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Abstract

In this paper, we propose an adaptive approach to merging possibilistic knowledge bases that
deploys multiple operators instead of a single operator in the merging process. The merging
approach consists of two steps: one is called the splitting step and the other is called the
combination step. The splitting step splits each knowledge base into two subbases and then in the
second step, different classes of subbases are combined using different operators. Our approach is
applied to knowledge bases which are self-consistent and the result of merging is also a consistent
knowledge base. Two operators are proposed based on two different splitting methods. Both
operators result in a possibilistic knowledge base which contains more information than that
obtained by the t-conorm (such as the maximum) based merging methods. In the flat case, one
of the operators provides a good alternative to syntax-based merging operators in classical logic.

Keywords: Knowledge representation, merging of knowledge bases, inconsistency handling, pos-
sibilistic logic.

1 Introduction

In many cases, we confront the problem of merging inconsistent information from different sources
[9, 10, 12, 13, 21, 23, 24, 29, 36]. When merging different data sources, we often need to consider
uncertainty. Possibilistic logic [15] provides a good framework to deal with fusion problems when
information is pervaded with inconsistency and uncertainty where only partial or incomplete in-
formation is available [3, 5, 6, 7, 9, 10]. There are two different views for merging possibilistic
knowledge bases. The first view considers inconsistency as unacceptable and the conflicting in-
formation between different sources should be resolved after merging [3, 7, 8]. In contrast, the
second view claims that inconsistency is unavoidable and the resulting possiblistic knowledge base
can be inconsistent after merging [9, 10, 35]. In this paper, we focus on the first view. A common
deficiency of existing approaches which follow the first view is that they are usually defined by a

∗This paper is a revised and extended version of [34]
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single operator, so it is not possible to differentiate different classes of information, such as free and
conflict information, during the process of merging.

In [3, 7, 8, 9], some merging operators were proposed. Among them, two merging operators,
the maximum (or more generally, t-conorm) based merging operator and the minimum (or more
generally, t-norm) based merging operator, are used to combine inconsistent and consistent sources
of information respectively. Given two possibilistic knowledge bases B1 = {(φi, αi), i = 1, ..., n}
and B2 = {(ψj , βj), j = 1, ...,m}, where φi and ψj are classical propositional formulas, and αi and
βj belonging to [0,1] are necessity degrees of φi and ψj respectively, the syntactic results of merging
B1 and B2 by the maximum based merging operator and the minimum based merging operator
are Bdm = {(φi ∨ ψj , min(αi, βj))|(φi, αi) ∈ B1, (ψj , βj) ∈ B2} and Bcm = B1 ∪ B2 respectively.
Bdm is always consistent provided that B1 or B2 is consistent, whilst Bcm is consistent only if the
union of B1 and B2 is consistent. So the maximum based merging operator is more advisable
than the minimum based merging operator for dealing with inconsistency. However, when the
union of B1 and B2 is consistent, the minimum based merging operator results in a more specific
possibilistic knowledge base. That is, the possibility distribution of the combination of B1 and B2

by the minimum based merging operator is more specific than that of the maximum based merging
operator. Therefore, the maximum (or more general, t-conorm) combination mode is too cautious
to be used for merging possibilistic knowledge bases that are consistent with each other.

In this paper, we propose two Split-Combination (S-C for short) operators that follow the first
view on possibilistic merging. We divide the fusion process into two steps: the splitting step and
the combination step. The splitting step splits each knowledge base into two subbases and then in
the second step, different classes of subbases are combined using different operators.

We first introduce an Incremental Split-Combination (I-S-C for short) merging operator. Given
two possibilistic knowledge bases B1 and B2 (where B1 ∪ B2 is inconsistent but each of them is
individually consistent), we first split each of them into two subbases such that B1 = C1 ∪ D1 and
B2 = C2 ∪ D2 with regard to a value obtained an incremental algorithm. In the second step, we
combine C1 and C2 using a t-conorm based merging operator, while combining D1 and D2 using
a t-norm based merging operator. Finally, the union of the possibilistic bases obtained by the
second step is taken as the result of the combination of B1 and B2. We prove that the new merging
operator reduces to the t-norm based merging operator when no conflict exists and that its resulting
possibilistic knowledge base contains more important information than that of the t-conorm based
merging operator. Furthermore, we adapt the set of postulates for merging propositional knowledge
bases in [23] to possibilistic logic and discuss the logical properties of our merging operator.

The I-S-C merging operator is problematic to be applied to merge flat (or classical) knowledge
bases, i.e., knowledge bases without any priorities between their elements, because the weight
of a formula used to split the possibilistic bases is related to priority. Therefore we propose an
alternative approach to split the knowledge bases which do not involve priority. The corresponding
split-combination operator, called Free-formula based Split-Combination (F -S-C for short) merging
operator, can then be applied to merging classical knowledge bases. We compare our F -S-C with
propositional merging operators in the flat case and conclude that it is a good alternative to syntax-
based merging operators in classical logic.

We compare our merging operators with existing possibilistic merging operators by considering
the following criteria.

The first one is rationality. We generalize the set of rationality postulates in the propositional
setting in [23] and discuss the logical properties of different possibilistic merging operators. The
generalized postulates are not used to give a normative definition or characterization of possibilistic
merging. The reason why we propose them is that we think they are helpful for users to choose
among different possibilistic merging operators.
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The second one is the inference power of the resulting possibilistic knowledge base of merging.
Given two merging operators, we prefer the one leading to a merged base which can non-trivially
infer more information.

The third one is the compatibility with merging operators in the classical setting. That is, we
prefer possibilistic merging operators which are well-behaved in classical logic to those which are
not.

The last one is computational complexity. This criterion has been adopted to evaluate a solution
in many AI problems, such as belief revision and nonmonotonic reasoning. To implement a merging
operator, computational efficiency is an important requirement. It is clear that computationally
more efficient operators are preferred to more complex ones.

This paper is organized as follows. Section 2 provides some preliminary definitions in possibilistic
logic. We then give a brief survey on existing merging methods in possibilistic logic in Section 3.
In Section 4, we propose an Incremental Split Combination (I-S-C for short) merging operator.
In Section 5, we discuss the semantic aspect of the I-S-C operator. Another split-combination
operator, called the free-formula based split-combination method, is proposed in Section 6. Section
7 discusses related work. Finally, we conclude this paper in Section 8.

2 Background on Possibilistic Logic

In this section, we give a brief overview of possibilistic logic. More details on possibilistic logic can
be found in [15, 9].

