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Abstract In conditional probabilistic logic programming, given a query, the two most com-
mon forms for answering the query are either a probability interval or a precise probability
obtained by using the maximum entropy principle. The former can be noninformative (e.g.,
interval [0, 1]) and the reliability of the latter is questionable when the priori knowledge is
imprecise. To address this problem, in this paper, we propose some methods to quantita-
tively measure if a probability interval or a single probability is sufficient for answering
a query. We first propose an approach to measuring the ignorance of a probabilistic logic
program with respect to a query. The measure of ignorance (w.r.t. a query) reflects how
reliable a precise probability for the query can be and a high value of ignorance suggests
that a single probability is not suitable for the query. We then propose a method to measure
the probability that the exact probability of a query falls in a given interval, e.g., a second
order probability. We call it the degree of satisfaction. If the degree of satisfaction is high
enough w.r.t. the query, then the given interval can be accepted as the answer to the query.
We also prove our measures satisfy many properties and we use a case study to demonstrate
the significance of the measures.

1 Introduction

Probabilistic knowledge presents in many real-world applications. Typical examples include
medical expert systems, engineering experiments modelling and analysis, etc. Probabilistic
logics have been intensively studied in the literature. One important element of many for-
mal languages for representing probabilistic knowledge is the interval restriction for con-
ditional probabilities, also called conditional constraints [Luk98]. Extensive work on prob-
abilistic reasoning about propositional conditional constraints have been carried out (e.g.,
[DGdMP93], [FH94]).

Logic programming is a well established knowledge representation and reasoning for-
malism in artificial intelligence and deductive databases. The need for representing uncer-
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tainty in the logic programming framework is already reported by a great number of publi-
cations [Luk98,BGR04,BH07,RKT07,Fuh00,NS91,NS92,DD04] etc.

These probabilistic logic programs have been designed from different perspectives and
have different syntactic forms and semantics. In conditional probabilistic logic program-
ming [CPQC03,Luk01b], knowledge is represented by interval restrictions for probabilities
on conditional events, which is in the form of (ψ|φ)[l, u]. A probabilistic conditional event
(ψ|φ)[l, u] is interpreted as given φ, the probability of ψ falls in the interval [l, u] where
[l, u] ⊆ [0, 1].

In Causal Probabilistic Logic Programming [BGR04,BH07], a rule Pr(ψ|cφ) = y is
interpreted as “if φ happens, this fact will cause the probability of ψ being y”. In Success
Probabilistic Logic Programming [RKT07,Fuh00], a rule ψ ← φ is associated with a prob-
ability pr , which represents the probability that this rule is true. In [NS91,NS92,DD04,
Saa07,BSS09], a probabilistic rule is of the form ψ[l1, u1] ← φ[l2, u2], which means that
“if the probability of φ is in the interval [l2, u2] then the probability of ψ is in between l1
and u1”. In this logic, we may get a set of intervals for a query, whose actual probability
can fall in any of the intervals.

In the field of clinical trials, statistical data summarizing trials results provide some indi-
cations about the relationship between medical treatments and their effects. If some rules are
derived from these data, the probability of such a rule should not be interpreted as the prob-
ability of a rule-head being true causing the rule-tail being true, rather, it is the probability of
the effects had the treatment been carried out. For example, rule (mortality|drug name)[l, u]

cannot be interpreted as “using this drug causes death with probability in [l,u]”, rather, it
says that with the treatment of this drug, the probability of the mortality (of the patient) is
in this interval (so that the cause(s) of the death is something else, not this drug). It is clear
that clinical trials data are usually in the form of conditional probability, not in the form of
ψ[l1, u1] ← φ[l2, u2]. In addition, the effects of a treatment do not fall into different proba-
bility intervals. Therefore, based on our application background in clinical trials, we focus
only on conditional probabilistic logic programming in this paper.

Conditional probabilistic logic programming is a framework to represent and reason
with imprecise (conditional) probabilistic knowledge. An agent’s knowledge is represented
by a probabilistic logic program (PLP) which is a set of (conditional) logical formulas with
probability intervals. The impreciseness of an agent’s knowledge is explicitly represented by
assigning a probability interval to every logical formula (representing a conditional event)
indicating that the probability of a formula shall be in the given interval.

Given a PLP and a query against the PLP, traditionally, a probability interval is returned
as the answer. This interval implies that the true probability of the query shall be within the
given interval. However, when this interval is too wide, it provides no useful information.
For instance, if a PLP contains knowledge

{(fly(X)|bird(X)[0.98, 1], (bird(X)|magpie(X))[1, 1]}

then the answer to the query Can a magpie fly? (i.e., ?(fly(t)|magpie(t))) is a trivial bound
[0, 1]. One way to enhance the reasoning power of a PLP is to apply the maximum entropy
principle [KIL04]. Based on this principle, a single probability distribution is selected and it
is assumed to be the most acceptable one for a query among all possible probability distri-
butions. As a consequence, a precise probability is given for a query even when the agent’s
original knowledge is imprecise. In the above example, by applying the maximum entropy
principle, 0.98 is returned as the answer for the query. Intuitively, accepting a precise prob-
ability from (a prior) imprecise knowledge can be risky. When an agent’s knowledge is rich
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enough then a single probability could be reliable, however, when an agent’s knowledge is
(very) imprecise, an interval is more appropriate than a single probability.

Therefore, in probabilistic logic programming as well as other condition probabilistic
logics, there is a question that has not been fully investigated, that is, how useful a proba-
bilistic logic program (PLP) is to answering a given query? This question’s importance is
twofold: first, it helps to analyze if a PLP is adequate to answer a query and second, if a
PLP is sufficiently relevant to a query, then shall a single probability be obtained or shall a
probability interval be more suitable? If it is an interval that is more suitable, then how can
we get a more meaningful interval (which is satisfactory to a certain extent), rather than a
loose bound?

To answer the above questions, in this paper, we propose two concepts, the measure of
ignorance and the measure of the degree of satisfaction, w.r.t. a PLP and a query. The former
analyzes the impreciseness of the PLP w.r.t. a query, and the latter measures which (tighter)
interval is sufficiently informative to answer a query.

The main contributions of this paper are as follows. First, we formally analyze condi-
tional probabilistic logic programs and the maximum entropy principle. Although the as-
sumption of applying the maximum entropy principle is intuitive and widely accepted, such
an assumption introduces some new unsupported knowledge, and thus, we need to know
to what extent an answer given under the maximum entropy is reliable. Second, we pro-
pose a general framework which formally defines the measure of ignorance and the measure
of the degree of satisfaction, and the postulates for these two measures. We also provide
several consequence relations based on the degree of satisfaction. Third, by using the diver-
gence of probabilistic distribution, we instantiate our framework, and show that the measure
of ignorance and the measure of the degree of satisfaction have many desirable properties
and provide much useful information about a PLP w.r.t. a query. Fourth, we prove that our
framework is an extension of both reasoning with probabilistic logic programs and reason-
ing under the maximum entropy principle. Finally, we prove that these measures can be
viewed as a second-order probability. More specifically, a high level of ignorance means
a high probability about the given PLP (an agents knowledge) is towards total absence of
knowledge. The degree of satisfaction is the second-order probability about the actual prob-
ability for a conditional event given in the query falls in the given interval (provided in the
query).

This paper is organized as follows. After a brief reviewing of probabilistic logic pro-
gramming in Section 2, we formally analyze probabilistic logic programming and the max-
imum entropy principle, and provide our general framework in Section 3. The instantiation
of the framework is given in Section 4. In Section 5, we use examples to illustrate that our
framework can provide additional information when assessing query results. In Section 6,
we present algorithms used in the implementation of the framework and discuss our experi-
ments with statistical data in the field of clinical trials. After comparing with related works
in Section 7, we conclude this paper in Section 8.

2 Probabilistic Logic Programming

2.1 Syntax and semantics

We briefly review conditional probabilistic logic programming here [Luk98,Luk01b]. We
use Φ to denote a finite set of predicate symbols and constant symbols, V to denote a set
of object variables, and B to denote a set of bound constants which describe the bound of
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probabilities where bound constants are in [0,1]. We use a, b, . . . to denote constants from
Φ and X, Y . . . to denote object variables from V . An object term t is a constant from Φ

or an object variable from V . An atom is of the form p(t1, . . . , tk), where p is a predicate
symbol and t1, . . . , tk are object terms. We use Greek letters φ, ϕ, ψ, . . . to denote events (or
formulas) which are obtained from atoms by logic connectives ∧,∨,¬ as usual. A condi-
tional event is of the form (ψ|φ) where ψ and φ are events, and φ is called the antecedent
and ψ is called the consequent. A probabilistic formula, denoted as (ψ|φ)[l, u], means that
the probability of conditional event ψ|φ is between l and u, where l, u are bound constants.
A set of probabilistic formulas is called a conditional probabilistic logic program (PLP), a
PLP is denoted as P in the rest of the paper.

A ground term (resp. event, conditional event, probabilistic formula, or PLP) is a term
(resp. event, conditional event, probabilistic formula or PLP) that does not contain any object
variables in V .

All the constants in Φ form the Herbrand universe, denoted as HUΦ, and the Herbrand
base, denoted as HBΦ, is the finite nonempty set of all events constructed from the predicate
symbols in Φ and constants in HUΦ. A subset I of HBΦ is called a possible world and IΦ

is used to denote the set of all possible worlds over Φ. A function σ that maps each object
variable to a constant is called an assignment. It is extended to object terms by σ(c) = c

for all constant symbols from Φ. An event φ satisfied by I under σ, denoted by I |=σ φ, is
defined inductively as:

I |=σ p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ I;

I |=σ φ1 ∧ φ2 iff I |=σ φ1 and I |=σ φ2;

I |=σ φ1 ∨ φ2 iff I |=σ φ1 or I |=σ φ2;
I |=σ ¬φ iff I 6|=σ φ

A possible world I satisfies or is a model of φ, denoted by I |= φ, iff I |=σ φ for all
assignment σ. A possible world I satisfies or is a model of a set of formulas F , denoted
by I |= F , iff for all assignment σ and for all φ ∈ F , I |=σ φ. An event φ is a logical
consequence of F , denoted as F |= φ, iff all models of F satisfy φ.

In this paper, we use > to represent the (ground) tautology, and we have that I |= > for
all I and all assignments σ; we use ⊥ to denote ¬>.

If Pr is a function (or distribution) on IΦ (i.e., as IΦ is finite, Pr is a mapping from
IΦ to the unit interval [0,1] such that

∑
I∈IΦ

Pr(I) = 1), then Pr is called a probabilistic
interpretation. For an assignment σ, the probability assigned to an event φ by Pr, is denoted
as Prσ(φ) where Prσ(φ) =

∑
I∈IΦ,I|=σφ Pr(I). When φ is ground, we simply write it as

Pr(φ). When Prσ(φ) > 0, the conditional probability, Prσ(ψ|φ), is defined as Prσ(ψ|φ) =

Prσ(ψ ∧ φ)/Prσ(φ). When Prσ(φ) = 0, Prσ(ψ|φ) is undefined. Also, when (ψ|φ) is
ground, we simply write it as Pr(ψ|φ).

A probabilistic interpretation Pr satisfies or is a probabilistic model of a probabilistic
formula (ψ|φ)[l, u] under assignment σ, denoted by Pr |=σ (ψ|φ)[l, u], iff u ≥ Prσ(ψ|φ) ≥
l or Prσ(φ) = 0. A probabilistic interpretation Pr satisfies or is a probabilistic model of
a probabilistic formula (ψ|φ)[l, u], denoted by Pr |= (ψ|φ)[l, u], iff Pr satisfies (ψ|φ)[l, u]

under all assignments. A probabilistic interpretation Pr satisfies or is a probabilistic model
of a PLP P iff for all assignment σ and for all (ψ|φ)[l, u] ∈ P, Pr |=σ (ψ|φ)[l, u]. A prob-
abilistic formula (ψ|φ)[l, u] is a consequence of the PLP P , denoted by P |= (ψ|φ)[l, u], iff
all probabilistic models of P satisfy (ψ|φ)[l, u]. A probabilistic formula (ψ|φ)[l, u] is a tight
consequence of P , denoted by P |=tight (ψ|φ)[l, u], iff P |= (ψ|φ)[l, u], P 6|= (ψ|φ)[l, u′],
P 6|= (ψ|φ)[l′, u] for all l′ < l and u′ > u (l′, u′ ∈ [0, 1]). It is worth noting that if
P |= (φ|>)[0, 0] then P |= (ψ|φ)[1, 0] where [1, 0] stands for the empty set.
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A query is of the form ?(ψ|φ) or ?(ψ|φ)[l, u], where ψ and φ are ground events and
l, u are real numbers. For query ?(ψ|φ), under tight consequence reasoning, a bound [l, u] is
given by the answer, such that P |=tight (ψ|φ)[l, u]. For query ?(ψ|φ)[l, u], the bound [l, u]

is given by the user. It is returned as True (or Yes) if P |= (ψ|φ)[l, u] and False (or No) if
P 6|= (ψ|φ)[l, u].

Using probabilistic logic programs, we can represent imprecise probabilistic knowledge.

