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Abstract—Demand for bus surveillance is growing due to the
increased threats of terrorist attack, vandalism and litigation.
However, CCTV systems are traditionally used in forensic
mode, precluding an in-time reaction to an event. In this paper,
we introduce a real-time event composition framework which
can support the instant recognition of emergent events based
on uncertain or imperfect information gathered from multiple
sources. This framework deploys a rule-based reasoning com-
ponent that can infer malicious situations (composite events)
from a set of correlated atomic events. These are recognized
by applying analytic algorithms to the multimedia contents
of bus surveillance data. We demonstrate the significance and
usefulness of our framework with a case study of an on-going
bus surveillance project.
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composition, Event reasoning

I. INTRODUCTION

For the past decade, the deployment of CCTV in ma-
jor urban centres and cities has become well established.
Recently, CCTV technology has begun to be deployed on
public transport systems such as buses and trains e.g., [3],
[9], etc. The deployment of this technology on moving
platforms presents unique problems that are not encountered
in conventional CCTV deployments, such as the uniquely
harsh environments that exist on moving platforms leading
to extreme temperature and humidity ranges as well as the
need for mechanical robustness. Other problems are due to
the sheer scale of the CCTV system which can contain 14-
18 cameras on each bus, with approximately several hundred
buses in a provincial UK city. The Intelligent Sensor Infor-
mation System (ISIS) project is aimed at developing a state-
of-the-art surveillance sensor network concept demonstrator
for public transport that will overcome these problems. This
will allow scalable and customizable technology for local
and wide-area surveillance, and has the potential to enhance
the safety of public transport systems and reduce crime.

Key to the success of CCTV technology on mobile
platforms and elsewhere is the use of video analytics.
Until recently, all of the research effort has gone in to the
development of event detection. However, as this technology
has started to migrate from the laboratory to the commercial
sector, there is a growing realization of the need to manage
the events generated by video analysis software. By manage
we mean the representation, storage, reasoning and mining
of events. A useful analogy here, is the management that is

required for events generated by communication networks.
The main difference here is that because events are detected
in video data, their semantic content is much richer in
that they are related to everyday happenings. An example
of such a system is The IBM Smart Surveillance System
(S3) [11], which has an open and extensible framework for
event based surveillance. S3 consists of two components:
the Smart Surveillance Engine, which provides the front end
video analysis capabilities, and middleware for large scale
surveillance, which provides data management capabilities.

However, the sheer quantity of data precludes the live
streaming of such data over a wireless network to a control
room. Even if this were possible, the analysis in real-time
of such an amount of data is not feasible. Thus, mobile
systems, more than most, need to adopt the event as the
primary structure of surveillance systems, rather than data.

Therefore, one of the main tasks of event management
systems is that of event composition, whereby patterns
of events across a distributed network are detected. Event
composition allows us to represent different events and also
to instantly infer events of interest by applying rules to
combine existing events. In addition, new situations can be
captured by simply adding a new inference rule instead of
modifying custom code, hence ensuring a flexible solution
for evolving situations. For example, in a bus surveillance
system, which has already modelled a passenger entering
the bus doorway, a new event, such as abusive passenger
behaviour towards the driver, can be inferred using a new
rule that indicates if conditions related to a passenger
and driver have occurred. Event composition can either be
deterministic [6], [1], or probabilistic [13], [14], however,
to date no one has addressed the problems of imperfect and
conflicting information from different sources.

Imperfect information frequently occurs in real world
applications. For example, in the case of a person entering
a bus doorway, the person may be classified as male with a
certainty of 85% by the classification analysis. However, the
remainder does not imply that the person is female with a
15% certainty, rather, it is unknown. That is, we do not know
how the remaining 15% shall be distributed on male or fe-
male. Hence by probability theory, this information can only
be represented as p(male) ≥ 0.85 and p(female) ≤ 0.15
which is difficult to use for reasoning (e.g., Bayes Nets, etc).
Imperfect information is usually caused by the unreliability



of the information sources. For example, the camera may
have been tampered with, illumination could be poor, or the
classifier training set may be unrepresentative. Any or all of
these can result in imperfect information which cannot be
represented by probability measures.

Another aspect of real world applications is that events
can be detected from different sources, such as video, audio,
and speedometers, etc. Hence, there is a need to use an
event model that can handle events from multiple sources.
Lastly, in real applications, there is usually useful domain
knowledge that should be taken into account by the event
management system. For example, recorded crime statistics
can provide a likelihood of a criminal act occurring along
bus routes at different times of the day.

