for any two nodes that are connected by at least two
adjacency paths, under an arbitrary situation where some paths
between the two nodes are closed by a condition-set, if we can
only increase the mutual information by opening any previously
closed paths between the two nodes without closing any
previously opened paths, we say that this probabilit y model is
normal DAG-faithful.

In real world situations, most DAG-faithful models are also
normal DAG-faithful. We conjecture that the violations of normal
DAG-faithfulness only happen when the probabilit y distributions
are ‘near’ the violations of DAG-faithfulness. In such situations,
other algorithms may also have diff iculties to generate the true
underlying model.

Given a data set that has a normal DAG-faithful underlying
model and satisfies the two assumptions of Section 2, our
algorithm presented in previous subsection can always generate

the exact structure of the underlying dependency model M. We
prove the correctness of our algorithm by the following
propositions.

Proposition 1 Graph G2 generated after Phase II has the
structure of an I-map of M.
Proof: Phase I and Phase II of our algorithm examined all the
edges between any two nodes that are not independent. An edge
is not added only if these two nodes are d-separated by a set of
other nodes. Hence, any pair of not connected nodes of G2 are
conditional independent in M. Q.E.D.

Lemma 1 In procedure try_to_separate_B of PhaseIII , by using
the initial condition-set N1+N1’ or N2+N2’ , we can close all the
paths of the underlying model M between node1 and node2
except the paths connecting node1 and node2 by one colli der.
Proof: By using N1+N1’ or N2+N2’ as the condition-set, we
instantiate the nodes in N1 or N2 (the neighbors of node1 or
node2 on the paths between node1 and node2) and N1’ or N2’
(the neighbors of nodes of N1 or N2 that are on the paths between
node1 and node2), therefore, at least two consecutive nodes of
any path that has length equal to or larger than three are
instantiated. Because instantiating two consecutive nodes of a
path can close the path and all the paths of the underlying model
M are in the current graph, we can close all the paths in M
between node1 and node2 that have length equal to or larger than
three. The only open paths are those connecting node1 and node2
by one colli der. Q.E.D.

Lemma 2 Procedure try_to_separate_B does not open any
previously closed path by removing a node from condition-set C.
Proof: To prove this lemma, it is suff icient to prove that
removing a node from C cannot open some paths while close
other paths at the same time, since if removing a node can only
open some paths, by the assumption of normal DAG-faithful, it
must increase the mutual information and the procedure will not
remove such node. Therefore, the paths cannot be opened. Now,
we will prove that removing a node from C cannot open and close
paths simultaneously. From lemma 1 we know that initially the
only open paths are those connecting node1 and node2 by one
colli der. For a node in C that is not a child-node of both node1
and node2 or a descendent of such child-node, removing it may
open some paths but cannot close the paths connecting node1 and
node2 by a colli der. For a node v in C that is a child-node of both
node1 and node2 or a descendent of such child-node, if one of
the descendents of v are in C, then removing v cannot close the
path connecting node1 and node2 by the child-node. If none of its
descendents are in C, removing v may close the path connecting
node1 and node2 by the child-node but cannot open a path
because the would-be opened path must go through a colli der that
is a descendent of v. Since none of the descendents of v is in C,
such path cannot be opened. Q.E.D.

Lemma 3 Procedure try_to_separate_B can remove all the
descendents of both node1 and node2 from C.
Proof: Suppose S is a subset of set C and the all the nodes in S
are the descendents of both node1 and node2 and cannot be
removed, then there must exist a node v∈ S and v is not a
ancestor of any other nodes in S. Since v cannot be remove,
removing it must increase mutual information. From the
assumption of normal DAG-faithful, we know that removing v
will open at least one path. Therefore, node v is not a colli der in

such path and such path must go through at least one descendent
of v. We also know that there must exist at least one descendent of
v which is a colli der in such path. To make such path open, this
colli der has to be in S. This contradicts our assumption that v is
not a ancestor of any other nodes in S. Q.E.D.

Proposition 2 Given that graph G has the structure of an I-map of
the underlying model M, if two nodes a and b are independent in
M, procedure try_to_separate_B can always d-separate them in
G.
Proof: From lemma 1 we know that initially the only open paths
are those connecting node a and b by one colli der. From lemma 2
and lemma 3 we know that the procedure does not open any path
when removing nodes from C and all the descendents of both a
and b in C are removed. Therefore, if node a and node b are
independent in M, procedure try_to_separate_B can d-separate
them by closing all the open paths. Q.E.D.

Proposition 3 Graph G3 generated after Phase III has the
structure of a perfect map of M.
Proof: Since G2 has the structure of an I-map and an edge is
removed in Phase III only if the pair of nodes are conditional
independent in M, G3 also has the structure of an I-map of M.
From Proposition 2, we also know that if two nodes are
independent in M, our algorithm can always d-separate them in
G3. Hence, G3 has the structure of a perfect map of M. Q.E.D.