Example 1 Let P be a PLP that contains only one constant tweety and

P =

{
(fly(X)|bird(X))[0.98, 1],

(bird(X)|magpie(X))[1, 1]

}

Table 1 Probabilistic models for P

Index HerbrandModel Probability
I1 ∅ x1

I2 {magpie(tweety)} ε1
I3 {bird(tweety)} x2

I4 {bird(tweety), magpie(tweety)} x3

I5 {fly(tweety)} x4

I6 {fly(tweety), magpie(tweety)} ε2
I7 {fly(tweety), bird(tweety)} x5

I8 {fly(tweety), bird(tweety), magpie(tweety)} x6

where
x1 + x2 + x3 + x4 + x5 + x6 + ε1 + ε2 = 1,

x5+x6
x2+x3+x5+x6

∈ [0.98, 1] or x2 + x3 + x5 + x6 = 0,
x3+x6

x3+x6+ε1+ε2
= 1 or x3 + x6 + ε1 + ε2 = 0, thus ε1 = ε2 = 0

Intuitively, we expect that the probability of (fly(tweety)|magpie(tweety)) to be high.
Table 1 gives all the possible probabilistic models for P , which satisfy all the constraints
listed in the table. There are eight Herbrand models (IΦ = {I0, . . . , I8}) of P . The third
column gives the probability for each of them. So,

Pr(fly(tweety)|magpie(tweety))) =
x6

x6 + x3
.

It is easy to see that there are many probability distributions that satisfy all the constraints
induced from the PLP. Let x1 = x4 = x6 = 0, x5 = 0.98, x2 = 0, x3 = 0.02, we can get
a probabilistic model Pr1 for P and Pr1(fly(tweety)|magpie(tweety)) = 0. Let x1 =

x4 = x2 = x3 = 0, x5 = x6 = 0.5, we get another probabilistic model Pr2 for P and
Pr2(fly(tweety)|magpie(tweety)) = 1. Therefore,

P |=tight (fly(tweety)|magpie(tweety))[0, 1]

that means we have no idea about whether a magpie can fly.
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∑
I∈IΦ

yI = 1∑
I∈IΦ,I|=¬ψ∧φ−lyI +

∑
I∈IΦ,I|=ψ∧φ(1− l)yI ≥ 0, (for all (ψ|φ)[l, u] ∈ P, l > 0)∑

I∈IΦ,I|=¬ψ∧φ uyI +
∑

I∈IΦ,I|=ψ∧φ(u− 1)yI ≥ 0, (for all (ψ|φ)[l, u] ∈ P, u < 1)
yI ≥ 0 (for all I ∈ IΦ)

Fig. 1 Linear constraints LC(P, IΦ)

2.2 Maximum entropy principle

One possible method to enhance the reasoning power of probabilistic logic programs is rea-
soning by the distribution with maximum entropy [KIL04,KIR04]. The principle of maxi-
mum entropy is a well known technique to represent probabilistic knowledge. Entropy quan-
tifies the indeterminateness inherent to a distribution Pr by H(Pr) = −∑

I∈IΦ
Pr(I)logPr(I).

Given a logic program P , the principle of maximum entropy model (or me-model), denoted
by me[P ], is defined as:

H(me[P ]) = max H(Pr) = max
Pr|=P

−
∑

I∈IΦ

Pr(I) log Pr(I) (1)

me[P ] is the unique probabilistic interpretation Pr that is a probabilistic model of P and
that has the greatest entropy among all the probabilistic models of P .

In Example 1, let Pr be the probability distribution with maximum entropy that satisfies
the PLP P , then Pr(fly(tweety)|magpie(tweety)) = 0.98.

Let P be a ground PLP, we say that (ψ|φ)[l, u] is a me-consequence of P , denoted by
P |=me (ψ|φ)[l, u], iff

– P is unsatisfiable, or
– me[P ] |= (ψ|φ)[l, u].

we say that (ψ|φ)[l, u] is a tight me-consequence of P , denoted by P |=me
tight (ψ|φ)[l, u],

iff

– P is unsatisfiable, l = 1, u = 0, or
– P |= ⊥ ← φ, l = 1, u = 0, or
– me[P ](φ) > 0 and me[P ](ψ|φ) = l = u.

Applying the principle of maximum entropy solves the problem of inferring noninfor-
mative probabilistic intervals. For instance, we have that
P |=me

tight (fly(tweety)|magpie(tweety))[0.98, 0.98], where P is as given in Example 1.

2.3 Implementation of reasoning with PLP

A logic program can be treated as a set of inequality constraints LC(P, IΦ) shown in Fig.
1. A solution y?

I , I ∈ IΦ that satisfies LC(P, IΦ) gives a probabilistic model of P , that is
Pr(I) = y?

I .

Theorem 1 ([KIL04]) Let P be a PLP. Then

1. For every model Pr of P , there exists a solution (yI)I∈IΦ
of the system of linear con-

straints LC(P, IΦ), such that Pr(I) = yI for all I ∈ IΦ.
2. For every solution of LC(P, IΦ), there exists a model Pr of P such that yI = Pr(I) for

all I ∈ IΦ.
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The next theorem shows that the reasoning problems can be reduced to the optimization
problem subject to the linear constraints LC(P, IΦ):

Theorem 2 ([KIL04]) Let P be a PLP and P 6|= ⊥ ← φ. Then P |=tight (ψ|φ)[l, u]),
where l (respectively, u) is the minimal (respectively, maximal) value of the following linear
program over the variables yI(I ∈ IΦ):

Minimize (respectively, maximize)

∑
I∈IΦ,I|=ψ∧φ yI∑

I∈IΦ,I|=φ yI

Subject to LC(P, IΦ) and
∑

I∈IΦ,I|=φ

yI > 0

Proposition 1 ([KIL04]) Let P be a PLP, and let ψ be a ground event. Then, P |=me

(ψ|>)[0, 0] iff P |=tight (ψ|>)[0, 0]

Theorem 3 ([KIL04]) Let P be a PLP. Then P |=me
tight (ψ|φ)[l, u]), where l = u =

me[P ](ψ|φ), and me[P ] is computed by solving the following entropy maximization problem
over the variables yI(I ∈ IΦ):

Maximize −
∑

I∈IΦ

yI log yI subject to LC(P, IΦ) (2)

Example 2 Considers the PLP given in Example 1. The constraints LC(P, Φ) induced by P

is the following:

∑
1≤i≤8 yIi

= 1

0.02 ∗ yI7 + 0.02 ∗ yI8 − 0.98 ∗ yI3 − 0.98 ∗ yI4 ≥ 0

yI3 + yI4 ≥ 0

−yI2 − yI3 ≥ 0

yI2 + yI3 ≥ 0

yIi
≥ 0, 1 ≤ i ≤ 8

3 Reasoning with Imprecise Probability

3.1 A formal analysis of PLP

In information theory, information entropy is a measure of the uncertainty associated with
a random variable. Entropy quantifies information in a piece of data. Informally speaking,
− log p(X = xi) means the degree of surprise when one observes that the random variable
turns out to be xi. In other words, − log p(X = xi) reflects the information one receives
from the observation. The entropy is an expectation of the information one may receive
from a random domain by observing random events. Inspired by this, we define a knowl-
edge entropy, which reflects how much an agent knows the truth value of ψ given φ prior
any observations. Informally, the more surprised an agent is by the observation, the more
knowledge it learns from the observation, and thus, the less prior knowledge its has about ψ

given φ before observing ψ given φ.
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Definition 1 Let P be a PLP, and (ψ|φ) be a conditional event. Suppose that Pr is a proba-
bilistic model for P , then the knowledge entropy of inferring ψ from φ under Pr is defined
by:

KPr(ψ|φ) = 1 + Pr(ψ|φ) log Pr(ψ|φ) + Pr(¬ψ|φ) log Pr(¬ψ|φ)

It is obvious that KPr(ψ|φ) = KPr(¬ψ|φ) and KPr(ψ|φ) ∈ [0, 1]. Trivially, we have
KPr(φ|φ) = 1 and KPr(¬φ|φ) = 1, since from Pr, an agent can exactly know the truth
value of ψ and its negation given φ.

By extending the above definition, we can define a knowledge measurement for a PLP.

Definition 2 Let P be a PLP, and (ψ|φ) be a conditional event. Suppose that Pr is a prob-
abilistic model for P and Pr(φ) > 0, then the knowledge measurement KP (ψ|φ) is defined
by:

minKP (ψ|φ) = min
Pr|=P

KPr(ψ|φ),

maxKP (ψ|φ) = max
Pr|=P

KPr(ψ|φ),

KP (ψ|φ) = [minKP (ψ|φ), maxKP (ψ|φ)].

The measurement KP (ψ|φ) is used to characterize the usefulness of a priori knowledge
contained in PLP P for inferring ψ when knowing or observing φ. When ψ or ¬ψ can be
inferred from φ under P , P contains all the necessary knowledge of inferring ψ given φ,
and we have that minKP (ψ|φ) = 1. When knowledge in P excludes the possibility that the
probability of ψ (or ¬ψ) may be 1 given φ, i.e., P ∪ {(ψ|φ)[1, 1]} (or P ∪ {(ψ|φ)[0, 0]})
is unsatisfiable, then the knowledge contained in P cannot fully support ψ given φ, so
maxKP (ψ|φ) < 1. Specifically, if the conclusion that ψ is more (or less) likely to be true
than ¬ψ (, i.e. the probability of ψ given φ is bigger (or smaller) than ¬ψ given φ, ), then
maxKP (ψ|φ) > 0.

We can define a partial order ¹ over the set {[x, y]|x, y ∈ [0, 1]} as [a, b] ¹ [c, d] iff
a ≤ c, b ≥ d, and [a, b] ≺ [c, d] iff [a, b] ¹ [c, d] and a < c or b > d. We say that a PLP P is
more precise than P ′ w.r.t. ψ|φ, if KP (ψ|φ) ¹ KP ′(ψ|φ), denoted as P ¹k

(ψ|φ) P ′.
If minKP (ψ|φ) 6= maxKP (ψ|φ), then the knowledge contained in P is not sufficient

to decide the probability of ψ given φ, that is, the knowledge contained in P about inferring
ψ given φ is imprecise. In order to infer the actual probability of ψ given φ under P , we
need additional knowledge.

Proposition 2 Let P and P ′ be two PLPs. If P |= P ′ then P ¹k
(ψ|φ) P ′ for any conditional

event (ψ|φ).

Proof Suppose that P |=tight (ψ|φ)[l, u] and P ′ |=tight (ψ|φ)[l′, u′]. If P |= P ′, then
[l, u] ⊆ [l′, u′]. So, minKP (ψ|φ) ≤ minKP ′(ψ|φ) and maxKP (ψ|φ) ≥ maxKP ′(ψ|φ),
therefore, P ¹k

(ψ|φ) P ′. ut
This proposition suggests that the consequence relation |= considers all the statements

in a PLP while the knowledge measurement focuses only on the knowledge about ψ given
φ. maxKP (ψ|φ) reflects the best knowledge consistent with P that can help to infer the truth
value of ψ given φ. Since P |= P ′, P contains more knowledge than P ′, thus minKP (ψ|φ) ≥
minKP ′(ψ|φ). It is also possible that this knowledge excludes some other information that
is useful to infer the truth value of ψ given φ, thus maxKP (ψ|φ) ≤ maxKP ′(ψ|φ).

In the view of knowledge entropy, reasoning under the maximum entropy principle im-
plicitly introduces some extra knowledge to enhance the reasoning power of PLP.
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Example 3 Consider again the PLP in Example 1. There exists a probabilistic model Pr1

for P such that

Pr1(fly(tweety)|magpie(tweety)) = 0.5, KPr1(fly(tweety)|magpie(tweety)) = 0

On the other hand, there exist probabilistic models Pr and Pr′ for P such that

Pr(fly(tweety)|magpie(tweety)) = 1

Pr′(fly(tweety)|magpie(tweety)) = 0

and

KPr(fly(tweety)|magpie(tweety)) = KPr′(fly(tweety)|magpie(tweety)) = 1

So, KP (fly(tweety)|magpie(tweety)) = [0, 1]. With the maximum entropy, we get that

me[P ](fly(tweety)|magpie(tweety)) = 0.98

and thus
1 > Kme[P ](fly(tweety)|magpie(tweety)) > 0

This suggests that some knowledge is introduced.
For example, me[P ](magpie(tweety)|bird(tweety)) = 0.5, which is not supported by

P . The rationale behind the maximum entropy principle is to represent given probabilistic
information as faithfully as possible, by maximizing admissible indeterminateness. Specific
to this example, with the maximum entropy principle, an assumption that magpies are distin-
guishable from typical birds is introduced (this assumption cannot be represented in PLP),
and actually, such an assumption enriches the knowledge contained in P . ut

From the above example, we know that reasoning under the maximum entropy cannot
be taken for granted as reasoning based on minimal knowledge, but actually based on some
implicit knowledge. We should be aware that although the assumption seems intuitive, it
may be wrong.

Example 4 Let P1 = (headUp(X)|toss(X))[0.5, 0.5], P2 = (headUp(X)|toss(X))[0, 1]

be PLPs. Here, P1 says that tossing a fair coin may result in head-up with probability 0.5,
however, in P2, we do not know whether the coin is fair.

In this example, the knowledge in P1 is richer than that in P2 since from P1 we know
the coin is fair. Using the maximum entropy principle, we get that

P1 |=me (headUp(coin)|toss(coin))[0.5, 0.5],

P2 |=me (headUp(coin)|toss(coin))[0.5, 0.5].

This result suggests that the difference between P1 and P2 is omitted under the maxi-
mum entropy reasoning. By calculating the knowledge entropy of P1 and P2, we know
that KP1(headUp(coin)|toss(coin)) = [0, 0] and KP2(headUp(coin)|toss(coin)) = [0, 1].
Thus we know that P1 is more precise than P2.

