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Abstract. This paper is concerned with the problem of answering queries us-
ing views in the presence of functional dependencies. Previous algorithms for
answering queries using views, such as the MiniCon algorithm, have not taken
into account the presence of functional dependencies. As a consequence, these
algorithms may miss query rewritings in the presence of such dependencies. In
this paper, we present an extension of the MiniCon algorithm to handle the pres-
ence of functional dependencies while still retaining the main properties of the
algorithm and its computational advantage over the other algorithms.

1 Introduction

Data integration from multiple disparate data sources over the Internet has recently
attracted a lot of attention in both the database and AI communities [1–4]. Data in-
tegration deals with pre-existing and autonomous data sources that have been created
independently. It aims to provide a uniform interface to the underlying data sources,
which allows users to make queries using the interface in terms of a mediated schema
rather than interacting directly with the relevant sources using their individual schemas
and combining the data from them. One main stage of data integration is query refor-
mulation in which a user query over the mediated schema is reformulated into queries
over the data-source schemas. A typical approach to query reformulation is called lo-
cal as view, in which data sources are described by views over the mediated schema.
The objective of query reformulation in this approach is to reformulate the user query
using the given views (data source descriptions). The problem of query reformulation
using the local-as-view approach is closely related to the broader problem of answering
queries using views.

In this paper, we consider the problem of answering conjunctive queries using a
large set of conjunctive views in the presence of functional dependencies. In the con-
text of data integration, a number of algorithms, such as the MiniCon algorithm [5],
have been developed for query reformulation. However, the presence of functional de-
pendencies in the mediated schema has not been taken into account in these algorithms.
As a consequence, these algorithms may miss query rewritings in the presence of such
dependencies.

Example 1. Consider the following mediated schema that is used throughout this paper:
student(S, P, Y ), taught(P, D), and program(P, C). The student relation describes
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the degree program P a student S takes and the year Y the student is in. The taught
relation shows the department D in which a degree program P is taught. The program
relation states the program code C of a degree program P . In the mediated schema, we
also assume that a student takes only one degree program and is in a specific year, a
degree program is taught in only one department, and a degree program has a unique
program code. We therefore have the following functional dependencies in the mediated
schema: student : S → P , S → Y ; taught : P → D; program : P → C.

Suppose we have three data sources described by three views:
v1(S′, Y ′, D′) :- student(S′, P ′, Y ′), taught(P ′, D′).
v2(S′, P ′) :- student(S′, P ′, Y ′).
v3(P ′, C′) :- program(P ′, C′).

v1, v2 and v3 provide data showing the year and department a student is in, the
degree program a student takes, and the program code of a degree program, respectively.

Assume that a user asks which degree program a student takes and in which year the
student is: q(S, P, Y ) :- student(S, P, Y ). The following is a correct rewriting of the
query: q′(S′, P ′, Y ′) :- v1(S′, Y ′, D′), v2(S′, P ′). The rewriting is correct only because
the functional dependencies S → P and S → Y hold in the mediated schema.

Example 2. Suppose that a user asks in which department the degree program cs401 is
taught: q(D) :- taught(P, D), program(P, C), C = cs401. The following is a correct
rewriting of the query:

q′(D′) :- v1(S′, Y ′, D′), v2(S′, P ′), v3(P ′, C′), C′ = cs401.
The rewriting is correct only because the functional dependencies, S → P and P → D,
hold in the mediated schema. In particular, we have the transitive functional depen-
dency, S → D.

The previous algorithms for answering queries using views, such as the MiniCon
algorithm, however fail to generate the above two rewritings since they do not take into
account the presence of functional dependencies in the mediated schema. In this paper,
we present an extension of the MiniCon algorithm for answering queries using views
in the presence of functional dependencies. The extended MiniCon algorithm retains
the main properties of the MiniCon algorithm and its computational advantage over the
other algorithms. The paper is organised as follows. Section 2 describes the notation
used in the paper and formally defines the problem. Section 3 gives a brief review of
the MiniCon algorithm. Section 4 describes our extension of the MiniCon algorithm.
Section 5 briefly discusses related work. We finally conclude in Section 6.