In this paper, we describe an approach to event composi-
tion which is able to deal with imperfect information from
multiple sources and domain knowledge using the Dempster-
Shafer (DS) theory of evidence [5], [10]. Such an approach
also enables inferences to uncertain events. To the best of our
knowledge, our approach is the first that addresses imperfect
information from multiple sources for event composition.
Our approach provides a sound framework for surveillance
applications, such as CCTV for buses.

The rest of the paper is organized as follows. Section
2 provides the preliminaries on DS theory. In Section 3,
formal definitions of our event model are given including
the definitions of events, multi-source events combination,
event flow and event inference. We then provide a case study
in Section 4. Finally, we conclude the paper in Section 5.

II. DEMPSTER-SHAFER THEORY

Here we briefly introduce the main concepts in DS theory.
Let Ω be a finite set containing exclusive and exhaustive
answers to a question. We call Ω the frame of discernment
and we denote Ω = {w1, . . . , wn}.

Definition 1: A mass function is a mapping m : 2Ω →
[0, 1] such that m(∅) = 0 and

∑
A⊆Ω m(A) = 1.

A is called a focal element of m(·) when m(A) > 0.
Let Fm denote the set of focal elements of m(·). For
instance, the person entering a doorway is a male with
certainty 85% is represented as m({male}) = 0.85,
m({male, female}) = 0.15 if Ω = {male, female}.
This representation can be used for subsequent handling
while the probabilistic representation p({male}) ≥ 0.85,
p({female}) = 1− p({male}) ≤ 0.15 cannot.

DS theory has been applied in many real-world appli-
cations. One reason is its ability to represent imperfection
(like the above example m(Ω) = 0.15) and another is its
ability to accumulate evidence. The latter means that it has
a mechanism, the Dempster’s rule of combination, to obtain
the overall effect of multiple pieces of evidence by fusing
them (by means of reinforcement of consistent information
implied in them and discrediting conflict information). Let
m1(·) and m2(·) be two mass functions over Ω from two
distinct sources. Combining m1(·) and m2(·) gives a new

mass function m(·) as follows:

m(C) = (m1⊕m2)(C) =

∑
A∩B=C

m1(A)m2(B)

1−∑
A∩B=∅m1(A)m2(B)

(1)

In real world applications, sources may not be completely
reliable, so in [8], the Discount rate was defined with which
a mass function can be discounted in order to reflect the
reliability of evidence. Let r (0 ≤ r ≤ 1) be a discount
rate and m be a mass function, then the discounted mass
function mr is defined as

mr(A) =

{
(1− r)m(A) A ⊂ Ω
r + (1− r)m(Ω) A = Ω

(2)

When r = 0 the source is absolutely reliable and when
r = 1 the source is completely unreliable. The ability of
reliability discounting is another advantage of DS theory
compared with probability theory.

III. EVENT COMPOSITION FRAMEWORK

A. Event Model

Event definition: Definitions of an event from different
research fields are very diverse and tend to reflect the
content of the designated application. To make our event
composition framework more general, in this paper, we
define events as follows: an event is an occurrence that
is instantaneous (event duration is 0, i.e., takes place at a
specific point of time) and atomic (it happens or not). The
atomic requirement of an event does not exclude uncertainty.
For instance, when there is a person boarding a bus and this
person can be a male or a female (suppose we only focus on
the gender), then whether it is a male/female that boards the
bus is an example of uncertainty. But a male (resp. a female)
is boarding the bus is an atomic event which either occurs
completely or does not occur at all. To represent uncertainty
encountered during event detection, we distinguish an ob-
servation (with uncertainty) from possible events associated
with the observation (because of the uncertainty). This can
be illustrated by the above example: an observation is that
a person is boarding the bus and the possible events are a
male is boarding the bus and a female is boarding the bus.
An observation says that something happened, but the entity
being observed is not completely certain yet, so we have
multiple events listing what that entity might be.

In the literature, there are two types of events, one type
contains external events [1] or explicit events [13], [14]
and the other consists of inferred events. External events
are events directly gathered from external sources (within
the application) while inferred events are the results of the
inference rules of an event model.

Event Representation: Intuitively, a concrete event def-
inition is determined by the application domain which
contains all the information of interest for the application.
But there are some common attributes that every event shall
possess, such as



1. EType: describing the type of an event, such as, Person
Boarding Vehicle abbreviated as PBV. Events of the
same type have the same set of attributes.