Obviously, the conclusion (headUp(coin)|toss(coin))[0.5, 0.5] is more acceptable un-
der P1 than under P2. ut
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From the above examples, we know that, accepting a conclusion obtained by reasoning
under the maximum entropy principle may imply that we are willing to introduce extra
knowledge into a given PLP and there is no guarantee that this extra knowledge is always
correct.

In the next subsection, we provide a general framework for analyzing and reasoning
with imprecise PLPs. For this purpose, we provide two concepts: ignorance and degree of
satisfaction. The ignorance reflects the richness of the knowledge contained in a PLP and the
degree of satisfaction of a query ?(ψ|φ)[l, u] reflects the possibility that the actual probability
of (ψ|φ) falls in the given bound [l, u].

3.2 General framework for measuring imprecise knowledge

Intuitively, the knowledge measurement KP (ψ|φ) indicates to some extent the ignorance
about the conditional event (ψ|φ) when using knowledge contained in P . But unfortunately,
such interval can not sufficiently reflect the ignorance about (ψ|φ). This is not surprising,
since KP (ψ|φ) is determined only by the tight probability bound of the conditional event
(ψ|φ), other knowledge is not considered in KP (ψ|φ).

Example 5 Let P be a PLP:

P =

{
(fly(X)|bird(X))[0.9, 1], (bird(X)|magpie(X))[1, 1]

(sickMagpie(X)|magpie(X))[0, 0.1], (magpie(X)|sickMagpie(X))[1, 1]

}

From P , we can infer that
P |=tight (fly(t)|magpie(t))[0, 1],
P |=tight (fly(t)|sickMagpie(t))[0, 1], P |=me

tight (fly(t)|magpie(t))[0.9, 0.9], and
P |=me

tight (fly(t)|sickMagpie(t))[0.9, 0.9].

Here, we have KP (fly(t)|sickMagpie(t)) = KP (fly(t)|magpie(t)). However, since
the proportion of sick magpies in birds is smaller than the proportion of magpies in birds,
the knowledge that birds can fly should be more cautiously applied to sick magpies than
magpies in general. In other words, the statement that more than 90% of birds can fly is
more about magpies than sick magpies. Therefore, to accept that 90% of magpies can fly is
more rational than to accept 90% of sick magpies can fly. However, these analyses can not
be obtained directly from comparing the bounds inferred from P .

We define an ignorance measurement to characterize the knowledge incompleteness re-
stricted to a given (conditional) event:

Definition 3 (Ignorance) Let PL be the set of all PLPs and E be a set of all conditional
events. Function IG : PL× E 7→ [0, 1] is called a measure 1 of ignorance, iff for any PLP P

and conditional event (ψ|φ) it satisfies the following postulates

1 In mathematical analysis, a measure m is a function, such that m : 2S 7→ [0,∞] and

1. m(E1) ≥ 0 for any E ⊆ S,
2. m(∅) = 0,
3. if E1, E2, E3, . . . is a countable sequence of pairwise disjoint subsets of S, the measure of the union of

all the Ei’s is equal to the sum of the measures of each Ei, that is, m(
⋃∞

i=1 Ei) =
∑∞

i=1 m(Ei).
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[Boundedness] IG(P, ψ|φ) ∈ [0, 1].
[Preciseness] IG(P, ψ|φ) = 0 iff P |=tight (ψ|φ)[u, u] or P |= ⊥ ← φ.
[Total Ignorance] IG(∅, ψ|φ) = 1, if 6|=cl φ → ψ and 6|=cl φ → ¬ψ.
[Soundness] If IG(P, ψ|φ) = 1 then P |= (ψ|φ)[0, 1].
[Irrelevance] If P and another PLP P ′ do not contain common syntaxes,

i.e.Φ ∩ Φ′ = ∅, then IG(P, ψ|φ) = IG(P ∪ P ′, ψ|φ).

For simplicity, we use IGP (ψ|φ) to denote IG(P, ψ|φ) for a given PLP P and a conditional
event (ψ|φ). Value IGP (ψ|φ) defines the ignorance about (ψ|φ) from P .

If P = ∅, only tautologies can be inferred from P . Therefore, from any PLP P , IGP (ψ|φ) ≤
IG∅(ψ|φ), which means that an empty PLP has the biggest ignorance value for any condi-
tional event. When IGP (ψ|φ) = 0, event (ψ|φ) can be inferred precisely from P , since a
single precise probability for (ψ|φ) can be obtained from P . The ignorance measurement
focuses on the knowledge about (ψ|φ) contained in P , which means that irrelevant knowl-
edge does not provide a better understanding of this conditional event.

Proposition 3 Let P be a PLP and (ψ|φ) be a conditional event. If IGP (ψ|φ) = 1, then
KP (ψ|φ) = [0, 1]. If IGP (ψ|φ) = 0, then KP (ψ|φ) = [a, a], for some a ∈ [0, 1].

Proof If IGP (ψ|φ) = 0 then P |=tight (ψ|φ)[0, 1], and thus KP (ψ|φ) = [0, 1]. If IGP (ψ|φ) =

1 then P |=tight (ψ|φ)[p, p] for some p ∈ [0, 1]. So, for any Pr |= P , Pr(ψ|φ) = p. By the
definition of KP (ψ|φ), we have that KP (ψ|φ) = [a, a], where a = 1 + a ∗ log a + (1− a) ∗
log(1− a). It is easy to check that a ∈ [0, 1]. ut

When querying a PLP, the tight consequence reasoning gives a bound as the answer
which can be too cautious and not very informative; however, me-consequence gives a pre-
cise probability for a query, and it is too risky to simply accept it. We argue that, sometimes
we do not need to know a precise probability which is not reliable enough; we may want to
know whether the probability falls in a given bound with high enough possibility. In other
words, we may want to strike a balance between a less informative bound which is true for
sure and an intuitively precise probability which is not reliable enough. Consider the igno-
rance of a conditional event, when the ignorance is 0, then accepting the precise probability
given by the maximum entropy principle is guaranteed to be right. But how about the situa-
tion that the ignorance of a conditional event is very small? It suggests that the knowledge
contained in the PLP is rich enough to infer an informative bound, but the knowledge is
not rich enough to infer a precise probability. In order to extract an informative and reliable
interval, we first measure the degree of satisfaction for a query (with bound). If a degree is
high enough, then regarding the query as true is reliable, since it is very possible that the
actual probability falls in the given interval.

Definition 4 (Degree of Satisfaction) Let PL be the set of all PLPs and F be a set of all
probabilistic formulas. Function SAT : PL × F 7→ [0, 1] is called a measure of degree of
satisfaction iff for any PLP P and ground probabilistic formula µ = (ψ|φ)[l, u], it satisfies
the following postulates:

[Reflexivity] SAT(P, µ) = 1, iff P |= µ.
[Rationality] SAT(P, µ) = 0 if P ∪ {µ} is unsatisfiable.
[Monotonicity]

SAT(P, µ) ≥ SAT(P, (ψ|φ)[l′, u′]), if [l′, u′] ⊆ [l, u].
SAT(P, µ) > SAT(P, (ψ|φ)[l′, u′]), if [l′, u′] ⊂ [l, u]

and SAT(P, (ψ|φ)[l′, u′]) < 1.
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[Cautious Monotonicity] Let P ′ = P ∪ {(ψ|φ)[l′, u′]}, where P |=me (ψ|φ)[l′, u′].
If 1 ≥ SAT(P, µ) ≥ 0 then SAT(P ′, µ) ≥ SAT(P, µ),

For simplicity, we use SATP (µ) to denote SAT(P, µ).
The reflexivity property says that every consequence is totally satisfied. Rationality says

that 0 is given as the degree of satisfaction of an unsatisfiable probabilistic formula. Mono-
tonicity says that if we expect a more precise interval for a query, then the chance that the
exact probability of the query is not in the interval is greater. Cautious monotonicity says
that, if P and P ′ are equivalent except for the bound of (ψ|φ), and P ′ contains more knowl-
edge about (ψ|φ), then the degree of satisfaction of µ under P ′ should be bigger than that of
µ under P .

Proposition 4 Function SAT is consistent with the maximum entropy principle, that is,
it satisfies the following conditions for any PLP P and any conditional event (ψ|φ) with
P 6|= ⊥ ← φ and [l, u] ∈ [0, 1]

SATP ((ψ|φ)[l, u])

{
= 0 if P |=me (ψ|φ)[l′, l′], and l′ /∈ [l, u]

> 0 if P |=me (ψ|φ)[l′, l′], and l′ ∈ [l, u]

Proof Assume that P |=tight (ψ|φ)[l0, u0] and P |=me
tight (ψ|φ)[l′, l′]. For simplicity, we

denote µ = (ψ|φ)[l, u].
1) If l′ ∈ [l, u].
1.1) If l0 = u0 = l′. According to Postulate Reflexivity, SATP (µ) = 1.
1.2) If l0 < l′ or u0 > l′.
SATP (µ) ≥ SATP ((ψ|φ)[l1, u1]) > SATP ((ψ|φ)[l′, u′]) ≥ 0 where l1 = max(l, l0), u1 =

min(u, u0).
Therefore, in this case SATP (µ) > 0

2) If l′ /∈ [l, u].
Let P ′ = P ∪ {(ψ|φ)[l′, l′]}.
According to Postulate Rationality, SATP ′(µ) = 0. According to Cautious Monotonic-

ity, SATP ′(µ) ≥ SATP (µ).
Therefore, in this case SATP (µ) = 0. ut

For a query ?(ψ|φ)[l, u], when SATP ((ψ|φ)[l, u]) < 1 it means that the exact probability
of (ψ|φ) in [l, u] could be wrong based on the knowledge in P .

In our framework, given a PLP P , a conditional event (ψ|φ), and a probabilistic formula
(ψ|φ)[l, u], the ignorance value IGP (ψ|φ) and the degree of satisfaction SATP (µ) reveal
different aspects of the impreciseness of the knowledge in P w.r.t. (ψ|φ) and µ. The former
says how much this P can tell about (ψ|φ) and the latter says to what degree a user can be
satisfied with the bound [l, u] attached to (ψ|φ).

Proposition 5 Let P be a PLP and (ψ|φ) be a conditional event. If IGP (ψ|φ) = 0 then
SATP ((ψ|φ)[l, l]) = 1 for some l ∈ [0, 1].

Proof From the Preciseness property of ignorance measure IG, and IGP (ψ|φ) = 0, we have
that P |=tight (ψ|φ)[l, l] for some l ∈ [0, 1]. From the Reflexivity property of degree of
satisfaction, we have that SATP ((ψ|φ)[l, l]) = 1. ut

The above proposition says that when the knowledge contained in P totally ignores the
conditional event (ψ|φ), then all the knowledge contained in P is irrelevant to the query
?(ψ|φ)[l, l].
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Definition 5 Let SATP (µ) be the degree of satisfaction for a PLP P and µ = (ψ|φ)[l, u] be
a probabilistic formula. We define two consequence relations as

– P |=SAT≥w µ iff SATP (µ) ≥ w,
– P |=SAT≥w

tight µ iff P |=SAT≥w µ and P 6|=SAT≥w (ψ|φ)[l′, u′] for every [l′, u′] ⊂ [l, u].

Proposition 6 Let SATP (µ) be the degree of satisfaction for a PLP P and a probabilistic
formula µ = (ψ|φ)[l, u], then

P |= µ iff P |=SAT=1 µ

P |=tight µ iff P |=SAT=1
tight µ

P |=me
tight µ iff limε→0+ P |=SAT≥ε

tight µ

Proof From the Reflexivity property of SAT and the definition of |=SAT=1, we have that
P |= µ iff P |=SAT=1 µ and from the definition of |=SAT=1

tight , we have that P |=tight

µ iff P |=SAT=1
tight µ.

Assume that pme = me[P ](ψ|φ).
If SATP (µ) is also consistent with the maximum entropy principle, then |=SAT≥ε

tight

(ψ|φ)[l′, u′] for some [l′, u′] ⊆ [0, 1] and pme ∈ [l′, u′]. As ε becomes smaller, the bound
[l′, u′] gets tighter. Since SAT satisfies the Monotonicity property, the bound is approaching
to the bound [pme, pme]. Therefore, P |=me

tight µ iff limε→0+ P |=SAT≥ε
tight µ. ut

In this proposition, we use SAT = 1 instead of SAT ≥ 1, since the degree of satisfac-
tion can not be greater than 1.

The above proposition says that our framework is a generalization of PLP under its
original semantics as well as under the maximum entropy principle. That is, the classical
consequence relations |= and |=tight are too cautious - they are equivalent to requiring the
degree of satisfaction of µ w.r.t P to be 1, which means that the true probability of (ψ|φ)

must fall in the bound [l, u]. On the other hand, reasoning under the maximum entropy
principle (|=me

tight) is credulous – it excludes all the other possible probability distributions
except for the most possible one.