2 Preliminaries

Definition 1. (Mediated Schema, Query and View) A mediated schema consists of
a set of database relations over which user queries can be made and views describing
data sources can be defined. A query is a conjunctive query of the form:

q(X) :- r1(X1),..., rn(Xn)
over the mediated schema, where X ,X1,...,Xn are tuples containing either variables or
constants and X ⊆ X1∪...∪Xn. The variables in X are the distinguished variables of
the query and all the other variables are existential variables. A view is a named query
describing a data source.
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Definition 2. (Query Containment and Equivalence) A query Q1 is contained in a
query Q2, denoted by Q1 � Q2, if for any database instance D, the answer of evalu-
ating Q1 over D, Q1(D), is a subset of the answer of evaluating Q2 over D, Q2(D),
that is Q1(D) ⊆ Q2(D). Q1 is equivalent to Q2, denoted by Q1 ≡ Q2, if Q1 � Q2

and Q2 � Q1.

Definition 3. (Contained Rewriting and Equivalent Rewriting) Let Q be a query
over a mediated schema, V = V1, ..., Vn be a set of views over the same mediated
schema, and L be a query language. The query Q′ in L using V is a contained rewriting
of Q if Q′(V) � Q, and an equivalent rewriting of Q if Q′(V) ≡ Q.

In the context of data integration, since data sources are often pre-existing and au-
tonomous and have been created independently, it is often not possible for us to gener-
ate an equivalent rewriting of a user query. Instead we want to be able to generate the
maximally-contained rewriting that provides all the possible answers from a given set
of data sources.

Definition 4 (Maximally-Contained Rewriting). Let Q be a query over a mediated
schema, V = V1, ..., Vn be a set of views over the same mediated schema, and L be a
query language. The query Q′ in L using V is a maximally-contained rewriting of Q if
(1) Q′(V) � Q, and (2) there is no query Q′′ in L using V that is not equivalent to Q′,
such that Q′(V) � Q′′(V) � Q.

Definition 5 (Functional Dependencies). A functional dependency r : a1, ..., an → b
in the mediated schema, where a1, ..., an and b refer to attributes in the relation r, states
that for every two tuples t and u in r if t.ai = u.ai for i = 1, ..., n, then t.b = u.b.

In the presence of functional dependencies in the mediated schema, query contain-
ment, query equivalence, contained rewritings, equivalent rewritings, and maximally-
contained rewritings can be defined accordingly, taking into account the presence of
such dependencies. For simplicity of the paper, we do not introduce any new nota-
tion to denote these. But whenever we talk about contained rewritings and maximally-
contained rewritings, we always make it clear whether the presence of functional de-
pendencies in the mediated schema has been taken into account.

The Problem: Given a conjunctive query Q over the mediated schema with a set of
functional dependencies F , and a set of conjunctive views V = V1, ..., Vn also over
the mediated schema describing a set of data sources S = S1, ..., Sn, the problem of
answering conjunctive queries using conjunctive views in the presence of functional
dependencies is to generate every conjunctive query Q′ over V , which is a contained
rewriting of Q in the presence of F such that the union of all the contained rewritings
of Q is a maximally-contained rewriting of Q using V in the presence of F .

3 The MiniCon Algorithm

The MiniCon algorithm [5] is one of the algorithms for answering queries using views
developed in the context of data integration. It generates all the contained rewritings of
a given query, Q, whose union forms a maximally-contained rewriting of Q. In order to
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do this, it first finds every view that covers a minimal set of subgoals in Q as required
and then combines every set of selected views that covers pair-wise disjoint subsets
of subgoals in Q to generate a conjunctive rewriting that is contained in Q. Given a
mapping τ from V ars(Q) to V ars(V ), where V ars(Q) and V ars(V ) denote the sets
of variables in a query Q and a view V respectively, a view subgoal g′ is said to cover
a query subgoal g if τ(g) = g′.