Throughout the paper, L is a propositional language formed in the usual way from a finite
set of propositional symbols P. An interpretation is a truth assignment to the atoms in P, i.e.
a mapping from P to {true, false}. We denote the set of classical interpretations by Ω, and
the classical consequence relation by |=. Propositional symbols are denoted by p, q, r..., and
propositional formulas are denoted by Greek letters φ, ψ, χ,... The satisfiability relation ω|=φ is
defined as usual between an interpretation ω and a formula φ. A knowledge base K is a finite set
of propositional formulas and can be represented as the formula φ, which is the conjunction of the
formulas in K. A knowledge profile is then defined as a multi-set E consisting of a finite number
of knowledge bases, that is, E = {K1, ...,Kn}, where Ki may be the same as Kj for i6=j. Two
knowledge profiles E1 and E2 are equivalent, denoted E1≡E2, iff there exists a bijection f between
E1 and E2 such that for each K∈E1, f(K)≡K. The union of multi-sets is denoted as t. The union
of knowledge bases in E is defined as ∪E = ∪n

i=1Ki.

2.1 Semantics of possibilistic logic

The semantics of possibilistic logic is based on the notion of a possibility distribution π which is a
mapping from Ω to interval [0,1]. The unit interval is not necessary and can be replaced by any
totally ordered scale. π(ω) represents the degree of compatibility of the interpretation ω with the
available beliefs about the real world. π(ω) = 0 means that it is impossible to be the real world, and
π(ω) = 1 means that nothing prevents ω from being the real world, while 0 < π(ω) < 1 means that
it is only somewhat possible for ω to be the real world. When π(ω) > π(ω′), ω is preferred to ω′ for
being the real world. A possibility distribution is said to be normal if ∃ω∈Ω, such that π(ω) = 1.
Given two possibility distributions π and π′, π is said to be less specific (or less informative) than
π′ if ∀ω, π(ω)≥π′(ω), and π is said to be strict less specific (or less informative) than π′ if ∀ω,
π(ω) ≥ π′(ω) and ∃ω, π(ω) > π′(ω).

¿From a possibility distribution π, two measures defined on a set of propositional formulas can
be determined. One is the possibility degree of formula φ, denoted as Ππ(φ) = max{π(ω) : ω |= φ}.
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The other is the necessity degree of formula φ, and is defined as Nπ(φ) = 1 − Ππ(¬φ). The
possibility degree of φ evaluates to what extent φ is consistent with knowledge expressed by π
and the necessity degree of φ evaluates to what extent φ is entailed by the available knowledge.
Nπ(φ) = 1 means that φ is a totally certain piece of knowledge, while Nπ(φ) = 0 expresses the
complete lack of knowledge of priority about φ, but does not mean that φ is or should be false. We
have Nπ(true) = 1 and Nπ(φ∧ψ) = min(Nπ(φ), Nπ(ψ)) for all φ and ψ.

2.2 Possibilistic knowledge bases

At the syntactic level, a formula, called a possibilistic formula, is represented by a pair (φ, α) where
φ is a propositional formula and α ∈ [0, 1], which means that the necessity degree of φ is at least
equal to α, i.e. N(φ) ≥ α. Then uncertain pieces of information can be represented by a possibilistic
knowledge base which is a finite set of possibilistic formulas of the form B = {(φi, αi) : i = 1, ..., n}.
A possibilistic knowledge profile E is a multi-set of possibilistic knowledge bases. In this paper,
we only consider possibilistic knowledge bases where every formula φ is a classical propositional
formula. The weights attached to formulas are denoted by α, β, γ, ... The classical base associated
with B is denoted as B∗, namely B∗ = {φi|(φi, αi) ∈ B}. A possibilistic base B is consistent if and
only if its classical base B∗ is consistent.

Definition 1 Let B be a possibilistic knowledge base, and α ∈ [0, 1]. The α-cut (resp. strict α-cut)
of B is B≥α = {φ∈B∗|(φ, β)∈B and β≥α} (resp. B>α = {φ∈B∗|(φ, β)∈B and β>α}).

Given a possibilistic base B, we can associate with it a semantics w.r.t possibility distributions.

Definition 2 Let B be a possibilistic knowledge base and (φ, α)∈B. A possibility distribution π is
said to be compatible with (φ, α) if Nπ(φ)≥α and it is compatible with B if for each (φi, αi)∈B, we
have Nπ(φi)≥αi

Generally, there are several possibility distributions compatible with a possibilistic knowledge base
B. However, a unique possibility distribution, denoted by πB can be obtained by the principle of
minimum specificity. That is, among the possibility distributions compatible with B, we choose one
which is the least specific, i.e. there is no possibility distribution π′ such that π′ is more specific
than π. This possibility distribution can be computed as follows [15]. For all ω ∈ Ω,

πB(ω) =

{
1 if ∀(φi, αi) ∈ B, ω |= φi,
1−max{αi|ω 6|= φi} otherwise.

(1)

It is clear that a possibilistic knowledge base B is consistent iff its associated possibility πB is
normal.

Let us look at an example.

Example 1 Let B = {(p, 0.9), (q, 0.6), (¬q ∨ r, 0.5), (¬r, 0.5), (r, 0.3)} be a possibilistic knowledge
base. By Equation 1, the least specific possibility distribution associated with B is defined by
πB(pqr) = 0.5, πB(pq¬r) = 0.5, πB(p¬qr) = 0.4, πB(p¬q¬r) = 0.4, πB(¬pqr) = 0.1, πB(¬pq¬r) =
0.1, πB(¬p¬qr) = 0.1, πB(¬p¬q¬r) = 0.1.

Two possibilistic knowledge bases B1 and B2 are said to be equivalent, denoted by B1 ≡s B2

iff πB1 = πB2 , that is, their associated possibility distributions are the same. The equivalence of
two possibilistic knowledge bases can also be defined as B1 ≡s B2 iff ∀α∈[0, 1], (B1)≥α≡(B2)≥α [10].
Moreover, two possibilistic knowledge profiles E1 and E2 are equivalent, denoted E1≡sE2 iff there
exists a bijection f between E1 and E2 such that for each B∈E1, f(B)≡sB.
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2.3 Possibilistic inference

Given a possibilistic knowledge base B, we can define its level of inconsistency as follows.

Definition 3 Let B be a possibilistic knowledge base. The inconsistency degree of B is:

Inc(B) = max{αi : B≥αi is inconsistent}.

That is, the inconsistency degree of B is the largest weight αi such that the αi-cut of B is in-
consistent. It can be equivalently defined by the possibility distribution associated with B as
Inc(B) = 1−maxωπB(ω). When B is consistent, we have Inc(B) = 0. So if the possibility distrib-
ution πB is subnormal, i.e. ∀ω, πB(ω) < 1, B is not consistent.

The possibilistic consequence relation is defined as follows.

Definition 4 [10] Let B be a possibilistic base. A formula φ is said to be a consequence of B,
denoted by B `π (φ, α), iff

(i) B≥α is consistent,

(ii) B≥α |= φ,

(iii) ∀β>α, B≥β 6|= φ.

It is required that weights of possibilistic formulas which are consequences of B be greater than the
inconsistency degree of B. This is because for any possibilistic formula (φ, α), if α≤Inc(B), then
B≥α ` φ. That is, (φ, α) can be inferred from B trivially.

Subsumption can be defined as follows:

Definition 5 Let (φ, α) be a possibilistic formula in B. (φ, α) is said to be subsumed by B if
(B \ {(φ, α)})≥α |= φ.