Proposition 4 Given that graph G has the structure of an perfect
map of the underlying model M, all the colli ders that can be
identified by procedure orient_edges (G) are the real colli ders of
M.
Proof: For any structure s1-a-s2 and s1 and s2 are not directly
connected, procedure orient_edges (G) uses step 1 to 7 to check if
a is a colli der on the path s1-a-s2. Because step 1 to 7 of this
procedure is virtually the same as procedure try_to_separate_B,
from proposition 2 we know that it can identify a colli der
correctly. Since there are no pseudo-edges in G, step 6 of this
procedure can never orient an edge wrongly. It is also easy to see
that the inference of step 9 - 11 of procedure is correct. Q.E.D.

When the underlying probabilit y distribution is DAG-faithful
but not normal DAG-faithful, this algorithm may also be able to
generate the correct graph. In fact, this algorithm may not be able
to separate two d-separated nodes only when there is at least one
path that connect the two nodes by a single colli der and removing
a node in the condition-set causes violation of the normal DAG-
faithful assumption. However, since this wrongly added edge does
not change the I-mapness of the graph, the correctness of other
edges in the graph will not be affected.

In order to get the correct graph for a DAG-faithful but not a
normal DAG-faithful model, we can always replace procedure
try_to_separate_B(current graph, node1, node2) with a
procedure that try to separate the two nodes by using every subset
of the neighbors of node1 and then the subset of the neighbors of
node2. By the definition of DAG-Faithfulness, this procedure is
correct. Theoretically, this procedure requires exponential number
of CI test in the worst case. However, for a sparse network, it only
influences the performance slightly since this procedure is only
used at the end of the third phase. From the experimental results
shown in section 4 we can see that most running time is consumed
in Phase I and Phase II .

3.3 Complexity Analysis
Suppose a data set has N attributes, the maximum number of
possible values of any attribute is r, by equation (1), each

computation of mutual information requires O r()2 times of basic
operations such as logarithm, multiplication and division. By
equation (2), each computation of conditional mutual information

(CI test) in Phase II and III r equires at most O r N() basic
operations in the worst case, when each CI test has a condition-
set on all the other nodes. Therefore, this algorithm requires
exponential number of basic operations in the worst case.
However, the actual complexity is much less than that in real
applications which usually have sparse networks. Since the
number of CI tests required is a wildly accepted index for the
eff iciency of CI test based algorithms, we analyze the complexity
of our algorithm as follows.

Phase I: Phase I computes mutual information between any two

nodes; it needs N2 mutual information computations. (A mutual
information computation can be viewed as a CI test with an
empty condition-set.) Therefore, this phase requires at most

O N()2 times of CI tests.

Phase II: This phase tries to add each edge to the graph and call

procedure try_to_separate_A at most N 2 times. An execution of

procedure try_to_separate_A requires at most 2 ii
N
=

−∑ 1
2 = (N-

2)(N-1) times of CI tests. Therefore, Phase II requires at most

O N()4 times of CI tests.
Phase III: This phase tries to remove each edge from the graph by
using procedure try_to_separate_A and procedure

try_to_separate_B at most N 2 times. An execution of procedure
try_to_separate_A requires at most (N-2)(N-1) times of CI test;
and an execution of procedure try_to_separate_B requires CI test
at most (N-2)(N-1)/2 times. Procedure orient_edges tries to find
colli ders by checking every pair of nodes using a mechanism
similar to procedure try_to_separate_B, so it also requires CI

test O N()4 times. Therefore, Phase III r equires at most

O N()4 times of CI tests.

Overall , this algorithm requires CI test at most O N()4 times.

Figure 2. The ALARM belief network

Phase Edges Missing
Edges

Extra
Edges

No. of CI Testsi Time

0 1 2 3 4-7 Total (Minute)

I 36 13 3 666 48 0 0 0 714 22.0

II 51 1 6 0 128 81 25 7 241 11.0

III 46 1 { 33-27} 1 { 32-27} 0 27 43 31 12 113 5.0

Table 1. Networks constructed at each phase for dataset1 of ALARM database.

Data sets Results No. of CI Tests Time (Minute)

Missing
Edges

Extra
Edges

M.O. W.O. 0 1 2 3 4+ Total Phase
I

Phase
II

Phase
III

Total

Dataset1 1 1 4 0 666 203 124 56 19 1068 22.0 11.0 5.0 38.0

Dataset2 1 0 4 1 666 209 88 55 15 1033 22.0 8.5 4.7 35.2

Dataset3 3 (1) 0 5 0 666 181 84 43 12 986 22.0 5.7 4.6 32.3

Table 2. Results on dataset1, dataset2 and dataset3.
(M.O. and W.O. in the table stand for ‘missing orientation’ and ‘wrongly oriented’ .)