To find a view that covers a minimal set of subgoals in Q as required, the MiniCon
algorithm first finds a view V containing a subgoal g′ that a subgoal g in Q can be
mapped to by a partial mapping from g to g′. A partial mapping from g to g′ can be
found by finding a unifier θ from g to g′, i.e., θ is a variable mapping from g to g′ such
that θ(g) = θ(g′). In the meanwhile, the unifier θ also needs to meet the requirement
that the distinguished query variables in the query subgoal g are mapped to the distin-
guished view variables in the view subgoal g′. Once it finds the partial mapping, it then
considers the joins between the view V and some of the other subgoals in Q and finds
out whether any of the other subgoals in Q need to be mapped to subgoals in V , given
that g will be mapped to g′. If so the minimal set of such subgoals is obtained. The re-
quirement for including any of the other query subgoals in the minimal set of subgoals
in Q that need to be mapped to subgoals in V is that if any existential query variable in
the query subgoal g is part of a join predicate between g and the other query subgoal,
and it has not been mapped to a distinguished view variable.

The minimal set of subgoals in Q and the corresponding mapping information are
contained in a so called MiniCon Description (MCD). If it turns out that a view V does
not cover the minimal set of subgoals in Q as required, no MCD will be generated for
Q over V . The MCD for Q over V ensures that V covers the minimal set of subgoals
in Q that need to be mapped to subgoals in V so that V can be used in a non-redundant
rewriting of the corresponding subgoals in Q. Therefore, the MiniCon algorithm deals
with combinations of relevant views, each covering a set of subgoals in Q, as candidate
rewritings. In the second phase, the MCDs that cover pair-wise disjoint sets of subgoals
in Q are combined to generate the rewritings.

The MiniCon algorithm, in particular, considers a mapping from a query to a spe-
cialization of a view if no mapping from the query to the view itself exists, where some
of the distinguished variables in the view may have been equated. Every MCD has an
associated head homomorphism. A head homomorphism h on a view V is a mapping
from V ars(V ) to V ars(V ) that is identity on the existential variables, but may equate
distinguished variables. A head homomorphism on a view maps it to one of its special-
isations.

Definition 6 (MiniCon Descriptions). A MCD C for a query Q over a view V is a
tuple of the form

(hC , V (Y )C , ϕC , GC)

where:

– hC is a head homomorphism on V ,
– V (Y )C is the result of applying hC to the head of V , i.e., Y = hC(A), where A

are the head variables of V ,
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– ϕC is a partial mapping from V ars(Q) to hC(V ars(V )),
– GC is a subset of the subgoals in Q which are covered by some subgoals in V (Y )C

using the mapping ϕC .

In the above definition, ϕC is a mapping from a set of variables in Q to a set of
specialized variables in hC(V ) obtained by applying the head homomorphism hC to
the original set of variables in V . GC is the minimal set of subgoals of Q that are
covered by hC(V ) as required, given ϕC .

Property 1 below specifies the exact conditions that need to be satisfied when decid-
ing whether an MCD can be used in a non-redundant rewriting of the query and which
query subgoals should be included in GC . The MiniCon algorithm considers only those
MCDs in which hC is the least restrictive head homomorphism necessary in order to
unify the minimal set of subgoals in the query with subgoals in a view.

Property 1. Let C be an MCD for a query Q over a view V . Then C can only be used
in a non-redundant rewriting of Q if the following conditions hold:

C1: For each distinguished variable X of Q which is in the domain of ϕC , ϕC(X)
is a distinguished variable in hC(V ).

C2: If ϕC(X) is an existential variable in hC(V ), then for every g, subgoal of Q,
that includes X (1) all the variables in g are in the domain of ϕC , and (2) ϕC(g) ∈
hC(V ).

Clause C1 makes sure that every distinguished query variable in the query is substi-
tuted by a distinguished view variable in a view that is used in a rewriting of the query.
Clause C2 guarantees that if a query variable X is part of a join predicate in the query,
which is not enforced by the view, then ϕC(X) must be a distinguished view variable
so the join predicate can be applied in the rewriting.