Subsumed formulas can be viewed as redundant by the following proposition.

Proposition 1 [9] Let (φ, α) be a subsumed formula in B. Then B and B\{(φ, α)} are equivalent.

By Proposition 1, possibilistic formulas with a null degree, i.e. having the form (φi, 0), are subsumed
in any possibilistic knowledge base. So they are not included in the knowledge base explicitly.

It has been shown in [28] that the possibilistic inference has a computational complexity similar
to that of classical logic, that is, it needs dlog2ne satisfiability checks, where n is the number of
certainty levels used in B.

Although possibilistic inference is inconsistency tolerant, it suffers from the “drowning problem”
[2]. That is, given an inconsistent possibilistic knowledge base B, formulas whose certainty degrees
are not larger than Inc(B) are completely useless for nontrivial deductions. For instance, let B =
{(p, 0.9), (¬p, 0.8), (r, 0.6), (q, 0.7)}, it is clear that B is equivalent to B = {(p, 0.9), (¬p, 0.8)} because
Inc(B) = 0.8. So (q, 0.7) and (r, 0.6) are not used in the possibilistic inference. Since possibilistic
inference has the drowning problem, inconsistency is not desirable and should be avoided if possible.
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3 Merging Approaches in Possibilistic Operator

Many approaches have been proposed to merge prioritized knowledge bases in possibilistic logic
[3, 7, 8, 9, 10]. There are two different views for merging possibilistic knowledge bases. The first
view considers inconsistency as unacceptable and conflicting information between different sources
should be resolved after merging [3, 7, 8]. In contrast, the second view claims that inconsistency is
unavoidable and the resulting possiblistic knowledge base can be inconsistent after merging [9, 10].

Let B1 and B2 be two possibilistic bases, π1 and π2 be their associated possibility distributions.
Semantically, a two place function ⊕ from [0,1]×[0,1] to [0,1], is applied to aggregate the two
possibility distributions π1 and π2 into a new one π⊕, i.e. π⊕(ω) = π1(ω) ⊕ π2(ω). Generally, the
operator ⊕ is very weakly constrained, i.e. the only requirements for it are the following properties
[8, 9]:

1. 1⊕1 = 1, and

2. if a≥c, b≥d then a⊕b≥c⊕d, where a, b, c, d∈[0, 1] (monotonicity).

The first property states that if two sources agree that an interpretation ω is fully possible, then
the result of merging should confirm it. The second property is the monotonicity condition, that
is, a degree resulting from a combination cannot decrease if the degrees to be combined increase.

In the case of n sources B1,...,Bn, the semantic combination of their possibility distributions
π1,...,πn can be performed easily when ⊕ is associative. That is, we have π⊕(ω) = (...((π1(ω) ⊕
π2(ω))⊕ π3(ω))⊕ ...)⊕ πn(ω). When the operator is not associative, it need to be generalized as a
unary operator defined on vector (π1, ..., πn) of possibility distributions such that:

1. ⊕(1, ..., ) = 1, and

2. if ∀i = 1, n, ai≥bj then ⊕(a1, ..., an)≥⊕ (b1, ..., bn), where ai, bj∈[0, 1].

Two basic operators are the maximum and the minimum. The merging methods based on
maximum and minimum operator have no reinforcement effect. That is, given an interpretation
ω, if expert 1 assigns possibility π1(ω) < 1 and expert 2 assigns possibility π2(ω) < 1 to ω, then
overall πdm(ω) = π2(ω) (or πcm(ω) = π1(ω)) if π1(ω) < π2(ω), regardless of the value of π1(ω) (or
π2(ω)). To obtain a reinforcement effect, we can use a triangular norm operator other than the
minimum for conjunctive combination, and a triangular conorm operator other than the maximum
for disjunctive combination.

Definition 6 [19] A triangular norm (t-norm) tn is a two place real-valued function tn : [0, 1] ×
[0, 1]→[0, 1] which satisfies the following conditions:

1. tn(0,0)=0, and tn(a,1)=tn(1,a)=a, for every a (boundary condition);

2. tn(a,b)≤tn(c,d) whenever a≤c and b≤d (monotonicity);

3. tn(a,b)=tn(b,a) (symmetry);

4. tn(a,tn(b,c))=tn(tn(a,b),c) (associativity).

A triangular conorm (t-conorm) ct is a two place real-valued function whose domain is the unit
square [0,1]×[0,1] and which satisfies the conditions 2-4 given in Definition 6 plus the following
revised boundary conditions:

1’. ct(1,1)=1,ct(a,0)=ct(0,a)=a.
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Any t-conorm ct can be generated from a t-norm through the duality transformation:

ct(a, b) = 1− tn(1− a, 1− b)

and conversely.
It is easy to check that the maximum operator is a t-conorm and the minimum operator is a

t-norm. Other frequently used t-norms are the product operator ab and the Lukasiewicz t-norm
(max(0, a+b−1)). The duality relation yields the following t-conorms respectively: the probabilistic
sum (a + b− ab), and the bounded sum (min(1, a + b)).

Given two possibilistic bases B1 and B2 with possibility distributions π1 and π2 respectively,
the semantic results of their combination by a t-norm tn and a t-conorm ct are

∀ω, πtn(w) = tn(π1(w), π2(w)), (2)
∀ω, πct(w) = ct(π1(w), π2(w)). (3)

When the original possibility distributions are normal, the merging methods based on t-conorms
preserve normalization. However, the merging methods based on t-norms may result in subnormal
results, i.e. ∀ω, πtn(ω) < 1 (or equivalently, the possibilistic knowledge base associated to πtn is
inconsistent). In that case, we may think of renormalizing πtn (that is, if we follow the first views on
possibilistic merging). Let π be a possibility distribution which is subnormal, πN be the possibility
distribution renormalized from π. Then πN should satisfy the following conditions:

1. ∃ω, πN (ω) = 1,

2. if π is normal then πN = π,

3. ∀ω, ω′, π(ω) < π(ω′) if and only if πN (ω) < πN (ω′).

For example, let h(πtn) = maxω{πtn(ω)}, the following equation provides a normalization rule.

πN,tn(ω) =

{
1 if πtn(ω) = h(πtn),
πtn(ω) otherwise.

(4)

The normalization rule defined by Equation 4 resolves inconsistency because the inconsistency
degree of any possibilistic knowledge base associated to πN,tn is zero. Other normalization rules
can be found in [3].