2. occurT : the point in time that an event occurred.
3. sID: the ID of a source (e.g., ip addresses, here we just

use numerical numbers, e.g., 0,1, to denote a source).
4. reliab: the degree of reliability of a source.
5. sig: the degree of significance of an event.

Formally, we define an event e as a tuple

e = (EType, occurT, sID, reliab, sig, v1, · · · , vn)

where vis are any additional attributes required to define
event e based on the application. Attribute vi can either
have a single or a set of elements as its value, e.g., for
attribute gender, its value can be male, or female, or {male,
female} (however, it is not possible to tell the gender of
a person when their face is obscured, so we introduce
a value obscured as an unknown value for gender). Any
two events with the same event type, source ID and time
of occurrence are from the set of possible events related
to a single observation. For example, e1 = (PBV, 20 :

05 : 31, 1, 0.8, 0.7, male, · · ·) and e2 = (PBV, 20 : 05 :

31, 1, 0.8, 0.7, {male, female}, · · ·) are two events with v1 for
gender (we have omitted other attributes for simplicity).

Event Cluster: To represent a set of events from an
observation, we introduce the concept of an event cluster.
An event cluster EC is a set of events having the same
event type, occurrence time and source ID, but with different
v1, · · · , vn values. Events e1 and e2 above form an event
cluster for the observation someone is boarding the bus.

For simplicity, in the following, we use V to denote the
set of tuples (v1, · · · , vn) appearing in an event cluster EC
and define m as the mass function over V representing
uncertainty related to the observation.

For an event e in event cluster EC, we use e.EType
(resp. e.occurT , etc) to denote the event type (resp. time of
occurrence, etc) of e, e.v to denote (v1, · · · , vn), and e.m
to denote the value m(e.v). By abuse of notations, we also
write EC.EType (resp. EC.sID, EC.occurT , EC.reliab)
to denote the event type (resp. source ID, time of occurrence,
reliability) of any event in EC since all the events in EC
have the same values for these attributes.

It should be noted that the degree of significance of
an event is self-evident (i.e., a function over e.v). For
example, in bus surveillance, the event a young man boards
a bus around 10pm in an area of high crime risk is more
significant than the event a middle-aged woman boards a
bus around 6pm in an area of low crime risk. However, due
to space limitation, we will not discuss it further.

A mass function m over V for event cluster EC should
satisfy the normalization condition:

∑
e∈EC e.m = 1. That

is, EC does contain an event that really occurred. For
example, for the two events, e1 and e2, introduced above,

a mass function m can be defined as m(male, · · ·) = 0.85
and m({male, female}, · · ·) = 0.15.

For atomic events that are detected from algorithms, mass
values can be estimated based on the algorithms used and
the accuracy of detection etc. For inferred events using rules
(as shown in Section 4), mass values are mainly estimated
from domain knowledge. The main focus in our surveillance
application is on finding malicious events, hence there is
a need to assign mass values to these events indicating to
what extent an event is potentially malicious. Since whether
an event is malicious is usually closely related to other
factors, domain (or expert) knowledge plays a key role here.
For instance, to judge whether a passenger approaching the
driver’s cabin from the bus saloon is malicious (with e.v =
(threatLevel, · · ·)), domain knowledge about the safety of
the bus routes is useful. Some bus routes are relatively safer
than others, so for these routes we will assign a smaller
m(Threat, · · ·) value (and a larger m(noThreat, · · ·) value)
for the above inferred event, whilst if the bus route is through
a high crime risk area, this value could be much higher.

B. Event Flow

When a set of event clusters have the same event type
and time of occurrence but different source IDs, we call
them concurrent event clusters. This means that multi-model
sensors may have been used to monitor the situation. There-
fore, we need to combine these event clusters since they
refer to the same observed fact from different perspectives.
The combined result is a new event cluster with the same
event type and time of occurrence, but the source ID of the
combined event will be the union of the original sources.
The combination of event clusters is realized by applying
Dempster’s combination rule on discounted mass functions.
That is, the mass function of an event cluster is discounted
with the discount rate defined as the reliability of the source.