Given a query ?(ψ|φ)[l, u] against a PLP P , the degree of satisfaction SATP (µ) tells the
probability that Pr(ψ|φ) ∈ [l, u]. For a query ?(ψ|φ), the bound [l, u] returned by P |=tight

(ψ|φ)[l, u] may be noninformative as discussed above. In our framework, we provide three
possible routes to generate a more informative interval [l′, u′] with SATP ((ψ|φ)[l′, u′]) ≥ a,
where a is threshold given by the user. First, a user may want to know the highest ac-
ceptable lower bound, so l is increased to a smallest value l′ s.t. SATP ((ψ|φ)[l′, u]) ≥ a

holds. Second, a user may want to know the lowest upper bound, so u is decreased to be u′

until SATP ((ψ|φ)[l, u′]) ≥ a is true. Third, a user may want to create an interval [l′, u′]
around me[P ], the precise probability given by the maximum entropy principle, where
SATP ((ψ|φ)[l′, u′]) ≥ a holds. To formalize these three scenarios, we define three con-
sequence relations |=SAT≥a

maxLow, |=SAT≥a
minUp and |=SAT≥a

arroundMe for them respectively as

– P |=SAT≥a
maxLow (ψ|φ)[l′, u] iff P |=SAT≥a

tight (ψ|φ)[l′, u] where P |=tight (ψ|φ)[l, u]

– P |=SAT≥a
minUp (ψ|φ)[l, u′] iff P |=SAT≥a

tight (ψ|φ)[l, u′], where P |=tight (ψ|φ)[l, u]

– P |=SAT≥a
arroundMe (ψ|φ)[l′, u′] iff P |=SAT≥a

tight (ψ|φ)[l′, u′] where P |=tight (ψ|φ)[l, u],
and ∃b ≥ 0, P |=me

tight (ψ|φ)[m, m], l′ = max{l, m− b}, u′ = min{u, m + b}
Example 6 Let P = {(fly(t)|bird(t))[0.90, 1], (bird(t)|magpie(t))[1, 1]} be a PLP. From
P , we can only infer that
P |=tight (fly(t)|magpie(t))[0, 1], and P |=me

tight (fly(t)|magpie(t))[0.9, 0.9].
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As discussed above, the bound [0, 1] is meaningless and there is not enough knowledge
to infer that exactly 90% magpies can fly. In reality, taking [0.9, 0.9] as the answer for this
query is too risky, and there is no need to get a precise probability for the query. A more
informative interval [l, u] than [0, 1] would be required. Assume that a user is happy when
there is a 80% (i.e. a = 0.8) chance that the actual probability of the query is in [l, u], then
we are able to use the above three consequence relations to get the following

P |=SAT≥0.8
maxLow (fly(t)|magpie(t))[0.7, 1]

P |=SAT≥0.8
minUp (fly(t)|magpie(t))[0, 0.96]

P |=SAT≥0.8
arroundMe (fly(t)|magpie(t))[0.7, 1]

From the highest lower bound 0.7, a user can assume that a magpie very likely can fly.
The user should not think that all magpies can fly either, since the lowest upper bound 0.96

is less than 1. The bound [0.7, 1] gives an estimate for the probability that a magpie can fly.

4 Instantiation of Our Framework

4.1 Quasi-distance

How to measure the distance between probability distributions is a major topic in probability
theory and information theory. One of the most common measures for comparing probability
distributions is the KL-divergence:

Definition 6 Let Pr and Pr′ be two probability distributions over the same set IΦ. The
KL-divergence between Pr and Pr′ is defined as:

KL(Pr‖Pr′) = −
∑

I∈IΦ

Pr(I) log
Pr′(I)

Pr(I)

KL-divergence is also called relative entropy.
It should be noted that KL(Pr, Pr′) is undefined if Pr′(I) = 0 and Pr(I) 6= 0. This

means Pr has to be absolutely continuous w.r.t. Pr′ for KL(Pr‖Pr′) to be defined.
Let PrΦ be the set of all probability distributions on the set of interpretations IΦ. Let

Pr1 and Pr2 be two subsets of PrΦ, Pr1 and Pr2 are separated if each is disjoint from
the other’s closure 2. A subset Pr of PrΦ is called inseparable if it cannot be partitioned
into two separated subsets. For example, the intervals [0, 0.3], [0.4, 1] are separated and each
of them is inseparable in the set of real numbers R. Emptyset ∅ is defined as inseparable.
Obviously, any subset Pr can be partitioned into a set of inseparable sets. Formally, there
exists Pr1,Pr2, . . ., such that every Pri is inseparable, Pri ∩ Prj = ∅ (i 6= j), and
Pr =

⋃
i Pri.

Definition 7 Let (ψ|φ) be a conditional event and Pr be a subset of PrΦ. Suppose that
Pr is inseparable, and Pr |=tight (ψ|φ)[l, u] 3. We define δub : 2PrΦ × F → [0, 1] and

2 The closure of a set S is the smallest closed set containing S.
3 It is defined that Pr |=tight (ψ|φ)[l, u] iff l = minPr∈Pr Pr(ψ|φ) and u = maxPr∈Pr Pr(ψ|φ).

In order to complete the definition, if ∀Pr ∈ Pr, P r(φ) = 0 then it is defined that Pr |=tight (ψ|φ)[1, 0].
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δlb : 2PrΦ ×F → [0, 1] as

δub(Pr, (ψ|φ)) = min
Pr ∈ Pr

Pr |= (ψ|φ)[u, u]

KL(Pr||Prunif )

δlb(Pr, (ψ|φ)) = min
Pr ∈ Pr

Pr |= (ψ|φ)[l, l]

KL(Pr||Prunif )

where Prunif is the uniform distribution on IΦ.

For simplicity, we use δub
Pr(ψ|φ) to denote δub(Pr, (ψ|φ)) and use δlb

Pr(ψ|φ) to denote
δlb(Pr, (ψ|φ)).

Value δub
Pr(ψ|φ) (resp. δlb

Pr(ψ|φ)) measures how much additional information needs to
be added to the uniform distribution in order to infer the upper (resp. lower) bound of the
conditional event (ψ|φ) given subset Pr.

Definition 8 Let Pr be an inseparable subset of PrΦ and (ψ|φ) be a conditional event
defined on Φ. Let PrIS contain all the inseparable subsets of PrΦ. We define ϑψ|φ :

PrIS 7→ [0, 1] as ϑψ|φ(Pr) = sign(pme − u) ∗ δub
Pr(ψ|φ) − sign(pme − l) ∗ δlb

Pr(ψ|φ),
where pme = Prunif (ψ|φ). Here, sign(x) = 1 if x ≥ 0 and sign(x) = −1 otherwise.

Let σΦ denote the smallest collection such that σΦ contains all the inseparable subsets
of PrΦ and it is closed under complement and countable unions of its members. Therefore,
〈PrΦ, σΦ〉 is a measurable space over the set PrΦ. Obviously, PrΦ ∈ σΦ, and if Pr =

{Pr | Pr |= P} for any PLP P , then Pr ∈ σΦ.
We extend function ϑψ|φ to any subset of σΦ.

Definition 9 Let Pr be a subset of σΦ and (ψ|φ) be a conditional event defined on Φ. Define
ϑψ|φ : σΦ 7→ [0, 1] as ϑψ|φ(Pr) =

∑
Pri∈P ϑ(ψ|φ)Pri where P is a partition of Pr such

that each element of P is inseparable.

Informally, value ϑ(ψ|φ)(Pr) measures how wide the probability distributions in Pr

are when inferring ψ given φ. For example, when all the distributions in Pr assign the same
probability for the conditional event (ψ|φ), then the set Pr is acting like a single distribution
when inferring ψ given φ, and in this case, Pr has width 0 for inferring ψ given φ.

From the definition, we know that function ϑ(ψ|φ) is a measure. Since it is a measure,
we can define a probability distribution based on it, and we show that this probability distri-
bution can be used as an instantiation of ignorance in the next subsection.

It is worth noting that since the set of all probabilistic models of a PLP is a convex set
and thus is inseparable, we can use ϑ(ψ|φ) to measure the probabilistic models of a PLP. We
will discuss this further in the next subsection.

4.2 Instantiation of ignorance

Definition 10 Let P be a PLP and (ψ|φ) be a conditional event. Then a KL-divergence
based ignorance denoted as IGKL

P (ψ|φ) is defined as

IGKL
P (ψ|φ) = ϑ(ψ|φ)(Pr)/ϑ(ψ|φ)(PrΦ)

where Pr = {Pr | Pr |= P}.
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Since ϑψ|φ is a measure, IGKL
P is a uniform probability distribution. Thus, IGKL

P (ψ|φ)

is the probability that a randomly selected probability distribution from set PrΦ assigns ψ|φ
a probability value that is in the interval [l, u], where P |=tight (ψ|φ)[l, u]. If this probability
is close to 1, then reasoning with P is similar to reasoning with an empty PLP; when it is
close to 0, it indicates that a tighter bound for (ψ|φ) can be inferred from P .

In the above definition, IGKL
P (ψ|φ) is undefined when P |= ⊥ ← φ, since ϑ(ψ|φ)(·) is

undefined. So, we extend IGKL
P as IGKL

P (ψ|φ) = 0 if P |= ⊥ ← φ.

Proposition 7 The measure IGKL satisfies the properties given in Definition 3.

Proof Since IGKL
P (·) is a second-order probability function, IGKL

P (ψ|φ) ∈ [0, 1].
If P |= ⊥ ← φ, then IGKL

P (ψ|φ) = 0 by definition. Assume that P 6|= ⊥ ← φ.
If IGKL

P (ψ|φ) = 0, then ϑ(ψ|φ)(Pr) = 0, and so, P |= (ψ|φ)[l, l] for some l ∈ [0, 1].
Therefore, IGKL satisfies the property Preciseness.

From the definition of IGKL, it is easy to see that IGKL
∅ (ψ|φ) = 1.

On the other hand, if IGKL
P (ψ|φ) = 1 then P |= (ψ|φ)[l, u] iff ∅ |= (ψ|φ)[l, u]. Since

∅ |= (ψ|φ)[0, 1], P |= (ψ|φ)[0, 1].
Suppose that PLP P and another PLP P ′ do not contain common syntaxes, i.e.Φ∩Φ′ =

∅. Let Pr′ |= P ∪ P ′. Since Φ ∩ Φ′ = ∅, we can construct another probability distribution
Pr as Pr(I) =

∑
I⊆I′ Pr′(I ′) for all I ⊆ IΦ. Obviously, Pr |= P . By Definitions 7

and 8, two probability distributions that satisfy P ′ are chosen to calculate δlb(Pr, (ψ|φ)),
δub(Pr, (ψ|φ)), ϑψ|φ(Pr), and thus IGKL

P ′∪P (ψ|φ). From them, two probability distributions
are constructed and they satisfy P , and give the conditional event (ψ|φ) the lower bound and
upper bound respectively. With these two distributions, we can calculate IGKL

P (ψ|φ), as well
as IGKL

P ′∪P (ψ|φ). ut

Proposition 8 Let P be a PLP and (ψ|φ) be a conditional event. Suppose that P |=tight

(ψ|φ)[l, u] and pm = me[P ](ψ|φ). Then IGKL
P (ψ|φ) = IGKL

P1
(ψ|φ) + IGKL

P2
(ψ|φ), where

P1 = P ∪ {(ψ|φ)[pm, u]}, P2 = P ∪ {(ψ|φ)[l, pm]}.

Proof Let Pr = {Pr | Pr |= P}, Pr1 = {Pr |= P1}, and Pr2 = {Pr |= P2}. Then
Pr = Pr1 ∪ Pr2. Since ϑ(ψ|φ) is a measure, ϑ(ψ|φ)(Pr) = ϑ(ψ|φ)(Pr1) + ϑ(ψ|φ)(Pr2).
Thus, IGKL

P (ψ|φ) = IGKL
P1

(ψ|φ) + IGKL
P2

(ψ|φ). ut

This proposition says that the ignorance of a PLP about a conditional event is the sum
of the ignorance of lacking knowledge supporting probability distributions above and below
the maximum entropy probability. The ignorance can also be calculated according to the
maximum entropy as below.