The syntactical counterpart of the fusion of π1 and π2 is to obtain a possibilistic knowledge
base whose possibility distribution is π⊕. In [8], it has been shown that this knowledge base have
the following form:

B⊕ = {(φi, 1− (1− ai)⊕1) : (φi, ai)∈B1}∪{(ψj , 1− 1⊕(1− bj)) : (ψj , bj)
∈B2}∪{(φi ∨ ψj , 1− (1− ai)⊕(1− bj)) : (φi, ai)∈B1 and (ψj , bj)∈B2}. (5)

That is, we have πB⊕(ω) = π⊕(ω) = π1(ω)⊕π2(ω), where πB⊕ is the possibility distribution asso-
ciated with B⊕. It is clear that when ⊕ is associative, the syntactic computation of the resulting
base is easily generalized to n sources. The syntactic generalization for a non-associative operator
can be carried out as follows.
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Proposition 2 [9] Let E = {B1, ...,Bn} be a set of n possibilistic knowledge bases and (π1, ..., πn)
be their associated possibility distributions. Let πB⊕ be the result of combining (π1, ..., πn) with ⊕.
The possibilistic knowledge base associated to πB⊕ is:

B⊕ = {(Dj , 1−⊕(x1, ..., xn)) : j = 1, ..., n}, (6)

where Dj are disjunctions of size j between formulas taken from different Bi’s (i = 1, ..., n) and xi

is either equal to 1− αi if φi belongs to Dj and 1 if it does not.

By Equation 6, the possibilistic knowledge bases which are the syntactic counterparts of the
semantic based merging using the maximum and the minimum are

Bdm = {(φi ∨ ψj , min(αi, βj))|(φi, αi) ∈ B1, and (ψj , βj) ∈ B2}, (7)

Bcm = B1 ∪ B2, (8)

respectively. Bdm and Bcm are referred to as the results of disjunctive and conjunctive combination
respectively. More generally, the syntactic results associated with πtn and πct are the following
knowledge bases respectively [3]:

Btn = B1 ∪ B2 ∪ {(φi ∨ ψj , ct(αi, βj))|(φi, αi) ∈ B1 and (ψj , βj) ∈ B2}, (9)

Bct = {(φi ∨ ψj , tn(αi, βj))|(φi, αi) ∈ B1 and (ψj , βj) ∈ B2}. (10)

By Equation 9, the possibilistic knowledge base Btn may be inconsistent. Let πN,tn be the
possibility distribution obtained by Equation 4, then the possibilistic knowledge base associated
with it has the following form:

BN,tn = {(φi, αi) : (φi, αi)∈Btn and αi > Inc(Btn)}. (11)

BN,tn restores consistency of Btn by dropping formulas whose weights are less than or equal
to the inconsistency degree of Btn. We call the merging operator obtained by Equation 11 a
renormaliztion based merging operator. It is clear that BN,tn may drop too much information from
Btn if Inc(Btn) is large, for example, 0.8.

Example 2 Let B1 = {(p, 0.9), (q, 0.7)} and B2 = {(¬p, 0.8), (r, 0.6), (p∨q, 0.5)}. Suppose the op-
erator is the maximum, then by Equation 7, we have Bdm = {(p∨r, 0.6), (p∨q, 0.5), (¬p∨q, 0.7),
(q∨r, 0.6)}. It is clear that the the maximum based merging method is very cautious, that is, all the
formulas are weakened as disjunctions. By contrast, if we choose the minimum, then by Equation
8, we have Bcm = {(p, 0.9), (¬p, 0.8), (q, 0.7), (r, 0.6), (p∨q, 0.5)}. Bcm is inconsistent. Suppose we
apply the normalization rule (Equation 4) to the possibility distribution associated to Bcm, then by
Equation 11 the possibilistic knowledge base associated with the normalized possibility distribution
is BN,cm = {(p, 0.9)}. (q, 0.7) and (r, 0.6) are not involved in conflict between B1 and B2. However,
they are deleted after merging.

Example 2 illustrates that, the merging methods based on t-conorms are too cautious when
most of the formulas are not involved in conflict while the renormalization based merging method
may result in a knowledge base which deletes too much important information.
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4 Incremental Split-Combination Merging Approach

In this section, we introduce an Incremental Split-Combination (I-S-C) approach to merging pos-
sibilistic knowledge bases. We follow the first view on possibilistic merging, that is, the resulting
knowledge base should be consistent. We further assume that the original possibilistic knowledge
bases are individually consistent. According to the analysis in Section 3, the t-conorm (for exam-
ple, the maximum) based merging methods can be used to weaken conflicting information, while
the t-norm (for example, the minimum) based merging methods are more advisable to be used
to exploit the symbolic complementarities between sources, i.e. all the symbolic information is
recovered. In this section and Section 6, we propose two split-combination operators for merging
individually consistent possibilistic knowledge bases by utilizing both t-norm and t-conorm based
merging operators.

The general idea of the S-C approach can be described as follows. Given two possibilistic
knowledge bases B1 and B2, in the first step, we split them into B1 =< C1,D1 > and B2 =< C2,D2 >
with regard to a splitting method such that Ci (i = 1, 2) contain information which would be
weakened and Di (i = 1, 2) contain formulas which are “safe” to be kept. In the second step,
we combine C1 and C2 by a t-conorm operator (the result is a possibilistic knowledge base C) and
combine D1 and D2 by a t-norm operator (the result is a possibilitic knowledge base D). The final
result of the S-C combination method, denoted by BS−C , is C ∪ D. Different S-C methods can
be developed by incorporating different ways of splitting the knowledge bases, while retaining the
general S-C approach.

4.1 Incremental S-C Operator

Our first splitting method is to split possibilistic knowledge bases using necessity degrees in the
possibilistic knowledge bases. Let B1 and B2 be two possibilistic knowledge bases, and B = B1∪B2 =
{(ϕi, αi) : i = 1, ..., n}. Let αmax = max(αi : i = 1, ..., n). Suppose the weights of the formulas
in B are rearranged in such a way that α1 = αmax>α2>...>αn1 . Let αn1+1 = 0. Suppose B1

and B2 are split w.r.t some αm (1≤m≤n1 + 1) into B1 = 〈C1,D1〉 and B2 = 〈C2,D2〉, where
Ci = {(φi, αi) : (φi, αi)∈B1, αi≤αm} and Di = Bi \ Ci, for i = 1, 2. Suppose D1 and D2 are
combined 1 by a t-norm operator tn, and C1 and C2 are combined by a t-conorm ct. By Equation
9 and 10, we have D = D1 ∪ D2 ∪ {(φi ∨ ψj , ct(αi, βj))|(φi, αi) ∈ D1 and (ψj , βj) ∈ D2} and
C = {(φi ∨ ψj , tn(αi, βj))|(φi, αi) ∈ C1 and (ψj , βj) ∈ C2}. The final result of the S-C method
is BS−C = C ∪ D. The main problem is how to select the splitting point. Let Inc(B) = αk. When
αm<αk, by Definition 3, D is inconsistent. So BS−C = C ∪D is inconsistent. Therefore, we cannot
use αm such that αm < αk as the splitting point. Suppose αk is the splitting point, then both C
and D are consistent. However, BS−C may still be inconsistent. Let us look at an example.