Property 2 below states the conditions that need to be satisfied when the MiniCon
algorithm combines MCDs to generate non-redundant rewritings of a query so that only
the MCDs that cover pair-wise disjoint subsets of subgoals of the query are combined.

Property 2. Given a query q, a set of views V , and the set of MCDs C for q over V , the
only combinations of MCDs that can result in non-redundant rewriting of q are of the
form C1,...,Cl, where

D1. GC1 ∪ ... ∪ GCl
= Subgoals(q), and

D2. for every i �= j, GCi ∩ GCj = ∅.

Example 3. Suppose we have the same mediated schema as in Example 1 and 2, and
the following set of data sources:

v2(S′, P ′) : −student(S′, P ′, Y ′).
v4(S′, Y ′) : −student(S′, P ′, Y ′).
v5(P ′, D′) : −taught(P ′, D′).
v6(S′, D′) : −student(S′, P ′, Y ′), taught(P ′, D′).

Consider the following query: q(S, D) : −student(S, P, Y ), taught(P, D).
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The MiniCon algorithm creates the following MCDs1:

V (Y )C ϕC GC

v2(S
′, P ′) S → S′ 1

P → P ′

Y → Y ′

v5(P
′, D′) P → P ′ 2

D → D′

v6(S
′, D′) S → S′ 1,2

P → P ′

Y → Y ′

D → D′

Combining the above MCDs, the MiniCon algorithm generates the following two
rewritings only:

q1(S′, D′) : −v2(S′, P ′), v5(P ′, D′).
q3(S′, D′) : −v6(S′, D′).

4 Extending the MiniCon Algorithm

The MiniCon algorithm does not take into account the presence of functional depen-
dencies in the mediated schema. As we indicated in Section 1, it sometimes misses
query rewritings in the presence of such dependencies. In this section, we describe how
the MiniCon algorithm can be extended to take into account the presence of functional
dependencies and solve the problem of missing query rewritings.

Continue with the examples given in Section 1. In Example 1, we have the query:
q(S, P, Y ) : −student(S, P, Y ).

We also have the following three data sources:
v1(S′, Y ′, D′) : −student(S′, P ′, Y ′), taught(P ′, D′).
v2(S′, P ′) : −student(S′, P ′, Y ′).
v3(P ′, C′) : −program(P ′, C′).

The MiniCon algorithm, however, cannot generate the following rewriting:
q′(S′, P ′, Y ′) : −v1(S′, Y ′, D′), v2(S′, P ′).

Though we can have a partial mapping so that the only subgoal in q can be covered
by the student subgoal in v1. It is easy to see that not all the distinguished variables
in the query subgoal can be mapped to the distinguished variables in v1. So Clause
C1 of Property 1 is violated. No MCD for q over v1 can be used in a non-redundant
rewriting of q. However, we can construct a joint view v1,2 of v1 and v2 that has all
the distinguished variables in either v1 or v2 as its distinguished variables, and all the
subgoals in either v1 or v2 as its subgoals. The joint view provides all the distinguished
variables that the distinguished variables in the query subgoal can be mapped to. We can
therefore have an MCD for q over v1,2 covering the only subgoal in q, which satisfies
Clause C1 of Property 1 and can be used to generate a non-redundant rewriting of q.
Furthermore, when the functional dependencies S′ → P ′ and S′ → Y ′ hold in the
mediated schema, the joint view v1,2 is equivalent to the join of v1 and v2 because the

1 These are simplified MCDs in which the head homomorphisms on the views are omitted,
where each homomorphism simply maps a view variable to itself
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join is a lossless-join decomposition of v1,2. The join of v1 and v2 can then be used to
rewrite v1,2 in the rewriting to get q′.

In Example 2, we have the query:
q(D) : −taught(P, D), program(P, C), C = cs401.

The MiniCon algorithm again fails to generate the following rewriting:
q′(D) : −v1(S, D), v2(S, P ), v3(P, C), C = cs401.