Proposition 9 Let P be a PLP and (ψ|φ) be a conditional event. Suppose that P |=tight

(ψ|φ)[l, u], Pr = {Pr | Pr |= P}, and ∅ |=me
tight (ψ|φ)[pme, pme], then ϑ(ψ|φ)(Pr) =

sign(u − pme) ∗ maxPr|=P u H(Pr) − sign(l − pme) ∗ maxPr|=P l H(Pr) where Pu =

P ∪ {(ψ|φ)[u, u]} and P l = P ∪ {(ψ|φ)[l, l]}.
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Table 2 KL Ignorance values for Example 7

Conditional Event Ignorance value
(haveLegs(tweety)|penguin(tweety)) 0.0065
(haveLegs(robin)|bird(robin)) 0.0027
(fly(robin)|bird(robin) ∧ red(robin)) 0.0545
(fly(robin)|bird(robin)) 0.1555
(fly(tweety)|penguin(tweety)) 0.0068

Proof Assume that P1 = P ∪ {(ψ|φ)[pme, u]}, P2 = P ∪ {(ψ|φ)[l, pme]}. Suppose that
Pr1 = {Pr | Pr |= P1} and Pr2 = {Pr | Pr |= P2}. Then we have

ϑ(ψ|φ)(Pr1) = (u− sign(pme))δ
ub(Pr1, (ψ|φ))− (sign(pme − pme)δ

lb(Pr1, (ψ|φ))

= (u− sign(pme))δ
ub(Pr1, (ψ|φ))

= (u− sign(pme)) min
Pr ∈ Pr1

Pr |= (ψ|φ)[u, u]

KL(Pr||Prunif )

= (u− sign(pme)) max
Pr|=P u

H(Pr)

ϑ(ψ|φ)(Pr2) = (pme − sign(pme)δ
ub(Pr1, (ψ|φ))− (sign(pme)− l)δlb(Pr1, (ψ|φ))

= (sign(pme)− l)δlb(Pr2, (ψ|φ)))

= (sign(pme)− l) min
Pr ∈ Pr2

Pr |= (ψ|φ)[l, l]

KL(Pr||Prunif )

= (sign(pme)− l) max
Pr|=P l

H(Pr)

So, ϑ(ψ|φ)(Pr) = ϑ(ψ|φ)(Pr1) + ϑ(ψ|φ)(Pr2) = (u − sign(pme))maxPr|=P u H(Pr) +

(sign(pme)− l)maxPr|=P l H(Pr). ut

Example 7 Let PLP P be

P =





(fly(X)|bird(X))[0.9, 0.98],

(bird(X)|penguin(X))[1, 1],

(fly(X)|penguin(X))[0, 0.05],

(haveLegs(X)|bird(X))[0.98, 1]





Consider the following conditional events:

E1 = (haveLegs(tweety)|penguin(tweety))

E2 = (haveLegs(robin)|bird(robin))

E3 = (fly(robin)|bird(robin) ∧ red(robin))

E4 = (fly(robin)|bird(robin))

E5 = (fly(tweety)|penguin(tweety))

By calculating the KL-ignorance value for conditional events E1, . . . , E5, we have that
IGKL

P (E1) = 0.0065, IGKL
P (E2) = 0.0027, etc., as shown in Table 2. From the table, we

can see that IGKL
P (E1) > IGKL

P (E2), due to the ignorance about whether the special birds,
penguins, are typical birds or not (with respect to the property of having legs).
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Comparing these ignorance values, we also see that IGKL
P (E3) < IGKL

P (E4). It looks
counter-intuitive, since being red is irrelevant to being able to fly or not. But such irrelevance
is based on our common knowledge and not represented in P . Based on P , we actually do
not know whether being red is irrelevant to the ability of flying. To be more precise, for
example, if the predicate red is replaced by abnormal, then whether an abnormal bird can
fly is unclear. Consider that the difference between red and abnormal comes from our
common knowledge and not from the PLP P , it is natural that the ignorance value for E3 is
smaller than that for E4.

4.3 Instantiation of satisfaction function

Given a PLP P , a set of probability distributions can be induced such that Pr = {Pr | Pr |=
P} and a unique probability distribution me[P ] in the set that has the maximum entropy can
be determined. In Pr, some distributions are likely to be the actual probability distribution.
However, due to the lack of information, we do not know which one is the actual probability
distribution. Based on the maximum entropy principle, me[P ] is assumed to be the most
likely one, and the probability me[P ](ψ|φ) is assumed to be the most likely probability
for the event (ψ|φ). Intuitively, the probability value that is closer to me[P ](ψ|φ) is more
likely to be the actual probability of (ψ|φ). Based on this, an interval that contains values
closer to me[P ](ψ|φ) are more likely to contain the actual probability of (ψ|φ). Of course, a
loose interval is always more likely to contain the actual probability of (ψ|φ) than a tighter
interval.

From the KL-divergence, we can define how close a value is to me[P ] as:

νpos
P,(ψ|φ)

(v) = min
Pr|=P,Pr(ψ|φ)=v

KL(Pr||me),

where v ≥ me[P ]

νneg
P,(ψ|φ)

(v) = min
Pr|=P,Pr(ψ|φ)=v

KL(Pr||me),

where v ≤ me[P ]

dispos
P,(ψ|φ)

(u, v) = |νpos
P,(ψ|φ)

(u)− νpos
P,(ψ|φ)

(v)|
disneg

P,(ψ|φ)
(u, v) = |νneg

P,(ψ|φ)
(u)− νneg

P,(ψ|φ)
(v)|

Let dis be dispos
P,(ψ|φ)

(resp. disneg
P,(ψ|φ)

). It is easy to see that dis is a distance function

onR[pme,u] (resp.R[l,pme]), where P |=tight (ψ|φ)[l, u], pme = me[P ](ψ|φ) andR[a,b] =

{x | x ∈ [a, b], x ∈ R}, i.e. dis satisfies the following:

• dis(u, v) ≥ 0

• dis(u, v) = 0 iff u = v

• dis(u, v) = dis(v, u)

• dis(u, v) ≤ dis(u, x) + dis(x, v)

Again, from the distance functions dispos
P,(ψ|φ)

and disneg
P,(ψ|φ)

, a probability distribution
can be defined. So, by KL-divergence, the possible probabilities of a conditional event (ψ|φ)

are measurable. Assume that every probability is equally probable, then the (second order)
probability that the actual (first order) probability of (ψ|φ) falls in an interval [a, b] is the
length of [a, b] divided by the length of [l, u], where P |=tight (ψ|φ)[l, u], according to the
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distance function dispos
P,(ψ|φ)

and disneg
P,(ψ|φ)

. Formally, we define the degree of satisfaction
as this second order probability.

Definition 11 Let P be a PLP and (ψ|φ) be a conditional event. Suppose that P |=tight

(ψ|φ)[l, u] and P |=me
tight (ψ|φ)[pme, pme], then we have that:

SATKL
P ((ψ|φ)[a, b]) =




0.5 ∗ (
dispos

P,(ψ|φ)(pme,min(u,b))

dispos
P,(ψ|φ)(pme,u)

+
disneg

P,(ψ|φ)(pme,max(a,l))

disneg
P,(ψ|φ)(pme,l)

), if pme ∈ [a, b]

0, otherwise

Proposition 10 Let P be a PLP, then the function SATKL
P defined in Definition 11 satisfies

all the postulates in Definition 4.

Proof Suppose that µ = (ψ|φ)[l, u] is a probabilistic formula.

– Reflexivity If P |=tight µ, then

SATP (µ) = 0.5 ∗ (
dispos

P,(ψ|φ)(pme,min(u,u))

dispos
P,(ψ|φ)(pme,u)

+
disneg

P,(ψ|φ)(pme,max(l,l))

disneg
P,(ψ|φ)(pme,l)

) = 1

On the other hand, assume that P |=tight (ψ|φ)[l′, u′].
If SATP (µ) = 1 then dispos

P,(ψ|φ)
(pme, min(u, u′)) = dispos

P,(ψ|φ)
(pme, u) and

dispos
P,(ψ|φ)

(pme, max(l, l′)) = dispos
P,(ψ|φ)

(pme, l). Then u′ = u and l′ = l, so P |=
(ψ|φ)[l, u].

– Rationality If P ∪{µ} is unsatisfiable, and P |=tight (ψ|φ)[l′, u′], then [l′, u′]∩ [l, u] =

∅. Suppose that P |=me
tight (ψ|φ)[pme, pme], then pme ∈ [l′, u′] and pme /∈ [l, u].

Therefore SATP (µ) = 0.
– Monotonicity Suppose that [l′, u′] ⊆ [l, u], and P |=tight (ψ|φ)[l0, u0],

then dispos
P,(ψ|φ)

(pme, min(u′, u0)) ≤ dispos
P,(ψ|φ)

(pme, min(u, u0)) and
dispos

P,(ψ|φ)
(pme, max(l′, l0)) ≤ dispos

P,(ψ|φ)
(pme, max(l, l0)).

Therefore, SAT(P, µ) ≥ SAT(P, (ψ|φ)[l′, u′]).
Similarly, If [l′, u′] ⊂ [l, u] then SAT(P, µ) > SAT(P, (ψ|φ)[l′, u′]).

– Cautious Monotonicity Assume that P |=tight (ψ|φ)[l0, u0], P ′ |=tight (ψ|φ)[l1, u1].
Let P ′ = P ∪ {(ψ|φ)[l′, u′] for some [l′, u′] s.t. P |=me (ψ|φ)[l′, u′]. It is easy to verify
that me[P ] |= P ′. Suppose that Pr′ = {Pr | Pr |= P ′} and Pr = {Pr | Pr |= P},
then Pr′ ⊆ Pr. Since H(me[P ]) > H(Pr) for all Pr ∈ Pr, H(me[P ]) > H(Pr) for
all Pr ∈ Pr′, thus me[P ] = me[P ′]. By the definition of dispos and disneg , we have that
dispos

P,(ψ|φ)
(pme, a) = dispos

P ′,(ψ|φ)
(pme, a) and disneg

P,(ψ|φ)
(pme, b)) = disneg

P ′,(ψ|φ)
(pme, b))

for any a, b s.t. [a, b] ⊆ [l1, u1].
If pme /∈ [l, u] then SATKL

P (µ) = SATKL
P ′ (µ) = 0. Now, assume that pme ∈ [l, u], so,

SATKL
P ((ψ|φ)[l, u]) = 0.5 ∗ (

dispos
P,(ψ|φ)(pme,min(u,u0))

dispos
P,(ψ|φ)(pme,u0)

+
disneg

P,(ψ|φ)(pme,max(l,l0))

disneg
P,(ψ|φ)(pme,l0)

)

SATKL
P ′ ((ψ|φ)[l, u]) = 0.5 ∗ (

dispos

P ′,(ψ|φ)
(pme,min(u,u1))

dispos

P ′,(ψ|φ)
(pme,u1)

+
disneg

P ′,(ψ|φ)
(pme,max(l,l1))

disneg

P ′,(ψ|φ)
(pme,l1)

)

We have dispos
P ′,(ψ|φ)

(pme, u1) = dispos
P,(ψ|φ)

(pme, u1) ≤ dispos
P,(ψ|φ)

(pme, u0),
disneg

P ′,(ψ|φ)
(pme, l1) = disneg

P,(ψ|φ)
(pme, l1) ≤ disneg

P,(ψ|φ)
(pme, l0).

Since P ′ |= P , we have that u1 ≤ u0 and l1 ≥ l0.
1) If u ≤ u1, then min(u, u0) = min(u, u1) = u.
Since dispos

P,(ψ|φ)
(pme, u) = dispos

P ′,(ψ|φ)
(pme, u), we have that

dispos

P ′,(ψ|φ)
(pme,min(u,u1))

dispos

P ′,(ψ|φ)
(pme,u1)

≥ dispos
P,(ψ|φ)(pme,min(u,u0))

dispos
P,(ψ|φ)(pme,u0)
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2) If u1 ≤ u ≤ u0, then
dispos

P ′,(ψ|φ)
(pme,min(u,u1))

dispos

P ′,(ψ|φ)
(pme,u1)

= 1 and

dispos
P,(ψ|φ)(pme,min(u,u0))

dispos
P,(ψ|φ)(pme,u0)

≤ 1.

3) If u ≥ u0, then
dispos

P ′,(ψ|φ)
(pme,min(u,u1))

dispos

P ′,(ψ|φ)
(pme,u1)

= 1 and
dispos

P,(ψ|φ)(pme,min(u,u0))

dispos
P,(ψ|φ)(pme,u0)

= 1.

Concluding the above, we have that
dispos

P ′,(ψ|φ)
(pme,min(u,u1))

dispos

P ′,(ψ|φ)
(pme,u1)

≥ dispos
P,(ψ|φ)(pme,min(u,u0))

dispos
P,(ψ|φ)(pme,u0)

.

By applying the same analysis on l, we know SATKL
P ′ ((ψ|φ)[l, u]) ≥ SATKL

P ((ψ|φ)[l, u])

– The fact that SATKL satisfies the conditions in Definition 4 follows from the definition
of SATKL.
ut

Example 8 Let P1 and P2 be as given in Example 4. Then

SATKL
P1 ((headUp(coin)|toss(coin))[0, 0.5])

= SATKL
P1 ((headUp(coin)|toss(coin))[0.5, 1])

= 0.5.

So, in P1, we do not know whether head-ip is more probable than tail-up. However
SATKL

P2
((headUp(coin)|toss(coin))[0.5, 0.5]) = 1,

we are sure that the probability of head-up and tail-up is the same.

4.4 Logic properties

The postulates Right Weakening (RW), Reflexivity (Ref ), Left Logical Equivalence (LLE),
Cautious Cut, Cautious Monotonicity (CM), and Or proposed by Kraus et al. [KLM90], are
commonly regarded as being particularly desirable for any reasonable notion of nonmono-
tonic entailment °.

In [KIL04], these postulates are reformulated for probabilistic reasoning:
RW. If (φ|>)[l, u] ° (ψ|>)[l′, u′], and P ° (φ|φ′)[l, u],

then P ° (ψ|φ′)[l′, u′].
Ref. P ° (φ|φ)[1, 1].
LLE. If φ ≡ φ′ is logically valid, then P ° (ψ|φ)[l, u] iff P ° (ψ|φ′)[l, u].
Cautious Cut. If P ° (φ′|φ)[1, 1] and P ° (ψ|φ ∧ φ′)[l, u], then P ° (ψ|φ)[l, u].
CM. If P ° (φ′|φ)[1, 1] and P ° (ψ|φ)[l, u], then P ° (ψ|φ ∧ φ′)[l, u].

Theorem 4 ([KIL04]) The consequence relations |= and |=me satisfy RW. Ref. LLE. Cut.
CM. for all PLPs, all ground events ψ, φ, φ′ and all l, u, l′, u′ ∈ [0, 1].

In Section 3, we have shown that the consequence relations |=SAT=1 and |=SAT>0

coincide with |= and |=me respectively. Below, we will show that |=SAT≥a with a > 0 also
have some nice properties.