Example 3 Let B1 = {(p, 0.9), (¬r, 0.7)} and B2 = {(r, 0.8), (¬p, 0.6)}. It is easy to check that
Inc(B1∪B2) = 0.7. Suppose we select 0.7 as the splitting point, then B1 is split into D1 = {(p, 0.9)}
and C1 = {(¬r, 0.7)}, and B2 is split into D2 = {(r, 0.8)} and C2 = {(¬p, 0.6)}. Suppose D1 and
D2 are combined by the minimum and C1 and C2 are combined by the maximum. Then D =
{(p, 0.9), (r, 0.8)} and C = {(¬p∨¬r, 0.6)}. So BS−C = C ∪ D = {(p, 0.9), (r, 0.8), (¬p∨¬r, 0.6)}. It
is clear that BS−C is inconsistent.

There is no guarantee that the final merged knowledge base is consistent, when selecting an αi

such that α=αk as the splitting point. We need to find the point incrementally. To do so, we give
1When we say that two possibilistic knowledge bases are combined by a t-norm (or t-conorm) operator, we mean

they are syntactically combined using Equation 9 (or Equation 10).
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the following algorithm to find the value step by step and use it to split both B1 and B2.
Algorithm 1
Input: two posssibilistic knowledge bases B1 = {(φi, αi) : i = 1, ..., n} and B2 = {(ψj , βj) : j =
1, ..., m}, a t-conorm ct and a t-norm tn.
Output: a splitting point γ.

Step 1 Let B = B1∪B2 = {(ϕi, γi) : i = 1, ..., n+m}. Rearrange the weights of formulas in B such
that γ1>γ2>...>γn1 . Let γn1+1 = 0.
Step 2 Compute Inc(B). Assume Inc(B) = γk. Let l = k.
Step 3 Split B1 and B2 with regard to γl such that B1 =< C1,D1 > and B2 =< C2,D2 >, where
C1 = {(φi, αi) : (φi, αi)∈B1, αi≤γl} and D1 = B1 \ C1, and C2 = {(ψj , βj) : (ψj , βj)∈B2, βj≤γl} and
D2 = B2 \ C2.
Step 4 Combine C1 and C2 by ct and combine D1 and D2 by tn, as shown by Equation 10 and
Equation 9, the results are respectively

C = {(φi ∨ ψj , tn(αi, βj))|(φi, αi) ∈ C1 and (ψj , βj) ∈ C2}, (12)

D = D1 ∪ D2 ∪ {(φi ∨ ψj , ct(αi, βj))|(φi, αi) ∈ D1 and (ψj , βj) ∈ D2}. (13)

Step 5 Let BS−C = C ∪ D.
Step 6 If BS−C is inconsistent, let l = l − 1 and go to Step 3.
Step 7 Return γl.

In Algorithm 1, we first rearrange all the weights of formulas in the union of B1 and B2 in a
decreasing order. We then search the weights incrementally until we find the minimal weight such
that the resulting possibilistic knowledge base of the split-combination approach is consistent.

We now define the I-S-C merging operator based on Algorithm 1.

Definition 7 Let B1 = {(φi, αi) : i = 1, ..., n} and B2 = {(ψj , βj) : j = 1, ...,m} be two possibilistic
knowledge bases, ct be a t-conorm and tn be a t-norm. Let γ be the splitting point obtained by
Algorithm 1. Suppose Bi (i = 1, 2) are split into Bi = 〈Ci,Di〉 w.r.t γ, and C and D are obtained by
Equation 12 and 13 respectively. The resulting possibilistic knowledge base of the I-S-C merging
operator 2, denoted BI−S−C , is defined as BI−S−C = C ∪ D.

Let us look at an example.

Example 4 Given two possibilistic bases B1 = {(¬φ ∨ ϕ, 0.8), (¬φ ∨ ψ, 0.6), (φ, 0.5)} and B2 =
{(φ ∨ δ, 0.9), (¬ψ ∨ δ, 0.7), (δ ∨ ϕ, 0.5), (¬φ ∨ ¬ψ, 0.4), (ψ, 0.3)}. Let ct = max and tn = min.
Let B = B1∪B2 = {(φ ∨ δ, 0.9), (¬φ ∨ ϕ, 0.8), (¬ψ ∨ δ, 0.7), (¬φ ∨ ψ, 0.6), (φ, 0.5), (δ ∨ ϕ, 0.5), (¬φ ∨
¬ψ, 0.4), (ψ, 0.3)}. The weights of formulas in B are rearranged as γ1 = 0.9 > γ2 = 0.8 > γ3 =
0.7 > γ4 = 0.6 > γ5 = 0.5 > γ6 = 0.4 > γ7 = 0.3. Let γ8 = 0. The inconsistency degree of B1∪B2

is Inc(B1∪B2) = 0.4. Let l = 6. B1 and B2 are split with regard to γ6 = 0.4 into

C1 = ∅, D1 = {(¬φ ∨ ϕ, 0.8), (¬φ ∨ ψ, 0.6), (φ, 0.5)}

C2 = {(¬φ ∨ ¬ψ, 0.4), (ψ, 0.3)}, D2 = {(φ ∨ δ, 0.9), (¬ψ ∨ δ, 0.7), (δ ∨ ϕ, 0.5)}.
2The merging operator is based on a t-conorm ct and a t-norm tn. For notional simplicity, we omit ct and tn and

simply call I-S-C operator in the following.
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Combining C1 and C2 using the maximum and combining D1 and D2 using the minimum respectively
give

C = ∅, D = {(φ ∨ δ, 0.9), (¬φ ∨ ϕ, 0.8), (¬ψ ∨ δ, 0.7), (¬φ ∨ ψ, 0.6), (δ ∨ ϕ, 0.5), (φ, 0.5)}.

So BS−C = {(φ ∨ δ, 0.9), (¬φ ∨ ϕ, 0.8), (¬ψ ∨ δ, 0.7), (¬φ ∨ ψ, 0.6), (δ ∨ ϕ, 0.5), (φ, 0.5)}. Since BS−C

is consistent, so γ = 0.4 is the splitting point and BI−S−C = {(φ ∨ δ, 0.9), (¬φ ∨ ϕ, 0.8), (¬ψ ∨
δ, 0.7), (¬φ ∨ ψ, 0.6), (δ ∨ ϕ, 0.5), (φ, 0.5)}.

4.2 Properties

4.2.1 Upper bound of the splitting point

Algorithm 1 stops in finite steps because there are finite certainty levels in B1 ∪B2. In this section,
we introduce an upper free degree and we show that it is the upper bound of the splitting point
obtained by Algorithm 1. We first introduce some definitions in [4, 6].

Definition 8 Let K be a classical knowledge base. A subbase K ′ of K is said to be minimally
inconsistent if and only if it satisfies the following two requirements: (1) K ′|=false and (2) ∀φ ∈ K ′,
K ′−{φ} 6|= false.

Definition 9 Let K be a classical knowledge base. A formula φ is said to be free in K if it does not
belong to any minimally inconsistent subbase of K and is said to be in conflict otherwise. Free(K)
denotes the set of free formulas in K.

Definition 10 Let B be a possibilistic knowledge bsae. A possibilistic formula (φ, α) is said to be
free in B if φ is free in B∗ and it is in conflict otherwise.

We now define the upper free degree of a possibilistic knowledge base.