4 Results on ALARM Network
ALARM network[Beinlich et al., 1989] is a medical diagnostic
alarm message system for patient monitoring, it contains 37 nodes
and 46 arcs (see Figure 2). This belief network has become the de
facto benchmark for evaluating algorithms on belief network
construction. Researchers in this field use data sets generated
from three versions of this belief network. To make a fair
comparison to other algorithms, we test our algorithm on three
data sets generated from each of the three versions of ALARM
network which have the same structure and the different
probabilit y distributions. We call them dataset1, dataset2 and
dataset3ii . Each of them has 10,000 cases. The experimental
results show that our algorithm constructs the ALARM networks
with fewer errors than other algorithms on all three data sets.

We summarize our experimental results into the following two
tables. Table 1 shows the detailed testing results of each phase on
dataset1, and table 2 compares the results of the three data sets.
All these experiments were conducted on a Pentium 90MHz PC
and the data sets are stored in a Microsoft Access database. To
make CI tests more reliable when the volume of data is not large
enough, we also modified equation (2) by taking the variable’s
degree of freedom into consideration. We use 0.003 as the value
of ε .

From table 1, we can analyze the result of each phase on
dataset1. In Phase I, the mutual information of all 666
(= × −37 37 1 2() /) pairs of nodes were computed; and our
algorithm uses this information to construct a draft. In Phase II ,
this algorithm conducted 241 CI tests and added 15 edges, among
which, 12 of 13 real edges missed in the first phase were added.
In Phase III , it removed 5 of 6 wrongly added edges. This
algorithm also oriented 42 of 46 edges correctly. The four un-
oriented edges are 18-3, 19-4, 21-10, 16-37. This is due to the
limitation of colli der based orientation method. In table 2, we
compare the results on dataset1, dataset2 and dataset3. The
difference in the running time is due to the difference in the
obviousness of dependency relationships of the underlying
probabilit y distributions. On dataset1, our algorithm cannot find

edge 33-27 because the value of I(33,27|{ 14,34}) is abnormally
small . This missing edge causes that 32-27 be wrongly added. On
dataset2 and dataset3, edge 11-27 is missing. This is because that
this pair of nodes has very weak relationship when node 32 or 34
is instantiated. It may suggest that the relationship between this
pair of nodes can be expressed through other dependency
relationships. The result on dataset3 also missed two other edges;
however, this is due to the fact that 12-32 and 21-31 are actually
independent in dataset3 [Cheng et al., 1997]. The independence
between 21 and 31 also causes an extra un-oriented edge 22-31.
From these tables, we can see that our results are very
encouraging. The algorithm has also been successfully
implemented in several real world applications. One of them is a
telecommunication fault diagnosis system which has 34 attributes.

From table 1 and table 2, we can see that this algorithm is
eff icient and reliable. In the case of sparse networks like ALARM,

the number of CI tests used is much fewer than N 4 times. In our
experiments, we found that most running time is consumed by
database engine on query preparation and data retrieving. The
actual computations consume only about 5% of run-time.

5 Discussion
Mutual information has been used in probabili stic model
construction since 1968 [Chow and Liu, 1968; Pearl, 1988].
However, their works are limited to tree and polytree construction.
We apply the idea to Bayesian network construction. Like our
Bayesian network construction algorithm, algorithms presented in
[Spirtes et al., 1991] and [Singh and Valtorta, 1995] do not
require node ordering. Other algorithms [Cooper and Herskovits,
1992; Herskovits, 1991; Suzuki, 1996; Wermuth and Lauritzen,
1983; Srinivas et al., 1990] deal with a rather special case where
node ordering is known. In this special case, our simpli fied

algorithm [Cheng et al., 1997] requireO N()2 times of CI tests and
is correct when the underlying model is DAG-faithful. On the
three data sets of ALARM network used in this paper, the
simpli fied algorithm in this special case runs 25% faster and
constructs the network with fewer errors than that in the general

algorithm presented in this paper, because more information is
given.

Algorithms described in [Spirtes et al., 1991; Wermuth and
Lauritzen, 1983; Srinivas et al., 1990] can also construct a belief
network whose structure is a perfect map of the underlying
dependency model when the underlying model is DAG-faithful.

However, as we discussed in section 3.1, these χ 2 CI test based

algorithms must require exponential number of CI tests.
Comparing to these algorithms, our algorithms have the following
two features. (1) By generating a draft in Phase I, our algorithms
prevent many pseudo-edges from being added in Phase II , and
therefore avoid high order CI tests in Phase II and III , and also
reduce the number of CI tests needed in Phase III . (2) By using
mutual information and conditional mutual information as a
measure of dependency relationship, our algorithms can compare
two relationships quantitatively, and therefore avoid exponential
complexity.