First of all, we can have a partial mapping so that the taught subgoal in q is covered
by the taught subgoal in v1 and the only distinguished variable in the query subgoal
can be mapped to a distinguished variable in v1. So Clause C1 of Property 1 is satisfied.
However, the existential variable P in the taught subgoal in q is in the join predicate
with the program subgoal in q. But the join predicate has not been enforced in v1, and
the P variable in v1, which the P variable in q is mapped to, is not a distinguished
variable in v1 either. So Clause C2 of Property 1 is violated. No MCD for q over v1, can
be used in a non-redundant rewriting of q.

Again we can use the joint view v1,2 of v1 and v2, in which the P variable is a
distinguished variable. We can therefore have an MCD for q over v1,2 covering the
taught subgoal in q, which satisfies both Clause C1 and C2 of Property 1 and can be
used in a non-redundant rewriting of q. It is easy to see that another MCD for q over v3

covering the program subgoal in q can also be used in a non-redundant rewriting of q.
The rewriting q′ of q can be generated by first combining both MCDs for q over v1,2

and v3 respectively. Furthermore, the joint view v1,2 is equivalent to the join of v1 and
v2 only when functional dependencies S′ → P ′, P ′ → D′ and S′ → D′ hold in the
mediated schema. Note that the third functional dependency is a transitive functional
dependency which can be derived from the first two functional dependencies. So the
join of v1 and v2 can be used to rewrite v1,2 in the generated rewriting to get q′.

In the above examples, what we have revealed is the following. Though we can have
a partial mapping so that a subgoal in a query q can be covered by a subgoal in a view v1,
no MCD for q over v1 can be used in a non-redundant rewriting of q because one of the
clauses of Property 1 is violated. However, in the presence of functional dependencies
in the mediated schema, it may be possible to create a joint view v1,2 of v1 and another
view v2, over which no MCD for q can be used in a non-redundant rewriting of q either,
so that (1) the MCD for q over v1,2 satisfies both clauses of Property 1 and therefore
can be used in a non-redundant rewriting of q; (2) the joint view v1,2 is equivalent to
the join of v1 and v2, which can then be used to rewrite v1,2.

In Section 4.1, we describe how to form an MCD for a query Q over a joint view,
which can be used in a non-redundant rewriting of Q. In Section 4.2, we describe how to
combine MCDs over either single or joint views to generate the conjunctive rewritings
of a query. Our extension of the MiniCon algorithm retains the main properties of the
MiniCon algorithm and its computational advantage over the other algorithms.

4.1 Forming MCDs over Joint Views

We first formally define the joint view.

Definition 7. Given a set of views v1(X1), v2(X2), ..., and vn(Xn), their joint view,
v1,2,...,n(X), is formed by having all the distinguished variables in the given views as
its distinguished variables and all the subgoals in the given views as its subgoals.
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When forming the joint view from the given views, we make sure that the subgoals
in different views with the same predicate are unified to get a single subgoal. As a result,
some variables in different views may be mapped to a representative variable in the joint
view, where we choose a distinguished variable as the representative variable whenever
possible. In Examples 1 and 2, we have the following two views:

v1(S′, Y ′, D′) : −student(S′, P ′, Y ′), taught(P ′, D′).
v2(S′, P ′) : −student(S′, P ′, Y ′).

and we can form a joint view:
v1,2(S′, Y ′, D′, P ′) : −student(S′, P ′, Y ′), taught(P ′, D′).

Note that two student subgoals in v1 and v2 are unified to get a single student subgoal
in the joint view v1,2, in which the variables S′, Y ′, D′ and P ′ are all distinguished
variables. Proposition 1 below specifies the exact conditions that we need to consider
when we decide whether the join of a set of single views is equivalent to the joint view
of the corresponding views.

Proposition 1. Let v1,2,...,n(X) be the joint view of views v1(X1), v2(X2), ..., and
vn(Xn). Given that there exists a set of variables X1, ..., Xm, where X1, ..., Xm ∈ X1,
X1, ..., Xm ∈ X2, ...., and X1, ..., Xm ∈ Xn, and for any other variable X ′, where
X ′ ∈ Xi for 1 ≤ i ≤ n, the functional dependency X1, ..., Xm → X ′ holds in vi(Xi),
then v1,2,...,n(X) is equivalent to the join of v1(X1), v2(X2), ..., and vn(Xn), that is,
v1,2,...,n(X) ≡ v1(X1), v2(X2), ..., vn(Xn).