Definition 11 The upper free degree of a possibilistic base B = {(φi, αi) : i = 1, ..., n} is defined
as:

Freeupp(B) = min{α ∈ {α1, ...αn} : B>α does not contain any conflict formulas in B∗}. (14)

Freeupp(B) = 0 when B is consistent. B>Freeupp(B) contains some free formulas of B, but not all of
them.

Definition 12 (upper-free-degree-based splitting) Given a possibilistic base B, the splitting of B
with regard to Freeupp(B) is defined as a pair < C,D > such that B = C ∪ D, where

C = {(φ, α) ∈ B | α≤Freeupp(B)} and D = {(φ, α) ∈ B | α>Freeupp(B)}.

It is clear that Freeupp(B)>Inc(B), for each possibilistic knowledge base B. By Definition 12, C is
inconsistent if Freeupp(B) > 0 and D is always consistent.

Let us look at an example to illustrate how to split a possibilistic base w.r.t the upper free
degree.

Example 5 Given a possibilistic knowledge base B = {(¬ψ∨δ, 0.9), (φ∨δ, 0.7), (¬φ∨¬ϕ, 0.6), (¬ψ∨
ϕ, 0.5), (φ, 0.4), (¬φ ∨ ψ, 0, 3)}, by Definition 12, the upper free degree of B is 0.6. B is then
split into < C,D > such that C = {(¬φ ∨ ¬ϕ, 0.6), (¬ψ ∨ ϕ, 0.5), (φ, 0.4), (¬φ ∨ ψ, 0, 3)}, and
D = {(¬ψ ∨ δ, 0.9), (φ ∨ δ, 0.7)}.
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Suppose the splitting method is the upper-free-degree-based splitting method, the corresponding
S-C method can be defined as follows.

Definition 13 Let B1 = {(φi, αi) : i = 1, ..., n} and B2 = {(ψj , βj) : j = 1, ..., m} be two possibilis-
tic knowledge bases. Suppose Bi are split into Bi = 〈Ci,Di〉 w.r.t Freeupp(B1 ∪ B2), and C and D
are obtained by Equation 12 and 13 respectively. The resulting possibilistic knowledge base of the
upper-free-degree based S-C (U-S-C for short) merging operator, denoted BUpper−S−C , is defined as
BUpper−S−C = C ∪ D.

Example 6 (Continue Example 4) The upper free degree of B1 ∪ B2 is 0.6. Therefore we split B1

and B2 into < C1,D1 > and < C2,D2 > such that

C1 = {(¬φ ∨ ψ, 0.6), (φ, 0.5)}, D1 = {(¬φ ∨ ϕ, 0.8)},

C2 = {(δ ∨ ϕ, 0.5), (¬φ ∨ ¬ψ, 0.4), (ψ, 0.3)}, D2 = {(φ ∨ δ, 0.9), (¬ψ ∨ δ, 0.7)}.
Combining C1 and C2, and combining D1 and D2 using the maximum and the minimum respectively
give

C = {(φ ∨ δ ∨ ϕ, 0.5), (¬φ ∨ ψ ∨ δ ∨ ϕ, 0.5), (φ ∨ ψ, 0.3), (¬φ ∨ ψ, 0.3)},

D = {(φ ∨ δ, 0.9), (¬φ ∨ ϕ, 0.8), (¬ψ ∨ δ, 0.7)}.
So we have

BUpper−S−C = {(φ ∨ δ, 0.9), (¬φ ∨ ϕ, 0.8), (¬ψ ∨ δ, 0.7), (¬φ ∨ ψ ∨ δ ∨ ϕ, 0.5),
(φ ∨ δ ∨ ϕ, 0.5), (φ ∨ ψ, 0.3), (¬φ ∨ ψ, 0.3)}.

Given two possibilistic bases B1 and B2, if B1 ∪ B2 is consistent, by Definition 12, we have
Freeupp(B1∪B2) = 0. When we split B1 and B2 using Freeupp(B1∪B2), we obtain C1 = ∅, D1 = B1

and C2 = ∅, D2 = B2, which results in BUpper−S−C = B1 ∪ B2 ∪ {(φi ∨ ψj , ct(αi, βj))|(φi, αi) ∈
B1 and (ψj , βj) ∈ B2}. Therefore, the U -S-C operator is equivalent to the t-norm based merging
operator when sources are consistent. Next we give some properties of U -S-C operator when B1∪B2

is in inconsistent.

Proposition 3 The resulting possibilistic base BUpper−S−C of U -S-C operator is consistent.

Let B = B1 ∪ B2 = {(ϕi, αi) : i = 1, ..., n}. Suppose the weights of the formulas in B are
rearranged in the way that α1 = 1>α2>...>αn1 . Let αn1+1 = 0. Since Inc(B) < Freeupp(B), if
Inc(B) = αk and Freeupp(B) = αm, we have m < k, then by Proposition 3, Algorithm 1 terminates
after at most k-m+1 iterations .

Proposition 4 Given two possibilistic knowledge bases B1 and B2, suppose BUpper−S−C and BI−S−C

are the merging results of B1 and B2 using U -S-C operator and I-S-C operator respectively, then
we have

BI−S−C `π (φ, α), for all (φ, α) ∈ BUpper−S−C ,

but not vice versa.

Proposition 4 shows that the upper-free-degree of B1 ∪ B2 is the upper bound of the splitting
point of Algorithm 1, that is, Algorithm 1 must terminate when the splitting point reaches the
upper-free-degree of B1 ∪ B2, if it has not terminated beforehand.
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Proposition 5 Given two possibilistic bases B1 and B2, let BUpper−S−C be the possibilistic base
obtained by the U -S-C operator (which is based on a t-norm tn and a t-conorm ct) and Bct be the
resulting possibilistic base of merging using ct, then

BUpper−S−C `π (φ, α), for all (φ, α) ∈ Bct (15)

The converse of Proposition 5 is false. Let us look at a counter-example.

Example 7 (Continue Example 6) By Example 6, we have

BUpper−S−C = {(φ ∨ δ, 0.9), (¬φ ∨ ϕ, 0.8), (¬ψ ∨ δ, 0.7), (¬φ ∨ ψ ∨ δ ∨ ϕ, 0.5),
(φ ∨ δ ∨ ϕ, 0.5), (φ ∨ ψ, 0.3), (¬φ ∨ ψ, 0.3)}.

If we combine B1 and B2 by the maximum operator, the result is

Bdm = {(¬φ ∨ ¬ψ ∨ δ ∨ ϕ, 0.7), (φ ∨ ¬ψ ∨ δ, 0.5), (¬φ ∨ ψ ∨ δ ∨ ϕ, 0.5), (φ ∨ δ, 0.5),
(¬φ ∨ δ ∨ ϕ, 0.5), (φ ∨ δ ∨ ϕ, 0.5), (¬φ ∨ ¬ψ ∨ ϕ, 0.4), (¬φ ∨ ψ, 0.3),
(¬φ ∨ ψ ∨ ϕ, 0.3), (φ ∨ ψ, 0.3)}

It is easy to check that all the possibilistic formulas in Bdm can be inferred from BUpper−S−C .
However, BUpper−S−C contains (φ ∨ δ, 0.9), (¬φ ∨ ϕ, 0.8), (¬ψ ∨ δ, 0.7), which are not involved in
conflict in B1 ∪ B2 and cannot be inferred from Bdm.