Our subsequent research will focus on handling continuous
variable nodes and missing values. We also plan to develop a
commercial software based on our algorithms.

Acknowledgments
We wish to thank T. S. Richardson for his valuable comments

that helped us to improve our work greatly. We would like to
thank G. Cooper and E. Herskovits for providing their ALARM
network data and D. Heckerman and Norsys Software Corp. for
providing their ALARM network probabilit y distributions. We
would also like to thank C. Glymour, P. Spirtes and R. Scheines
for their encouragement and comments on our work.

References
[Beinlich et al., 1989] Beinlich, I.A., Suermondt, H.J., Chavez,

R.M. and Cooper, G.F., The ALARM monitoring system: A
case study with two probabili stic inference techniques for belief
networks. Proceedings of the Second European Conference on
Artifi cial Intelli gence in Medicine (pp.247-256), London,
England, 1989.

[Buntine, 1996] Buntine, W., A guide to the literature on learning
probabili stic networks from data. IEEE Transactions on
Knowledge and Data Engineering, 8(2), 195-210, 1996.

[Cheng et al., 1997] Cheng, J., Bell , D.A. and Liu, W., An
algorithm for Bayesian belief network construction from data,
Proceedings of AI & STAT’97 (pp.83-90), Ft. Lauderdale,
Florida, 1997.

[Chow and Liu, 1968] Chow, C.K. and Liu, C.N., Approximating
discrete probabilit y distributions with dependence trees. IEEE
Transactions on Information Theory, 14, 462-467, 1968.

[Cooper and Herskovits, 1992] Cooper, G.F., Herskovits, E., A
Bayesian Method for the induction of probabili stic networks
from data, Machine Learning, 9, 309-347, 1992.

[Heckerman et al., 1994] Heckerman, D., Geiger, D. and
Chickering, D.M., Learning Bayesian networks: the
combination of knowledge and statistical data, Technical
Report MSR-TR-94-09, Microsoft Research, 1994.[Pearl, 1988]
Pearl, J. , Probabili stic reasoning in intelli gent systems:
networks of plausible inference, Morgan Kaufmann, 1988.

[Herskovits, 1991] Herskovits, E.H., Computer-based
probabili stic network construction, Doctoral dissertation,
Medical information sciences, Stanford University, Stanford,
CA, 1991.

[Madigan et al., 1994] Madigan, D., Mosurski, K. and Almond
R.G., Explanation in belief networks. Technical Report,
Department of Statistics, University of Washington, 1994.

[Neapolitan, 1990] Neapolitan, R.E. , Probabili stic reasoning in
expert systems: theory and algorithms, John Wiley & Sons,
1990.

[Singh and Valtorta, 1995] Singh, M. and Valtorta, M.
Construction of Bayesian network structures from data: a brief
survey and an eff icient algorithm, International Journal of
Approximate Reasoning, 12, 111-131, 1995.

[Spirtes et al., 1996] Spirtes, P., Glymour, C. and Scheines, R.,
Causation, Prediction, and Search (Book),
http://hss.cmu.edu/html/departments/philosophy/TETRAD.BOO
K/book.html,1996.

[Spirtes et al., 1991] Spirtes, P., Glymour, C. and Scheines, R.,
An algorithm for fast recovery of sparse causal graphs, Social
Science Computer Review, 9, 62-72, 1991.

[Srinivas et al., 1990] Srinivas, S. Russell , S. and Agogino, A.,
Automated construction of sparse Bayesian networks from
unstructured probabili stic models and domain information, In
Henrion, M., Shachter, R.D., Kanal, L.N. and Lemmer, J.F.
(Eds.), Uncertainty in artifi cial intelli gence 5, Amsterdam:
North-Holland, 1990.

[Suzuki, 1996] Suzuki, J., Learning Bayesian belief networks
based on the MDL principle: An eff icient algorithm using the
branch and bound technique, Proceedings of the international
conference on machine learning, Bally, Italy, 1996.

[Wermuth and Lauritzen, 1983] Wermuth, N. and Lauritzen, S.,
Graphical and recursive models for contingency tables.
Biometrika, 72, 537-552, 1983.

i The CI tests are grouped by the cardinaliti es of condition-sets.
ii Dataset1 has the underlying belief network described in the

web page of Norsys Software Corp. Dataset2 has the underlying
belief network used by David Heckerman. Dataset3 is generated
by Gregory F. Cooper and Edward Herskovits. We generated
dataset1 and dataset2 using a Monte Carlo technique.