Proposition 11 Let P be a PLP, ψ, φ, φ′ be ground events, and l, u, l′, u′ ∈ [0, 1]. Sup-
pose that the consequence relation |=SAT≥a with a > 0 is defined from SATKL, then
|=SAT≥asatisfies

20



Ref. P |=SAT≥a (φ|φ)[1, 1].
LLE. If φ ≡ φ′ is logically valid, then P |=SAT≥a (ψ|φ)[l, u]

iff P |=SAT≥a (ψ|φ′)[l, u].
Cautious Cut. If P |= (φ′|φ)[1, 1] and P |=SAT≥a (ψ|φ ∧ φ′)[l, u],

then P |=SAT≥a (ψ|φ)[l, u].
CM. If P |= (φ′|φ)[1, 1] and P |=SAT≥a (ψ|φ)[l, u],

then P |=SAT≥a (ψ|φ ∧ φ′)[l, u].

Proof Property Ref directly follows the Reflexivity property of SAT, since P |=thight

(φ|φ)[1, 1]. Property LLE follows the fact that our definition of SATKL is syntax indepen-
dent. Property Cautious Cut and property CM hold for the same reason as LLE holds, since
φ ∧ φ′ ≡ φ under P when P |= (φ′|φ)[1, 1]. ut

The consequence relation |=SAT≥a does not satisfy the reformulated RW, i.e., from the
fact that (φ|>)[l, u] |=SAT≥a (ψ|>)[l′, u′] and P |=SAT≥a (φ|φ′)[l, u], we cannot draw the
conclusion that P |=SAT≥a (ψ|φ′)[l, u] in general.

These properties indicate that the consequence relation |=SAT≥a is plausible for non-
monotonic reasoning.

5 Examples

In this section, we illustrate the usefulness of our framework with some examples.

Example 9 Let P be a PLP as given in Example 11. In our framework, we calculate the KL-
ignorance and KL-satisfaction for our queries. We have IGKL

(fly(t)|magpie(t)(P ) = 0.11 and

IGKL
(fly(t)|sickMagpie(t))(P ) = 0.0283. This indicates that P is more useful to infer the pro-

portion of magpies that can fly than to infer the proportion of sick magpies that can fly. We
also have that SATKL

P ((fly(t)|magpie(t))[0.8, 1]) = 0.58, SATKL
P ((fly(t)|sickMagpie(t))

[0.8, 1]) = 0.53. By comparing these KL degrees of satisfaction, we know that magpies are
more likely to fly than sick magpies.

Example 10 Let P be as given in Example 7. Consider a query

?(haveLegs(tweety)|penguin(tweety))[l, u]

with different values of l and u, we can calculate its KL degree of satisfaction as shown in
Table 3. In the table, we can see that

SATKL
P ((haveLegs(tweety)|penguin(tweety))[0.1, 1]) = 0.994,

SATKL
P ((haveLegs(tweety)|penguin(tweety))[0.2, 1]) = 0.987, etc

So the degree of satisfaction of the query decreases as the bound becomes tighter.
It is worth noting that P |=me

tight (haveLegs(tweety)|penguin(tweety))[0.98, 0.98].
However, the degree of satisfaction of (haveLegs(tweety)|penguin(tweety))[0.97, 0.99] is
only 0.081, which indicates that the probability 0.98 is not fully acceptable. This is because
we do not know whether penguins are typical birds (with respect to the property of having
legs).

On the contrary, we can accept that (haveLegs(tweety)|penguin(tweety))[0.8, 1], which
means that we can also infer that tweety has legs given that it is a penguin. Although we are
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Table 3 KL degree of a satisfaction of query ?(haveLegs(tweety)|penguin(tweety))[l, u] with different
values of l and u

Query bound [l,u] degree of satisfaction SATKL
P

[0.0, 1] 1
[0.1, 1] 0.994
[0.2, 1] 0.987
[0.3, 1] 0.977
[0.4, 1] 0.965
[0.5, 1] 0.948
[0.6, 1] 0.925
[0.7, 1] 0.890
[0.8, 1] 0.829
[0.9, 1] 0.687

[0.97, 0.99] 0.081

When querying ?(haveLegs(tweety)|penguin(tweety)), we also get that
IGKL

P (haveLegs(tweety)|penguin(tweety)) = 0.0065
P |=tight (haveLegs(tweety)|penguin(tweety))[0, 1]
P |=me

tight (haveLegs(tweety)|penguin(tweety))[0.98, 0.98]

not entirely sure about this, it is more reliable than believing 97% − 99% magpies can fly
(compare 0.829 to 0.081).

In this example, a user wants to know the lower bound for the probability that a penguin
has legs. From the the non-informative interval [0, 1], the user can only know that it is possi-
ble that the probability that a penguin has leg is 0 (say, a penguin is possibly a special kind
of bird), which is useless. By |=SAT≥a

maxLow, the user can infer a non-trivial lower bound for the
query. Given a = 0.8, it is inferred that more than 80% penguin may have legs.

When adding knowledge (haveLegs(X)|penguin(X))[0.5, 1] into P , we get P ′ and
SATKL

P ′ ((haveLegs(tweety)|penguin(tweety))[0.8, 1]) = 0.867, which is bigger than 0.829.
This fact indicates that new pieces of knowledge that support a penguin has legs are ob-
tained.

ut
Consider the inheritance problem. Intuitively, we expect that a subclass can inherit its

superclass’s attributes. But if we permit inheritance with exception, then a special subclass
may lack the attributes that its superclass has. The more specific a subclass is, the more
possible that it lacks the attributes that its superclass has.

Example 11 Let P be a PLP:

P =





(fly(X)|bird(X))[0.9, 1]

(bird(X)|magpie(X))[1, 1]

(magpie(X)|sickmagpie(X))[1, 1]





When querying ?(fly(t)|magpie(t)) and ?(fly(t)|sickmagpie(t)), we get that
P |=tight (fly(t)|magpie(t))[0, 1], P |=me

tight (fly(t)|magpie(t))[0.9, 0.9],
P |=tight (fly(t)|sickmagpie(t))[0, 1], and P |=me

tight (fly(t)|sickMagpie(t))[0.9, 0.9].
Thus we can not differ magpies and sick magpies in their ability of flying, although sick
magpies are more special than magpies, and therefore they are less likely to be able to fly
than magpies. In contrast, in our framework, SATKL

P ((fly(t)|magpie(t))[0.8, 1]) = 0.58,
and SATKL

P ((fly(t)|sickmagpie(t))[0.8, 1]) = 0.53. By comparing these KL degree of
satisfaction, we know that magpies are more likely than sick magpies to fly. ut
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Example 12 (Route planning) [KIL04]. Assume that John wants to pick up Mary after she
stops working. To do so, he must drive from his home to her office. Now, John has the
following knowledge at hand: Given a road (ro) from R to S, the probability that he can
reach (re) S from R without running into a traffic jam is greater than 0.7. Given a road in
the south (so) of the town, this probability is even greater than 0.9. A friend just called him
and gave him advice (ad) about some roads without any significant traffic. Clearly, if he can
reach S from T and T from R, both without running into a traffic jam, then he can also
reach S from R without running into a traffic jam. Furthermore, John has some concrete
knowledge about the roads, the roads in the south of the town, and the roads that his friend
was talking about. For example, he knows that there is a road from his home (h) to the
university (u), from the university to the airport (a), and from the airport to Mary’s office
(o). Moreover, John believes that his friend was talking about the road from the university
to the airport with a probability between 0.8 and 0.9 (he is not completely sure about it,
though). The above and some other probabilistic knowledge is expressed by the following
PLP P:

P =





ro(h, u)[1, 1],

ro(u, a)[1, 1],

ro(a, o)[1, 1],

ad(h, u)[1, 1],

ad(u, a)[0.8, 0.9],

so(a, o)[1, 1],

(re(R, S)|ro(R, S))[0.7, 1],

(re(R, S)|ro(R, S) ∧ so(R, S))[0.9, 1],

(re(R, S)|ro(R, S) ∧ ad(R, S))[1, 1],

(re(R, S)|re(R, T ) ∧ re(T, S))[1, 1]





John wants to know the probability of him running into a traffic jam, which can be
expressed by query: Q0 =?(re(h, o)|>).

In [KIL04], Q0 can be answered by P |=tight (re(h, o)|>)[0.7, 1], and P |=me
tight

(re(h, o)|>)[0.93, 0.93]. John can either accept a noninformative bound [0.7, 1] or accept
an unreliable precise probability 0.93, and no further reasoning can be done.

Using our method, we get that IGKL
P (re(h, o)|>) = 0.066. The ignorance value IGKL

P (re(h, o)|>)

indicates that the knowledge is reliable about (re(h, o)|>). However, the actual probability
of (re(h, o)|>) may be still different from 0.93, since IGKL

P (re(h, o)|>) > 0.
John is wondering whether he can reach Mary’s office from his home, such that the

probability of him running into a traffic jam is smaller than 0.10. This can be expressed
by the following probabilistic query: Q1 =?(re(h, o)|>)[0.90, 1]. John is also wondering
whether the probability of him running into a traffic jam is smaller than 0.10, if his friend
was really talking about the road from the university to the airport. This can be expressed as
a probabilistic query: Q2 =?(re(h, o)|ad(u, a))[0.90, 1].

In [KIL04], in the traditional probabilistic logic programming both Q1 and Q2 are given
the answer “No”; by applying the maximum entropy principle Q1 is given the answer “No”
and Q2 is given the answer “Yes”. For Q1 John will accept the answer “No”, however, for
Q2, John may be confused and does not know which answer he should trust.

Using our method, we calculate the degrees of satisfaction of these two queries. For Q1,
SATKL

P (Q1) = 0, which means the bound [0.9, 1] does not contain the probability given by
the maximum entropy principle, and thus John has no confidence that he can reach Mary’s
office on time. For Q2, SATKL

P (Q2) = 0.724, the relative high value “0.724” can help John
to decide whether he should set off to pick up Mary.
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Table 4 Degrees of satisfaction for queries Q1 and Q2

Bound (re(h, o)|>) Bound (re(h, o)|ad(u, a))
[0, 1] 1 [0, 1] 1

...
...

...
...

[0.70, 1] 1 [0.88, 1] 1
[0.75, 1] 0.785 [0.897, 1] 0.75
[0.80, 1] 0.658 [0.922, 1] 0.60
[0.86, 1] 0.500 [0.94, 1] 0.50
[0.90, 1] 0.000

Using our method, John gets an estimate of the probability that he can reach Mary’s
office from his home without running into a traffic jam. If it is a special day for him and
Mary, he hopes that his estimate is more accurate, otherwise, he can tolerate a less ac-
curate estimate. Formally, he needs to decide the threshold a for |=SAT≥a

maxLow. For exam-
ple, for Q2, he may set a = 0.6 for a normal day, and aI = 0.75 for an important day.
Therefore, he can infer that P |=SAT≥0.6

maxLow (re(h, o)|ad(u, a))[0.922, 1] and P |=SAT≥0.75
maxLow

(re(h, o)|ad(u, a))[0.897, 1]. If it is an ordinary day and the lowest probability is bigger than
0.90, then he can set off. On an important day, he will need to investigate more about the
traffic (to decrease the ignorance of (re(h, o)|ad(u, a))) or he has to revise his plan, since
0.897 < 0.9.

On the another hand, we also analyze the usefulness of the advice from his friend. By
analyzing his friend’s knowledge, we have IGKL

P (re(h, o)|ad(u, a)) = 0.0184. This means
that his friend’s advice is indeed useful, since this ignorance value is significantly smaller
than IGKL

P (re(h, o)|>). So, John needs to call his friend to make sure that his friend is really
talking about the road from the university to the airport.

The degrees of satisfaction for various intervals are given in Table 4. From the table, we
can see that the degree of satisfaction decreases as the interval becomes tighter. This means
that the second order probability that the actual probability of (ψ|φ) falls in [l, u] is getting
smaller. ut

6 Implementation of Our Framework and A Case Study

6.1 Implementation

To efficiently return a query result given a PLP, we implemented the algorithms proposed in
[KIL04,Luk01b] for reasoning with PLPs. Using these algorithms, a PLP can be translated
into a linear or nonlinear optimization problem. We implemented these algorithms in Java
and solved the underlying optimization problem using a component in Matlab.

In addition, we also implemented the calculation of ignorance and degree of satisfaction
with the algorithms given below, KLIgnorance (Algorithm 1) and KLSatisfaction (Algo-
rithm 3). These two algorithms rely on the algorithms provided in [KIL04,Luk01b] as well
as the software Matlab to optimize a PLP.

In terms of complexity, our algorithms call Algorithm tight 0 concequence (Fig. 2.)
and Algorithm tight me concequence (Fig. 3.) 1 or 2 times. It is stated in [KIL04] that the
complexity for Algorithm tight 0 concequence (Fig. 2.) is FPNP -complete and Algorithm
tight me concequence (Fig. 3.) fall outside the range of such standard complexity analysis
(where the upper complexity bound is based on the existence of a polynomial-size probabilis-
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tic interpretation that involves only rational numbers), since the me-model of a probabilistic
logic program P may involve irrational numbers.[KIL04]. The same difficulties exist for
analyzing the complexity of our algorithms. Furthermore, our algorithms also rely on the
computation of nonlinear optimization problems subject to linear constraints as that for Al-
gorithm tight me concequence (Fig. 3.). Therefore, the complexity of our algorithms falls
in the same level as that of Algorithm tight me concequence (Fig. 3.), which is intractable
[KIL04].