Proposition 5 and Example 7 show that the resulting possibilistic knowledge base of the U-S-C
method contains more important formulas than that of the combination method based on the
t-conorm.

Clearly we have the following corollary.

Corollary 1 Given two possibilistic bases B1 and B2, let BI−S−C be the possibilistic base obtained
by the I-S-C operator (which is based on a t-norm tn and a t-conorm ct) and Bct be the resulting
possibilistic base of merging using ct, then

BI−S−C `π (φ, α), for all (φ, α) ∈ Bct, (16)

but not vice versa.

We have shown that I-S-C operator maintains more original information than the merging
operator based on the t-conorm based operator. Next, we compare our I-S-C operator with the
renormalization based merging operator (see Equation 11).

We have the following proposition.

Proposition 6 Let B1 and B2 be two possibilistic knowledge bases. Suppose tn is the minimum
and ct is an arbitrary t-conorm in Algorithm 1. Let γ be the splitting point obtained by Algorithm
1. Suppose γ = Inc(B1 ∪ B2), then BN,min⊆BI−S−C , but not vice versa.

The proof of Proposition 6 is trivial. We do not provide it here. Proposition 6 states that, when
the t-norm is the minimum, the resulting knowledge base of our merging operator contains more
information than that of the renormalization based merging operator. However, this conclusion
does not hold for other t-norms generally. Let us look at an example.
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Example 8 Let B1 = {(ψ, 0.7), (φ, 0.7)} and B2 = {(¬φ, 0.6), (ψ, 0.4)}. The inconsistency degree
of B1 ∪ B2 is 0.6. So B1 and B2 are split w.r.t 0.6 into 〈C1,D1〉 and 〈C2,D2〉 respectively, where
C1 = ∅, D1 = B1, C2 = B2 and D2 = ∅. Combining C1 and C2 using the probabilistic sum and
combining D1 and D2 using the product operator we get C = ∅ and D = B1 respectively. So
BS−C = B1. It is clear that BS−C is consistent. So BI−S−C = B1. In contrast, suppose we
combine B1 and B2 using the product operator, then the resulting possibilistic knowledge base is
{(¬φ ∨ ψ, 0.88), (ψ, 0.82), (φ ∨ ψ, 0.82), (ψ, 0.7), (φ, 0.7), (¬φ, 0.6), (ψ, 0.4)}, which is equivalent to
{(¬φ∨ψ, 0.88), (ψ, 0.82), (φ, 0.7), (¬φ, 0.6)}. So we have BN,tn ≡s {(¬φ∨ψ, 0.88), (ψ, 0.82), (φ, 0.7)},
where tn is the product operator. It is clear that every formula in BI−S−C can be inferred from
BN,tn, while the converse is false.

When the original knowledge bases are consistent, the I-S-C operator is equivalent to the
t-norm based operator. That is, we have the following proposition.

Proposition 7 Let B1 and B2 be two possibilistic knowledge bases. If B1 ∪ B2 is consistent, then
Btn=BI−S−C .

The proof of Proposition 7 is trivial.

4.2.2 Logical properties

In this section, we discuss the logical properties of possibilistic merging operators by generalizing
postulates or logical properties for propositional merging operators. The generalized postulates
are not used to give a normative definition or characterization of possibilistic merging. In fact, as
we will see, none of possibilistic merging operators satisfy all of the generalized postulates. The
reason why we propose them is that we think they are helpful for users to choose among different
possibilistic merging operators.

We first introduce postulates for characterizing a propositional merging operator proposed in
[23].

Definition 14 [23] Let ∆ be an operator which assigns to each knowledge profile E a knowledge
base ∆(E). Let E1 and E2 be two knowledge profiles, K and K ′ be two knowledge bases. ∆ is a
merging operator iff it satisfies the following postulates:

(A1) ∆(E) is consistent

(A2) If E is consistent, then ∆(E)≡∧
E, where

∧
E = ∧Ki∈EKi

(A3) If E1≡E2, then ∆(E1)≡∆(E2)

(A4) If K∧K ′ is not consistent, then ∆({K}t{K ′}) 6|= K

(A5) ∆(E1)∧∆(E2) |= ∆(E1tE2)

(A6) If ∆(E1)∧∆(E2) is consistent, then ∆(E1tE2) |= ∆(E1)∧∆(E2).

(A1) requires that the resulting knowledge base of a merging operator be consistent. (A2) says
that the resulting knowledge base should be the conjunction of the original knowledge bases. (A3)
is the principle of irrelevance of syntax. (A4) is the fairness postulate, which means that if two
knowledge bases are in conflict, merging operators must not give preference to any one of them.
(A5) and (A6) together state that if there are two subgroups whose merged results are consistent,

14



then the result of merging of the global group is the conjunction of merged results of subgroups.
(A5) can be equivalently expressed as

(A5) If ∆(E1)∧∆(E2) is consistent, ∆(E1)∧∆(E2) |= ∆(E1tE2).
So (A5) and (A6) can be merged as the following postulate.
(A7) If ∆(E1)∧∆(E2) is consistent, ∆(E1)∧∆(E2) ≡ ∆(E1tE2).
We now propose some postulates for a possibilistic merging operator based on postulates in

Definition 14. In the following, E , E1 and E2 denote possibilistic knowledge profiles, and B1 and B2

denote possibilistic knowledge bases.

(P1) ∆(E) is consistent

(P2) Let E = {B1, ...,Bn}. If B1 ∪ .. ∪ Bn is consistent, then (∆(E))∗ ≡ (B1 ∪ ... ∪ Bn)∗ and ∀φ, if
∃i such that Bi `π (φ, α) then ∃β such that β ≥ α and ∆(E) `π (φ, β).

(P3) If E1≡sE2, then ∆(E1)≡s∆(E2)

(P4) ∆({∆(E1)}, {∆(E2)}) `π (φ, α) for all (φ, α) ∈ ∆(E1tE2)

(P5) ∆(E1tE2) `π (φ, α) for all (φ, α) ∈ ∆({∆(E1)}, {∆(E2)}).
(P6) If ∆(E1)∪∆(E2) is consistent, then ∆(E1)∗ ∧∆(E2)∗ ≡ (∆(E1 tE2))∗ and if ∆(E1)∪∆(E2) `π

(φ, α), then ∃β such that β≥α and ∆(E1 t E2) `π (φ, β).