Definition 2: Let EC1, · · · , ECk be a set of concurrent
event clusters, and mr

1, · · · ,mr
k be the corresponding dis-

counted mass functions over V , m be the mass function
obtained by combining mr

1, · · · ,mr
k using the Dempster’s

combination rule, then we get the combined event cluster
EC = ⊕k

j=1ECj such that ∀e ∈ EC, we have e.v ∈
Fm, e.EType = EC1.EType, e.occurT = EC1.occurT ,
e.sID = {EC1.sID, · · · , ECk.sID}, e.reliab = 1, and
e.m = m(e.v). Conversely, for each focal element A in
Fm, there exists a unique e ∈ EC, s.t., e.v = A.
As stated earlier, e.sig (significance) is a function over e.v.

Event models usually use the concept Event History
(EH) to describe the set of all events whose occurrences
fall between a certain period of time. However, in our
framework, given a set of event clusters, we first carry
out event combination, and then retain only the combined
event clusters. So what we have is not a history, because
of this, we call it an event flow and denote it as EF . We
use EF t2

t1 to represent a set of combined event clusters



whose occurrences fall between t1 and t2. Since an event
flow contains the combined events, to some extent, we have
already considered the opinions (of the original events) from
different sources.

C. Event Inference

Inference rules: Event inferences are expressed as a set of
inference rules which are used to represent the relationships
between events. An inference rule R is defined as a tuple
R = (LS, EType, Condition,mIEC) where:

LS, abbreviated for Life Span, is used to determine the
temporal aspect of the rule R [4], [1], [14]. LS is an
interval determined by a starting point and an end point,
or an initiator and a terminator, respectively. The starting
point and end point are two points in time which can be
determined by the event flow that is known at the time a rule
is executed. For instance, a starting time point may refer to
the occurrence time of a specific event, a prior given time,
etc and an end time point can be the occurrence time of
another event, a prior given time, or a time period plus the
starting point, etc.

EType is the event type of the inferred event cluster. For
example, SAD (abbr. for Shout At Driver) is an inferred
event type.

Condition is a conjunction of a set of conditions used to
select appropriate events from the event flow to infer other
events. The conditions in Condition can be any type of
assertions w.r.t the attributes of events. For example, let e1

and e2 both denote a male loitering event and e3 denote a
person shouting event, then
“e1.pID = e2.pID ∧ e1.gender = male

∧e1.location = e2.location = DriverCabin

∧e2.occurT − e1.occurT ≥ 10s ∧ e1.occurT ≤ e3.occurT ≤
e2.occurT ∧ e3.volume = shouting”
is a valid Condition. Note that for each inference rule, we
only select events in the event flow within the lifespan LS
(denoted by LS(EF t

t′)). We denote the set of events referred
to by a Condition as Evn(Condition).

mIEC is the mass function for the inferred event clus-
ter and it is in the form of (< v1

1 , · · · , v1
n,mv1 >, <

v2
1 , · · · , v2

n,mv2 >, · · ·, < vk
1 , · · · , vk

n,mvk >) where each
mvi is a mass value and

∑k
i=1 mvi = 1. We will explain

this in detail when discussing rule semantics next.
To differentiate inferred events from other events, we use

−1 to denote the source ID of an inferred event cluster and
the occurrence time is set as the point in time an inference
rule is executed. Moreover, the reliability is set to 1 as we
assume that the inference rules are correct.

Semantics Intuitively, the semantics of using an inference
rule R is defined as follows. Given an event flow EF t

t′ , if
Condition of any rule R is true at some time point t∗ >
t′, then an event cluster is inferred from rule R with mass
function mIEC . Otherwise, no events are inferred.

Formally, for any vector < vi
1, · · · , vi

n,mvi >, if
Condition(LS(EF t

t′)) = true (meaning that Condition
can be satisfied by events selected from LS(EF t

t′)), then
a corresponding event ei is generated whose event type is
EType, source ID is −1, occurrence time is the time of rule
execution, reliability is 1, ei.v = (vi

1, · · · , vi
n) (and e.sig is

a function over ei.v), and mIEC(ei.v) = mvi, 1 ≤ i ≤ k.
Since events in Evn(Condition) are associated with

uncertainty, to get the joint degree of certainty of these
events, we need to consider their corresponding mass values.
This is done by calculating the likelihood of a set of events
for which the details are omitted due to space limitation.