6.2 A case study on breast cancer clinical trials

Usually clinical trials provide a huge amount of statistical data. From these statistical data,
we can compare the efficiency of drugs or therapies for different groups of patients. In order
to make use of these data, we need to represent the statistical knowledge formally, and to
provide analyzing tools for using such knowledge to answer queries related to individuals
(maybe with some facts about the individuals). For this purpose, we use PLP as the for-
mal representation language. As we discussed in Section 1, PLP is chosen because of its
expressive power for imprecise probabilistic knowledge and its reasoning efficiency. Also,
statistical data can be regarded as probabilistic data that is guaranteed by the law of large
numbers in the field of probability theory, so using PLP to model statistical data drawn from
trials is theoretically valid.

6.2.1 Observation vs. a prior facts

In PLPs, we use ground formulas to state a prior facts from statistics, i.e., something that
must be true (statistically) is regarded as a fact. These facts are treated differently from ob-
servations about individuals. Observing an event (such as the test result of a particular test)
does not infer that the event would happen for sure. So, observations cannot be represented
as formulas of the form (ψ(a)|>)[1, 1] in a PLP, doing so implies that we know ψ(a) as
being true even before it is observed. In other words, taking ψ(a) as a probabilistic event,
we cannot predict if ψ(a) is true or false before we observed it. In our framework, all ob-
servations are stored in a separate database (named OBS) rather than in a PLP containing
statistical knowledge. When querying (ψ|φ)[l, u] on PLP P , this observation database OBS

is automatically called, so querying (ψ|φ)[l, u] is equivalent to querying (ψ|φ∧∧
OBS)[l, u]

on P .

6.2.2 Background knowledge

From a clinical trial, only statistical data are explicitly provided. This knowledge alone is not
sufficient for reasoning, some background knowledge is also necessary. In order to process
data in a trial, the background knowledge needed can be categorized into three groups

– additional statistical knowledge (to trials data), which is explicitly represented typically
by a table, such as a statistics about the death rate in a particular age group;

– meta knowledge for a trial, such as the principle for choosing the participants, which is
represented explicitly or implicitly in a trial report;

– background knowledge related to the trial, which may be omitted in a trial report and is
shared by many trials, such as age distribution, natural death rate, a prior estimation of
a disease, etc..

25



Algorithm 1 KLIgnorance
Input: PLP P and a ground query Q =?(ψ|φ)
Output: ignorance value for Q
1: if P is unsatisfiable then
2: return 1;
3: end if
4: if P |=tight (φ|>)[0, 0] then
5: return 1;
6: end if
7: Compute the tight bounds [l, u] for (ψ|φ) by Algorithm Tight 0 Consequence in Fig. 2.
8: Compute the simplified PLP D index sets R and associate numbers ar and optimal solution y?

r (r ∈ R)
by Algorithm Tight me Consequence in Fig. 3.

9: Compute the optimal value igneg of the optimization problem:

igneg = max


−

∑

r∈R

yl
r(log yl

r − log ar)




subject to: yl
r satisfies LC(>, Dl, R), where Dl = D ∪ {(ψ|φ)[l, l]}

10: Compute the optimal value igpos of the optimization problem:

igpos = max


−

∑

r∈R

yu
r (log yu

r − log ar)




subject to: yu
r satisfies LC(>, Du, R), where Du = D ∪ {(ψ|φ)[u, u]}.

11: Compute optimal solution y′r (r ∈ R) for P ′ = ∅ by Algorithm Tight me Consequence in Fig. 3.
pme := me[P ′](ψ|φ).

12: Compute the optimal value ig′neg of the optimization problem:

ig′neg = max


−

∑

r∈R

yl
r(log yl

r − log ar)




subject to: yl
r satisfies LC(>, Dl

0, R), where Dl
0 = {(ψ|φ)[l, l]}

13: Compute the optimal value ig′pos of the optimization problem:

ig′pos = max


−

∑

r∈R

yu
r (log yu

r − log ar)




subject to: yu
r satisfies LC(>, Du

0 , R), where Du
0 = {(ψ|φ)[u, u]}.

14: if pme < u then
15: s1 := 1
16: else
17: s1 := −1;
18: end if
19: if pme > l then
20: s2 := 1;
21: else
22: s2 := −1;
23: end if
24: ig := (s1 ∗ igpos + s2 ∗ igneg)/(ig′pos + ig′neg)
25: return ig
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Algorithm 2 KLDivergence
Input: PLP P , me[P ], a conditional event (ψ|φ), and a probability value v.
Output: kl = minPr|=P,Pr(ψ|φ)=v KL(Pr||me[P ])
1: The me[P ] is obtained from Algorithm 1, and is represented as yme.
2: Compute the tight bounds [l′, u′] for (ψ|φ) by Algorithm Tight 0 Consequence in Fig. 2.
3: if v /∈ [l′, u′] then
4: return ERROR
5: end if
6: Compute the optimal value kl of the optimization problem:

kl = min


∑

r∈R

yr log yr −
∑

r∈R

yr log yme




subject to: yr satisfy LC(>, DV , R), where DV = D ∪ {(ψ|φ)[v, v]}.
7: return kl

Algorithm 3 KLSatisfaction
Input: PLP P and a ground query Q =?(ψ|φ)[l, u]
Output: KL degree of satisfaction for Q
1: if P |=tight (φ|>)[0, 0] then
2: return 1;
3: end if
4: if l ≥ u then
5: return 0;
6: end if
7: Compute the tight bounds [l′, u′] for (ψ|φ) by Algorithm Tight 0 Consequence in Fig. 2.
8: if l < l′ then
9: l := l′

10: end if
11: if u > u′ then
12: u := u′
13: end if
14: Compute sp = νpos

P,(ψ|φ)
(u′) by Algorithm 2.

15: Compute sn = νneg
P,(ψ|φ)

(u′) by Algorithm 2.

16: Compute s′p = νpos
P,(ψ|φ)

(l) by Algorithm 2.

17: Compute s′n = νneg
P,(ψ|φ)

(u) by Algorithm 2.
18: sat := 0.5 ∗ (s′p/sp + s′n/sn)
19: return sat

6.2.3 Analysis of trials data for breast cancer

In this section, we model and query the meta-analysis results of early breast cancer trials4.
This meta analysis of original individual trials aims to examine the effects of various treat-
ments with early breast cancer. Here we consider the mortality of patients who have had the
treatment of radiotherapy after breast conserving surgery (BCS) in node-negative disease.
The statistical data we use are from Webfigure 6a. in the web-site of EBCTCG 5. For in-
stance from this table, we can get the statistics of 10-year mortality of 50-year-old breast
cancer patients who have had the treatment of radiotherapy after breast conserving surgery
in node-negative disease, as well as the 10-year mortality of the patients whose ER (Estro-

4 Early Breast Cancer Trialists’ Collaborative Group (EBCTCG)
5 http://www.ctsu.ox.ac.uk/ ebctcg/local2000/annex.pdf
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Table 5 Sub-table of Webfigure 6a. in web-site of EBCTG , Breast Cancer Mortality

Entry Age
Subgroup mortality of BCS+RT mortality of BCS only
Age <50 18.3% 21.4%
Age 50-59 15.0% 19.7%
Age 60-69 16.6% 18.5%
Age 70+ -% -%

ER Status (ER-poor vs ER-positive)
Subgroup mortality of BCS+RT mortality of BCS only
ER-poor 22.3% 27.2%
ER-positive 16.9% 19.6%
ER-unknown 17.2% 18.3%

Total 17.4% 20.3%

gen Receptor) values are positive. But we do not have statistical data about the effects of ER
value on 10-year mortality of 50-year-old patients. That is, we do not know the mortality of
50-year-old patients whose ER values are positive.

The knowledge (or data) in Webfigure 6a can be formally represented by a PLP P below
with 13 rules. Question like what is the mortality of a 50-year-old patient who has had the
treatment of radiotherapy after breast conserving surgery and whose ER value is positive
can be formalized as Q =?(mort(name, Y 10) | bcsRT (name, Y 1)∧hasBC(name, Y 1)∧
er(name, Y 1, positive) ∧ age(name, 50s) ∧ tenY ear(Y 1, Y 10)), where name should be
replaced by an individual’s name whose 10-year mortality is our interest.

1 (age(X, Y ) ∧ age(X, Z) ∧ Y 6= Z | >)[0, 0]

2 (bcsRT (X, Y ) ∧ bcsOnly(X, Y ) | >)[0, 0]

3 (er(X, Y 1, poor) ∧ er(X, Y 1, positive) | >)[0, 0]

4 (er(X, Y 1, poor) ∧ er(X, Y 1, unknown))[0, 0]

5 (er(X, Y 1, positive) ∧ er(X, Y 1, unknown))[0, 0]

6 (mort(X, Y 10) | bcsRT (X, Y 1) ∧ hasBC(X, Y 1)

∧tenY ear(Y 1, Y 10))[0.174, 0.174]

7 (mort(X, Y 10) | bcsRT (X, Y 1) ∧ hasBC(X, Y 1)

∧age(X, yt50) ∧ tenY ear(Y 1, Y 10))[0.183, 0.183]

8 (mort(X, Y 10) | bcsRT (X, Y 1) ∧ hasBC(X, Y 1)

∧age(X, 50s) ∧ tenY ear(Y 1, Y 10))[0.150, 0.150]

9 (mort(X, Y 10) | bcsRT (X, Y 1) ∧ hasBC(X, Y 1)

∧age(X, 60s) ∧ tenY ear(Y 1, Y 10))[0.166, 0.166]

10 (mort(X, Y 10) | bcsRT (X, Y 1) ∧ hasBC(X, Y 1)

∧er(X, Y 1, poor) ∧ tenY ear(Y 1, Y 10))[0.223, 0.223]

11 (mort(X, Y 10) | bcsRT (X, Y 1) ∧ hasBC(X, Y 1)

∧er(X, Y 1, positive) ∧ tenY ear(Y 1, Y 10))[0.169, 0.169]

12 (mort(X, Y 10) | bcsRT (X, Y 1) ∧ hasBC(X, Y 1)

∧er(X, Y 1, unknown) ∧ tenY ear(Y 1, Y 10))[0.172, 0.172]

In this PLP, there are four constants related to attribute Age: yt50 and ot70 standing for
younger than 50 and older than 70 respectively, 50s and 60s standing for age in 50s and age
in 60s respectively. Rules 2, 3, 4, and 5 are from the meta-knowledge from the trials, which
states the methods for dividing sub-groups on ER values. bcsRT (X, Y ) means that patient
X has RT treatment after breast conserving surgery in year Y . bcsOnly(X, Y ) means X has
breast conserving surgery in year Y only. er(X, Y, Z) states that the test result of ER status
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for X in year Y is Z. hasBC(X, Y ) means that X has breast cancer in year Y . mort(X, Y )

means X died for breast cancer in year Y . tenY ear(Y, Z) states that year Z is ten years
after year Y .

Rule 1 also comes from the background knowledge, it says that a person cannot have
two different ages (or age groups). Condition Y 6= Z in Rule 1 can be replaced by any two
values Y and Z which cannot be held simultaneously. Rule 1 is in fact equivalent to a set
of rules such as (age(X, yt50) ∧ age(X, 60s)|>)[0, 0], by replacing Y and Z with Y = 50s

and Z = 60s. The remaining rules come directly from the statistical data listed in Table 5,
which is a sub-table of Webfigure 6a6. More precisely, Rules 6-12 correspond to the second
column in the table.

Assume that we have a patient named Mary who is 50 years old and is diagnosed as
having breast cancer with positive result of ER test. A doctor decides to give her the treat-
ment of radiotherapy (RT) after breast conserving surgery. From the statistical data, we know
the 10-year mortality of breast cancer patients in their 50s who have had RT treatment after
BCS and the 10-yeay mortality of breast cancer patients with a positive ER value. So, what
can we tell about Mary’s 10-year mortality after BCS and RT, given that her ER value is pos-
itive? Formally, this is to answer the query Q =?(mort(Mary, Y 10) | bcsRT (Mary, Y 1)∧
hasBC(Mary, Y 1) ∧ er(Mary, Y 1, positive) ∧ age(Mary, 50s) ∧ tenY ear(Y 1, Y 10)).

Let us denote the conditional event in this query Q as E to simplify the notation (i.e.,
Q =?E). With the given PLP, we have that P |=tight E[0, 1] and P |=me

tight E[0.1456, 0.1456].
That is, we get a non-informative interval [0, 1] and a precise probability 0.1456 as two pos-
sible answers to this query.

Note that from statistics, the 10-year mortality in the subgroup of patients in their 50s
with BCS+RT is 15.0% and in the subgroup of ER-positive (ER value is positive) pa-
tients with BCS+RT is 16.9%. Since the probability of query Q given by maximum en-
tropy (14.56%) is less than both 15.0% and 16.9%, this value seems reasonable since both
subgroups for Age in 50-59 and ER-positive have a lower 10-year mortality rate than other
subgroups. So both factors together could further reduce the mortality rate. This value is
also backed up by the ignorance value of E under P which is 0.017 and this small value im-
plies that the knowledge in P is rich enough to answer Q with a single probability. In other
words, the probability 14.56% given by maximum entropy is reasonable. However, on the
other hand, the ignorance is bigger than 0, thus there is still a small chance that probability
14.56% could be wrong. In this case, we want to find out the interval where the true probabil-
ity could lie and how satisfied we are with this interval. To do so, we need to measure the de-
gree of satisfaction which is the second order of probability about the probability of a query
being in a given interval. The second order probabilities for Pr(Q) ∈ [l, u], where l, u have
different values, are listed in Table 6. In this table, we take the maximum entropy probability,
pme, as a middle point to create various sized intervals [l, u] with l = pme−∆, u = pme+∆

where ε is the base value for increase/decrease and ∆ = kε indicates how many times (k
times) more/less of ε we want to increase/decrease pme. In this case, we set ε = 0.005, and
create the first interval [0.1406, 0.1506] that contains pme = 0.1456.