It is straightforward that in the presence of the corresponding functional dependen-
cies, the join of v1(X1), v2(X2), ..., and vn(Xn) is a lossless-join decomposition of the
joint view v1,2,...,n(X). So we have the equivalence v1,2,...,n(X) ≡ v1(X1), v2(X2),
..., vn(Xn).

In Examples 1 and 2, as functional dependencies S′ → Y ′, S′ → D′, and S′ → P ′

hold in the mediated schema, we have the following equivalence:
v1,2(S′, Y ′, D′, P ′) ≡ v1(S′, Y ′, D′), v2(S′, P ′).

Property 3 below specifies the exact conditions that we need to consider when we decide
which views can be used to form a joint view over which an MCD for a query q can be
used in a non-redundant rewriting of q.

Property 3. Let F be a set of functional dependencies in the mediated schema, q be a
query, v1(X1) be a view containing a subgoal that a subgoal in q can be mapped to but
no MCD for q over v1 satisfies both Clause C1 and C2 of Property 1 hence can be used
in a non-redundant rewriting of q; Let v2(X2), ..., and vn(Xn) be some other views
over each of which no MCD for q can be used in a non-redundant rewriting of q, and
v1,2,...,n(X) be a joint view of v1(X1), v2(X2), ..., and vn(Xn); Let C1,2,...n be an
MCD for q over v1,2,...,n(X). C1,2,...,n can only be used in a non-redundant rewriting
of q if the following conditions hold:

C1: For each distinguished variable X of q which is in the domain of ϕC1,2,...,n ,
ϕC1,2,...,n(X) is a distinguished variable in hC1,2,...,n(v1,2,...n).

C2: If ϕC1,2,...,n(X) is an existential variable in hC1,2,...,n(v1,2,...,n), then for every
g, subgoal of q, that includes X , the following conditions must be satisfied: (1) all
the variables in g are in the domain of ϕC1,2,...,n , and (2) ϕC1,2,...,n(g) ∈ hC1,2,...,n

(v1,2,...,n).
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C3: v1,2,...,n(X) ≡ v1(X1), v2(X2), ..., vn(Xn) holds in the presence of functional
dependencies F .

Clause C1 guarantees that for each distinguished variable X of q, which is in the
domain of ϕC1,2,...,n , ϕC1,2,...,n(X) is a distinguished variable in hC1,2,...,n(v1,2,...,n).
Clause C2 guarantees that if a variable X of q is part of a join predicate which is not
enforced by the joint view v1,2,...,n, then X must be a distinguished variable of v1,2,...,n

so the join predicate can be applied in the rewriting. C3 guarantees that v1,2,...,n is
equivalent to the join of v1(X1), v2(X2), ..., vn(Xn) that can then be used to rewrite
v1,2,...,n. The extended MiniCon algorithm enforces the conditions in Property 3 to
generate only those MCDs that satisfy these conditions and all the MCDs generated are
used to form conjunctive rewritings.

In Example 1, we have the query: q(S, P, Y ) : −student(S, P, Y ). and two views
v1 and v2:

v1(S′, Y ′, D′) : −student(S′, P ′, Y ′), taught(P ′, D′).
v2(S′, P ′) : −student(S′, P ′, Y ′).

each of which has a subgoal that the student subgoal in q can be mapped to. But
neither of v1 and v2 actually satisfies Clause C1 of Property 1. However, we can have
the following joint view:

v1,2(S′, Y ′, D′, P ′) : −student(S′, P ′, Y ′), taught(P ′, D′).
and a mapping from q to v1,2:

ϕC1,2 = {S → S′, P → P ′, Y → Y ′}
It is easy to see that every distinguished variable in q has been mapped to a distinguished
variable in v1,2. So Clause C1 of Property 3 is satisfied. Clause C2 does not apply.
We also have functional dependencies: S′ → Y ′, S′ → D′, and S′ → P ′ in the
mediated schema. So v1,2 is equivalent to the join of v1 and v2 and Clause C3 is also
satisfied. Now an MCD for q over v1,2 can be used in a non-redundant rewriting of q.
Furthermore, the join of v1 and v2 can be used to rewrite v1,2. Therefore, we can have
the following rewriting:

q′(S′, P ′, Y ′) : −v1(S′, Y ′, D′), v2(S′, P ′).
In Example 2, we have the query: q(D) :- taught(P, D), program(P, C), C = cs401.
and the view v1 that covers the taught subgoal in q but does not satisfy Clause C2 of
Property 1: v1(S′, Y ′, D′) :- student(S′, P ′, Y ′), taught(P ′, D′). Again we can have
the joint view v1,2 v1,2(S′, Y ′, D′, P ′) :- student(S′, P ′, Y ′), taught(P ′, D′). and a
mapping from q to v1,2: ϕC1,2 = {P → P ′, D → D′}

Now the variable P ′ in v1,2 is a distinguished view variable. So Clause C2 of Prop-
erty 3 is satisfied. In the presence of functional dependencies S′ → Y ′, S′ → D′ and
S′ → P ′ in the mediated schema, Clause C3 of Property 3 is also satisfied. It is easy
to see that another view v3 covers the program subgoal in q and can also be used in a
non-redundant rewriting of q. Therefore we have the following rewriting:
q′(D′) :- v1(S′, Y ′, D′), v2(S′, P ′), v3(P ′, C′), C′ = cs401.

Given a subgoal in the query, the extended MiniCon algorithm first finds every view
containing a subgoal that the query subgoal can be mapped to and checks whether the
view satisfies Property 1. If so an MCD for the query over the view is created, which
can then be used in a non-redundant rewriting of the query. In this phrase, the extended
MiniCon algorithm is the same as the MiniCon algorithm. Otherwise, if a view can be
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found which contains a subgoal that the query subgoal can be mapped to but the view
does not satisfy either Clause C1 or C2 of Property 1, the algorithm finds other views
to form, together with the given view, a joint view that satisfies Property 3. Clause C1
and C2 of Property 3 are the same as Clause C1 and C2 of Property 1 while Clause
C3 of Property 3 further ensures that the joint view is equivalent to the join of the
corresponding views.

When finding other views, together with the given view, to form a joint view, atten-
tion is paid to those views that can help to satisfy either Clause C1 or C2 of Property 1
which the given view failed to satisfy. We then also make sure that the joint view that
consists of the selected views and the given view satisfies Clause C3 of Property 3. A
joint view formed this way can therefore satisfy Property 3 and an MCD for the query
over the joint view can be created, which can then be used in a non-redundant rewriting
of the query. The joint view is added to the set of existing views.

4.2 Combining MCDs over Either Single or Joint Views

In the secodn phrase, the extended MiniCon algorithm finds valid combinations of
MCDs formed in the first phrase and creates conjunctive rewritings of the query. The
maximally-contained rewriting of the query is a union of conjunctive rewritings.

Property 4 specifies the exact conditions a combination of MCDs must satisfy so
that it can be used to create a conjunctive rewriting of the query. The extended Mini-
Con algorithm enforces the conditions in Property 4 to combine only those MCDs that
satisfy these conditions.

Property 4. Given a query q, a set of views V , a set of functional dependencies F in
the mediated schema, and the set of MCDs C formed by the first phase of the extended
algorithm for q over V ′ that may also contain joint views apart from the single views in
V in the presence of F , the only combinations of MCDs that can result in non-redundant
rewriting of q are of the form C1,...,Cl, where

D1. GC1 ∪ ... ∪ GCl
= Subgoals(q), and

D2. for every i �= j, GCi ∩ GCj = ∅.