IV. A CASE STUDY ON BUS SURVEILLANCE

We use a simplified real world example on bus surveil-
lance as a case study to illustrate how our event reasoning
framework can be applied. First, we describe some scenarios
for atomic events that can be obtained from various sources
(cameras via gender classification algorithms, microphones
via shouting detection). Some exemplar scenarios are:

Passenger boarding a bus from front/back door
Passenger gender: Male, Female

Passenger exiting a bus
Location of the door: Front door, Back door

Passenger ascending/descending stairway on a bus
when Bus is stationary, moving

Passenger loitering on a bus
location: Stairway, Driver’s Cabin

Passenger sitting down in saloon area
Passenger standing in saloon area
Passenger shouting on a bus
Atomic events from these scenarios are actual events that

happened at certain time with sufficient details (attributes).
Below are some atomic events of these scenarios.

For Passenger boarding a bus from front/back door
we have e1 = (PBV, 21 : 05 : 31, 1, 0.9, 0.7, male, 3283, fDoor,

double decker bus, Bus1248, 45, GPSp, v) where PBV is for
event type Person Boarding Vehicle, male is the value
of attribute gender, 3283 is the person ID, fDoor means
that the person boards the bus from the Front door,
double decker bus,Bus1248, 45 stand for the Bus type,
Number, and Route, respectively. GPSp records the position
of the bus by GPS, and v indicates the velocity by the
speedometer.

For Passenger exiting a bus
e2 = (PEV, 21 : 07 : 12, 1, 0.9, 0.3, 3283, bDoor, double decker

bus, Bus1248, 45, GPSp, v) where bDoor indicates the person
exits from the Back door.

For Passenger ascending/descending stairway
e3 = (PADS, 21 : 07 : 12, 1, 0.9, 0.3, 3283, double decker bus,

Bus1248, 45, GPSp, v, Crd) where Crd denotes the coordinates
of the person on the bus.

For Passenger loitering
e4 = (PL, 21 : 07 : 12, 1, 0.9, 0.3, 3283, DriverCabin, double



decker bus, Bus1248, 45, GPSp, v, Crd) where DriverCabin
stands for the person is within the Driver’s Cabin.

For Passenger sitting down/standing in saloon area
e5 = (PSS, 21 : 07 : 12, 1, 0.9, 0.3, 3283, Stand, double decker

bus, Bus1248, 45, GPSp, v, Crd) where Stand stands for the
person is standing.

For Passenger shouting
e6 = (PS, 21 : 07 : 12, 1, 0.9, 0.3, DriverCabin, volume, double

decker bus, Bus1248, 45, GPSp, v) where volume indicates the
volume of the shouting. Note that shouting is recorded by a
microphone which cannot indicate the specific person who
is shouting.

Suppose analysis of crime data on buses reveals a high
crime risk on bus route 45, then the surveillance system
needs to focus on some potentially malicious events. For
simplicity, in the following, we omit all the bus details in
these events description for this specified bus. Now we use
a set of rules to illustrate how these atomic events can
be correlated to determine composed events (i.e., inferred
events) which are more meaningful and significant. For
example, a person boarding a bus with their face obscured
may imply that a passenger assault or vandalism is about
to occur. Hence the event of someone boarding a bus with
their face obscured can be combined with other subsequent
events to infer a composite event of high significance.

Rule 1: This rule describes that a person, either a
male or with their face obscured, who has moved from
saloon to drivers cabin and is now loitering, could be
exhibiting abusive behaviour towards the driver. The details
of the rule are: R1 = (LS1, EType1, Condition1, m1)
such that LS1 = (0, TPL) where TPL stands for the
occurrence of a PL event, EType1 = OPD abbrevi-
ated for Obscured Person-Driver, Condition1 is defined
as ei.EType = PBV ∧ ej .EType = PSS ∧ el.EType =

PL ∧ ei.gender ∈ {male, obscured} ∧ ei.pID = ej .pID =

el.pID ∧ el.location = DriverCabin and m1 could be
< 3283, Crd, hasThreat, 0.3 >,

< 3283, Crd, {noThreat, hasThreat}, 0.7 >.
Rule 2: This rule describes that a person, who is male

or with their face obscured, is loitering at the drivers
cabin and there is shouting, could be exhibiting abu-
sive behaviour towards the driver. This rule is defined as
R2 = (LS2, EType2, Condition2,m2) such that LS2 =
(TPL, TPL+120) where TPL stands for the occurrence of
an PL event, EType2 = SAD abbreviated for Shouting AT
Driver, Condition2 is ei.EType = PBV ∧ej .EType = PL∧
el.EType = PS∧ei.gender ∈ {male, obscured}∧el.volume =

shouting ∧ ei.pID = ej .pID ∧ ej .location = el.location =

DriverCabin,
and m2 could be < 3283, 0.3 >, < {3281, 3282}, 0.7 >.