If a doctor wants to follow the treatment plan BCS+RT given that Mary is in her 50s
and her ER value is positive, the doctor could look up Table 6 to see how reasonable this
treatment plan is. For instance, we have p(Pr(Q) ∈ [0.1356, 0.1556]) = 0.00085 which can
be explained as: the probability that the probability of Mary being dead in 10-years time
after BCS+RT treatment falling in between 0.1356 and 0.1556 is 0.00085. In other words,
it is very unlikely that Mary’s 10-year mortality is between 13.56% and 15.56%. If in the

6 see http://www.ctsu.ox.ac.uk/ ebctcg/local2000/annex.pdf
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Table 6 Probability bound for Pr(Q) and the degree of satisfaction (2nd order probability) of Pr(Q) ∈
[l, u]

Probability Bound [l, u] for Pr(Q) Degree of satisfaction
∆ = kε, ε = 0.005 l = pme −∆, u = pme + ∆ p(Pr(Q) ∈ [l, u])

∆ = 1ε = 0.005 [0.1406, 0.1506] 0.00059
∆ = 2kε, k = 1 [0.1356, 0.1556] 0.00085

k = 2 [0.1256, 0.1656] 0.00934
k = 3 [0.1156, 0.1756] 0.02102
k = 4 [0.1056, 0.1856] 0.03650
k = 5 [0.0956, 0.1956] 0.05642
k = 6 [0.0856, 0.2056] 0.07965
k = 7 [0.0756, 0.2156] 0.10620
k = 8 [0.0656, 0.2256] 0.13717

∆ = 4kε, k = 5 [0.0456, 0.2456] 0.20465
k = 6 [0.0256, 0.2656] 0.28097
k = 7 [0.0056, 0.2856] 0.36836
k = 8 [0, 0.3056] 0.42478

∆ = (20k + 12)ε, k = 2 [0, 0.4056] 0.59181
k = 3 [0, 0.5056] 0.71571
k = 4 [0, 0.6056] 0.80642
k = 5 [0, 0.7056] 0.87390
k = 6 [0, 0.8056] 0.92588
k = 7 [0, 0.9056] 0.96571
k = 8 [0, 1] 1

table, there is an entry with a smaller value of u (the 10-year mortality is not beyond u) and
a reasonably large value of degree of satisfaction, then the doctor could decide that this plan
is worth following. On the other hand, if there does not exist an entry in the table that shows
a high probability of a low 10-year mortality probability for Mary, then this treatment plan
is questionable. In this particular case, we have an entry ([0, 0.3056], 0.42478) which shows
that p(Pr(Q) ∈ [0, 0.3056]) = 0.42478, and it means that there is almost a 43% probability
that Mary’s 10-year mortality probability is below 30%. If her doctor is happy enough with
this estimation, then the treatment BCS+RT can go ahead.

7 Related Work

Since the early 1990s, there have been considerable research efforts on integrating logical
programming with probability theory. These probabilistic logic programs have been stud-
ied from different perspectives and have different syntactic forms and semantics, including
conditional probabilistic logic programming [CPQC03,Luk98,Luk01b], Causal Probabilis-
tic Logic Programming [BGR04,BH07,Saa07], Success Probabilistic Logic Programming
[RKT07,Fuh00], and some others [DD04].

In causal probabilistic logic programming [BGR04,BH07], a rule Pr(ψ|cφ) = y is
interpreted as “if φ happens, this fact will cause the probability of ψ being y”. A causal
probability statement implicitly represents a set of conditional independence assumptions:
given its cause φ, an effect ψ is probabilistically independent of all factors except the (direct
or indirect) effects of φ (see [BGR04] for details). Formally, if Pr(ψ|cφ1) = y1 ∈ P and
Pr(ψ|cφ2) = y2 ∈ P where y1 6= y2, then no possible world satisfies both φ1 and φ2.

In [RKT07,Fuh00], a real number attached to a rule represents the probability that this
rule is alliable (or satisfiable). In other words, a PLP in this view represents a set of (classical)
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logic programs, and the probability of each member is decided by all the probabilities of the
rules. Then for any query, the answer is the probability of choosing a classical logic program
from the set that can successfully infer the query. In this formalization, we can only query
about the probability of ψ and cannot query about the probability of (ψ|φ), since (ψ|φ) is
meaningless in classical logic programs.

In [NS91,NS92,DD04,Saa07,BSS09], probabilities are attached to literals, such as:
b[0.6, 0.7] ← a[0.2, 0.3], which means that if the probability of a is in between 0.2 and
0.3, then the probability of b is in between 0.6 and 0.7. Intuitively, the interpretation of rules
is more close to casuality than conditioning. As a consequence, if we have another rule:
b[0.2, 0.3] ← c[0.5, 0.6], then Pr(a) ∈ [0.2, 0.3] and Pr(c) ∈ [0.5, 0.6] cannot be both true
simultaneously,

In this paper, we have focused on the framework of conditional probabilistic logic pro-
gramming for representing conditional events, because this framework is more suitable for
modelling our applications, such as clinical trials information or dialog knowledge.

Because of its weakness in reasoning, subclasses cannot inherit the properties of its su-
perclass in the basic semantics of PLP. In [Luk01a,Luk05,Luk07], Lukasiewicz provided
another method to enhance the reasoning power mainly on the issue of inheritance. In this
setting, logic entailment strength λ is introduced. With strength 1, subclasses can completely
inherit the attributes of its superclass; with strength 0 subclasses cannot inherit the attributes
of its superclass; with a strength between 0 and 1, subclasses can partially inherit the at-
tributes of its superclass. Value strength appears to be similar to the degree of satisfac-
tion in our framework, but they are totally different. First, λ is not a measurement for a
query, but is given by a user to control the reasoning procedure, in other words, we can-
not know beforehand the strength in order to infer a conclusion. Second, even if we can
use a strength as a measurement, i.e. even if we can obtain the required strength to infer
an expected conclusion, it is not an instance of degree of satisfaction, because the cautious
monotonicity postulate in Definition 4 is not satisfied. Given a PLP P, assume that we can
infer both (ψ|φ)[l1, u1] by strength λ = λ1 and (ψ|φ)[l2, u2] by strength λ = λ2. Now as-
sume that (ψ|φ)[l1, u1] is added to P, however, in order to infer (ψ|φ)[l2, u2], we still need
to have the strength λ = λ2 being given. That is, adding additional information to P does
not avoid requiring the strength λ2 if (ψ|φ)[l2, u2] is to be inferred. In contrast, if we have
(ψ|φ)[l1, u1] added in the PLP, then the degree of satisfaction of (ψ|φ)[l2, u2] will increase.
Consider Example 11, with strength λ = 0.5, we can infer that (fly(t)|magpie(t))[0.8, 1],
(fly(t)|sickMagpie(t))[0.8, 1]. However, these two conclusions have different degrees of
satisfaction.

In [RKI03,Röd03], the authors provided a second order uncertainty to measure the re-
liability of accepting the precise probability obtained by applying the maximum entropy
principle as the answer to a query in propositional probabilistic logic. The second order un-
certainty for (ψ|φ) and PLP P is defined as (− log l − log u) where P |=tight (ψ|φ)[l, u].
Similarly, we provided an ignorance function to measure the usefulness of a PLP for answer-
ing a query. If a precise probability for a query is inferred from a PLP P then P contains full
information about the query, and therefore accepting the probability is totally reliable. More
precisely, their second order uncertainty is directly computed from the probability interval
of the query inferred from P . In contrast, our ignorance is computed from the PLP, which
provides more information than an interval. Therefore, our measure of ignorance is more
accurate in reflecting the knowledge in a PLP. Consider Example 11 again, the second order
uncertainty of (fly(t)|magpie(t)) and (fly(t)|sickMagpie(t)) are the same. However the
degree of satisfaction for the two queries are different.
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In [BSS09], the authors defined a higher-order probability distribution over the proba-
bilities that a query can be inferred from, given a probabilistic logic program Π . Informally
speaking, the higher order probability that a query Q is entailed by Π with probability in
[a, b] is interpreted as the ratio between the number of probabilistic models of Π that give Q

a probability value within the interval [a, b] and the total number of probabilistic models of
Π . As stated in the paper, there are no assumptions about the dependencies or correlations
between the events represented in the probabilistic logic program, including the maximum
entropy principle, that is, their method is based the assumption of ignorance. In contrast,
our method tries to balance between the assumption of the maximum entropy principle with
the ignorance of the knowledge contained in a PLP. Therefore, our approach can be seen as
a step forward towards addressing the problem of ignorance.

8 Conclusion

To be able to accurately answer a query is critical in many intelligent systems. When the
underlying knowledge is uncertain, e.g., probabilistic, this problem is more evident. So, what
is the probability of an answer is indeed for a given query, when the knowledge used itself is
uncertain? One way is to attach an interval to the answer indicating that the probability of the
answer is in the interval, another is to generate a single precise probability. The maximum
entropy principle is widely used for this latter purpose.

Although the maximum entropy principle is intuitive and widely accepted in informa-
tion theory, it is too risky to simply apply it to answer a query when the knowledge used
is not certain. In order to tell how much we can trust a result for a query given a PLP with
imprecise knowledge, we proposed a framework to measure both ignorance and the degree
of satisfaction of an answer to a query under a given PLP. Using the consequence relations
provided in this paper, we can get an informative and reliable interval as the answer for a
query or alternatively we know how much we can trust a single probability. The proofs that
our framework is an extension of both traditional conditional probabilistic logic program-
ming and the maximum entropy principle (in terms of consequence relations) show that our
framework is theoretically sound.

We demonstrated our framework with some examples from the literature and from other
research projects we are involved in. The results show that providing degrees of satisfaction
and ignorance are useful for making decisions, when there seem to be several choices and a
system does not have other information to suggest which result to choose.

Acknowledgements This work is funded by the EPSRC projects with reference numbers: EP/D070864/1
and EP/D074282/1.

A Appendix: Algorithms

In this section, we provide a brief description of the algorithms proposed in [KIL04] which are used in our
algorithms. We consider only ground PLPs here.

At first, a PLP is divided into two sets C and D. The first set contains conditional events with the [1, 1]
interval and the other purely probabilistic intervals, that is, C = {(ψ|φ)[1, 1] ∈ P} ∪ {(ψ|φ)[0, 0] ∈ P}
and D = P \ C. In this section, we denote that P = (C, D).

The idea of these algorithms is to generate equivalent classes of possible worlds and the possible worlds
in each equivalent class are indifferentiable under the knowledge contained by the PLP.
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Fig. 2 Algorithm Tight 0 Consequence, from [KIL04]

Given a PLP P = (C, D) and a nonempty set of conditional events E, the set RC(E) is defined as the
set of all mappings r that assign each conditional events (ψ|φ) ∈ E an element of {ψ ∧ φ,¬ψ ∧ φ,¬φ}
such that C ∪ {r(ψ|φ)|(ψ|φ) ∈ E} is satisfiable.

Define SC(E) as the set of all possible worlds that satisfy C, and this set can be partitioned into subsets
w.r.t. RC(E), such that SC(E) = {Sr | r ∈ RC(E)} where Sr = {I ∈ IΦ | I |= C, ∀(ψ|φ) ∈ E, I |=
r(ψ|φ)}.

An important result in [KIL04] is that, reasoning with a PLP P can be reduced to calculating a probability
distribution over a set SC(E).

Let P = (C, D) be a PLP. A probabilistic formula (ψ|φ)[l, u] ∈ D is called vacuous under C iff
– C |= (φ|>)[0, 0], or
– C |= (ψ ∧ φ|>)[0, 0] and l = 0, or
– C |= (ψ|φ)[1, 1] and u = 1

We use vaccC(D) to denote the set of all vacuous probabilistic formulas in D under C.
Let P = (C, D) be a PLP, and let α be an event. Set At(α) is used to denote the set of all atoms that

occur in α. Denote the Herbrand base defined on the set of predicates and constants that occur in P and α as
HBP,α. The decomposition of HBP,α w.r.t. P and α is a partition {H1, . . . , Hk} of HBP,α such that

– each probabilistic formula in P is defined over some Hi with i ∈ {1, . . . , k}, and
– α is defined over some Hi with i ∈ {1, . . . , k}, and
– k ≥ 1 is maximal.

For i ∈ {1, . . . , k}, we define Di as the set of all probabilistic formulas from D that are defined over
Hi. The relevant subset of D w.r.t. C and α, denoted by relC,α(D), is defined as the set Di with minimal
index i ∈ {1, . . . , k} such that At(α) ⊆ Di.

In order to reason under the maximum entropy principle, it needs to calculate the size of each element
of the set SC(D ∪ {(ψ|φ)}, where ?(ψ|φ) is the query. Let ar = |Sr| where r ∈ RC(D ∪ {(ψ|φ)}). For
simplicity, we denote RC(D ∪ {(ψ|φ)} by R. Assume that P 6|= (φ|>)[0, 0], then P |=me

tight (ψ|φ)[d, d]

where d = (
∑

r∈R,r|=ψ∧φy?
r
)/(

∑
r∈R,r|=φy?

r
), and y?

r (r ∈ R) is the optimal solution of the following
optimization problem over the variables yr (r ∈ R):

max−
∑

r∈R

yr(log yr − log ar).
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