For creating the rewriting q′, the extended MiniCon algorithm works the exactly
the same as the second phase of the MiniCon algorithm, simply treating joint views as
single views. In the last step of the extended MiniCon algorithm, it however needs to
replace every joint view in q′ with its correct rewriting.

Theorem 1 states the properties of the extended MiniCon algorithm.

Theorem 1. Given a conjunctive query q and a set of conjunctive views V , in the pres-
ence of functional dependencies F in the mediated schema, the extended MiniCon al-
gorithm is sound in the sense that every conjunctive rewriting q′ that is generated by the
algorithm is contained in q. In terms of completeness, the algorithm can generate the
union of conjunctive rewritings that is a maximally-contained rewriting of q using V in
the presence of F only if there exists such a maximally-contained rewriting. Sometimes,
such a maximally-contained rewriting may not exist and recursive rewritings may be
necessary in order to obtain a maximally-contained rewriting.
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The proofs of Properties 3 and 4 follow the correctness proof of the extended Mini-
Con algorithm. In terms of computational complexity of the extended MiniCon algo-
rithm, creating extra joint views does not involve a significant increase of computa-
tional complexity compared to the MiniCon algorithm. Even in the worst case, in the
first phase, the running time of the extended MiniCon algorithm is only roughly a num-
ber of times of the running time of the MiniCon algorithm. In the second phase, the
running time of the extended MiniCon algorithm is virtually the same as that of the
MiniCon algorithm. The correctness proof and complexity analysis of the extended
MiniCon algorithm are omitted in this paper due to space limitation. For details, refer
to the extended version of the paper.

5 Related Work

The problem of answering queries using views has relevance to a wide variety of data
management problems [6]. In the context of data integration, a number of algorithms,
such as the bucket algorithm [1], the inverse-rules algorithm [7, 8] and the MiniCon al-
gorithm [5], have been developed for the problem of reformulating conjunctive queries
using conjunctive views. However, these algorithms have not taken into account the
presence of functional dependencies in the mediated schema. As a consequence, these
algorithms may miss query rewritings in the presence of these integrity constraints.

Some algorithms have recently been developed for answering queries using views
in the presence of functional dependencies [9–11]. These algorithms can in general be
viewed as the extensions of the inverse-rules algorithm, and they inherit the perfor-
mance costs of the inverse-rules algorithm. In [5], it has been proven that the inverse-
rules algorithm does not scale up and is significantly outperformed by the scalable Mini-
Con algorithm. In this paper, we have presented an extension of the MiniCon algorithm
to handle the presence of functional dependencies while retaining the main properties
of the MiniCon algorithm and its significantly lower performance costs.

In addition to these algorithms, algorithms have been developed for conjunctive
queries with comparison predicates [12, 13], recursive queries [10], queries over dis-
junctive views [14], queries over conjunctive views with negation [15], queries and
views with grouping and aggregation [16, 17], queries over semi-structured data [18,
19], and OQL queries [20]. Duschka et al. [10] showed that in the presence of functional
and full dependencies there does not always exist a non-recursive maximally-contained
query rewriting. An algorithm [10] has been developed that deals with limitations on
data sources, which are described by a set of allowed binding patterns. In this case it is
known that recursive query rewritings may be necessary [3]. The algorithm constructs
a recursive maximally-contained query rewriting.

6 Conclusions

In this paper, we have considered the problem of answering queries using views in the
presence of functional dependencies. We have presented an extension of the MiniCon
algorithm to deal with the functional dependencies in the mediated schema. The under-
lying idea is that in the presence of functional dependencies, some views can be joined
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with other views to form joint views for which the corresponding MCDs can be used in
the non-redundant rewritings of the query, thus avoiding the problem of missing queries
in the presence of functional dependencies that the previous algorithms may have. Our
extension of the MiniCon algorithm retains the main properties of the algorithm. The
extension does not involve any significant increase in performance costs and retains the
computational competitiveness of the MiniCon algorithm over the other algorithms.

In future work, we will further explore the possibilities of extending the MiniCon
algorithm to deal with other types of integrity constraints in the mediated schema, such
as inclusion dependencies and domain dependencies.
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