Other rules can be defined similarly to infer events of
interests. Depending on the significance and likelihood (cal-
culated from these events’ mass values) of the composite
event, live video from the event source shall be put at the

Figure 1. Main Page of the VideoTag Tool

front of the queue for streaming back to the surveillance
operations centre for human analysis.

A typical scenario of using rules can be as follows.
Assume that a person (denoted as P ) boards the bus with
their face obscured and sits down in the saloon area. After
a period P stands up and moves to the driver’s cabin.
After a short period, shouting is recorded. With the bus
surveillance system, atomic events generated by P ’s activi-
ties and behaviours are detected and analyzed. Conditions of
rules in the system are constantly checked with the current
collections of events in the event flow. When the Condition
of a rule is met, this rule is triggered. For this example,
rules R1, R2 are triggered and a new event is generated
describing that a face-obscured person is being abusive to
the driver and the video is streamed live to the control centre.
As a consequence, the analyst in the control room can verify
whether or not an event is occurring and if the former,
engage with the offender over a two way audio-visual link
and warn them to desist from their continuing abuse.

In addition to deploy rules for reasoning, atomic event
descriptions must be effectively stored for efficient retrieval
and use. To facilitate this, we have implemented an event
description system called VideoTag which is a web based
tool implemented using C#. It allows users to describe
atomic events in XML format. Figure 1 shows the main
screen of the tool.

Example 1: Atomic event e1 defined in Section 3.1 (with
m(e1.v) = 0.7) can be represented as
〈event type = “PBV′′

id = “c6caa61347bf43db921454bc2a485c3e′′〉
〈occurT〉21 : 05 : 31 pm 18/02/2009〈/occurT〉
〈source〉1〈/source〉
〈reliability〉0.8〈/reliability〉
〈significance〉0.7〈/significance〉
〈gender〉male〈/male〉
〈personID〉3283〈/personID〉
〈door〉front〈/door〉
· · ·



〈massValue〉0.7〈/massValue〉
〈/events〉
Here the id is automatically generated as an universal event
ID by the program.

V. CONCLUSION

In this paper, we introduced an event composition frame-
work which is able to represent and reason with events
with uncertainty and imperfection from multiple sources.
A rule based inference system is used to derive composed
events of significant interests from atomic events that are
directly detected. We demonstrated the main functions of the
framework using a case study from a real world example in a
bus surveillance application. Fully implemented, this frame-
work should be a great assistance for detecting potentially
dangerous behaviors and actions on public transport.

Time synchronization is important as we need to merge
data from multiple sensors. In the bus surveillance scenario,
it is reasonable to assume that all sensors/cameras on a
single bus are well synchronized, hence in this paper, we
will not consider this issue further. In addition, we will
use data mining tools to find association rules in a realistic
bus surveillance database. For parameter estimation, we find
there are four kinds of parameters used in our paper: rule
parameters, event parameters, reliabilities and attribute val-
ues. Rule parameters (e.g., mvi, LS, etc) can be calculated
(or learned) by association softwares; event parameters (e.g.,
a person is classified as male with 85% certainty) can be
set by algorithms; reliabilities can be obtained by historical
data and attribute values (e.g., bus speed, time point) can
be obtained by relative instruments. In summary, different
parameters can be estimated in different ways.

Historically, computer vision domain has focused on
the learning and recognition of events (e.g., [2], [7], etc).
Recently, a few papers, e.g., [15], [12], address the issue
of composite events. [15] simply uses hand-crafted rules
to define a composite event rule using IF/AND/OR/THEN
while [12] uses empirical background knowledge as rules.
No attempt is made to deal with uncertainty in the atomic
events and rules in both papers.

For future work, we want to (A) systematically define the
whole range of different types of events and rules within
the bus surveillance application area; (B) use SIMWALK
to simulate pedestrian flows on bus to trigger these defined
events and rules and tune the parameters used in the de-
scription of events and rules, e.g., rule life span, reliability,
mass values, all the possible values of an attribute, etc;
(C) elicit domain knowledge from either domain experts
or learned from history data, such as crime statistics; (D)
consider biased reliability values when we cannot tell what
the reliability of a source is at a certain time, e.g., when the
background noise is high, the audio classifier will be biased
very strongly towards male; and (E) extend our framework
to handle uncertainty in the atomic event timestamp.
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