(P1) is a mandatory condition because we presume the first view on possibilistic merging. (P2) is
adapted from a postulate in [10]. It is stronger than (A2) in that when there is no conflict among
original knowledge bases, it requires not only all the original information be restored, but also the
weights of the formulas in original knowledge bases should not be decreased after merging. (P3) is
the principle of irrelevance of syntax, that is, it is a generalizations of (A3). Note we do not consider
the generalization of (A4) because it is a controversial postulate (see [26] for a discussion) and not
intuitive in the context of possibilistic merging because weights are attached to formulas. (P4) and
(P5) together are the associativity condition, that is, the fusion of n bases ca be decomposed in
several steps. (P6) is a generalization of (A7). We do not use ∆(E1)∪∆(E2) ≡s ∆(E1tE2) because
it is equivalent to assuming that we combine ∆(E1) and ∆(E2) using the minimum operator, which
violates (P2).

Before checking the logical properties of our I-S-C operator, we need to generalize it to n
possibilistic knowledge bases. It is easy to check that I-S-C operator is not associative, that is,
the order of combination will influence the result of merging. For example, given three possibilistic
knowledge bases B1 = {(φ, 0.6)}, B2 = {(¬φ, 0.7)}, and B3 = {(φ, 0.7)}. Let tn be the product
operator and ct = max. Suppose we combine B1 and B2 first, the result of combination is B4 =
{(¬φ, 0.7)}. We then combine B4 and B3, the result of combination is B = {(>, 0.7)}. If we combine
B1 and B3 first, the result of combination is B5 ≡s {(φ, 0.88)}. By combining B5 and B2 we get
B′ = {(φ, 0.88)}. It is clear B 6≡s B′.

In the following, we generalize Algorithm 1 to compute a splitting point for n possibilistic
knowledge base.
Algorithm 2
Input: a set of posssibilistic knowledge bases {B1, ...,Bn}, a t-conorm ct and a t-norm tn.
Output: a splitting point γ.

Step 1 Let B = ∪n
i=1Bi = {(ϕi, γi) : i = 1, ..., n + m}. Rearrange the weights of formulas in B such

that γ1>γ2>...>γn1 . Let γn1+1 = 0.
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Step 2 Compute Inc(B). Assume Inc(B) = γk. Let l = k.
Step 3 Split Bi with regard to γl such that Bi =< Ci,Di >, where Ci = {(φij , αij) : (φij , αij)∈Bi, αij≤γl}
and Di = Bi \ Ci.
Step 4 Combine Ci (i = 1, ..., n) by ct (the result is C) and combine Di (i = 1, ..., n) by tn (the
result is D).
Step 5 Let BS−C = C ∪ D.
Step 6 If BS−C is inconsistent, let l = l − 1 and go to Step 3.
Step 7 Return γl.

Definition 15 Let E = {B1, ...,Bn} be a set of n possibilistic knowledge bases. Let ct be a t-
conorm and tn be a t-norm. Let γ be the splitting point obtained by Algorithm 2. Suppose Bi

are split into Bi = 〈Ci,Di〉 w.r.t γ, and C and D are obtained by merging Ci (i = 1, ..., n) by
ct and merging Di (i = 1, ..., n) by tn respectively. The resulting possibilistic knowledge base of
the generalized incremental S-C (G-I-S-C for short) merging operator, denoted as BG−I−S−C , is
defined as BG−I−S−C = C ∪ D.

Example 9 Let B1 = {(φ, 0.7), (ψ, 0.5), (ϕ, 0.4)}, B2 = {(φ → ¬ψ, 0.6), (δ, 0.5)}, and B3 = {(φ, 0.8),
(ϕ, 0.7)} be three possibilistic knowledge bases. The union of Bi is B = {(φ, 0.8), (ϕ, 0.7), (φ, 0.7), (φ →
¬ψ, 0.6), (ψ, 0.5), (δ, 0.5), (ϕ, 0.4)} and its inconsistency degree is 0.5. The weights of formulas in
B are rearranged as γ1 = 0.8 > γ2 = 0.7 > γ3 = 0.6 > γ4 = 0.5 > γ5 = 0.4. Let γ6 = 0.
So Inc(B) = γ4. Let l = 4. B1, B2, and B3 are split w.r.t γ4 = 0.5 as D1 = {(φ, 0.7)} and
C1 = {(ψ, 0.5), (ϕ, 0.4)}, D2 = {(φ → ¬ψ, 0.6)} and C2 = {(δ, 0.5)}, and D3 = {(φ, 0.8), (ϕ, 0.7)}
and C3 = ∅ respectively. Combining Ci by the bounded sum and combining Di by the Lukasiewicz
t-norm, we get D ≡s {(φ, 1), (¬φ ∨ ¬ψ ∨ ϕ, 1), (ϕ, 0.7), (φ → ¬ψ, 0.6)} and C = ∅. Since D ∪ C is
consistent, we have γ = 0.5. So the final result of merging is BG−I−S−C = D ≡s {(φ, 1), (¬φ∨¬ψ∨
ϕ, 1), (ϕ, 0.7), (φ → ¬ψ, 0.6)}. In BG−I−S−C , the weight of φ is increased to 1 because there is a
reinforcement between (φ, 0.7) and (φ, 0.8).

We have compared the resulting possibilistic knowledge base of our merging operator with those
of the merging operators based on t-conorm and renormalization. We now compare their logical
properties. To make the notation consistent with those used in (P1)-(P5), we use ∆G−I−S−C , ∆ct

and ∆N,tn to denote G-I-S-C, the t-conorm based, and renormalization based merging operators
respectively.

Proposition 8 The G-I-S-C operator ∆G−I−S−C satisfies (P1)-(P3). It does not satisfy (P4)-
(P6) in general.

Proposition 9 The t-conorm based merging operator ∆ct satisfies (P1),(P3)-(P5). It doesn’t not
satisfy (P2) and (P6) in general. The operator ∆N,tn satisfies (P1)-(P3). It does not satisfy
(P4)-(P6) in general.

Proposition 8 and Proposition 9 show that the G-I-S-C operator and the renormalization based
operator satisfy (P1)-(P3). However, they both do not satisfy (P4)-(P6) in general. In contrast, the
t-conorm based operator satisfies (P4) and (P5), but it does not satisfy (P2) and (P6) in general.

4.2.3 Computational complexity

We analyze the computational complexity of the I-S-C operator by the following proposition.
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Proposition 10 Generating a consistent possibilistic knowledge base by I-S-C operator is in F∆p
2

(O(n)), where ∆p
2(O(n)) denotes the set of decision problems decidable in polynomial time with no

more than O(n) calls to an NP oracle, n is the number of different valuations involved in B [22],
and “F” in F∆p

2(O(n)) stands for function and is intended to turn a complexity class for decision
problem into one for search problem, i.e., problems that have answers.

We also have the following results for computational complexity of a t-conorm and renormal-
ization based operators.

Proposition 11 Generating a consistent possibilistic knowledge base by a t-conorm based merging
operator is in FP and generating a consistent possibilistic knowledge base by a renormalization
based merging operator is in F∆p

2.

By Proposition 10 and Proposition 11, the computational complexity of I-S-C operator and that
of the renormalization based merging operator lie in the same level of the boolean hierarchy, and
the computational complexity of t-conorm based merging operator is tractable.

5 Semantic Aspects of the I-S-C Operator

In this section, we provide a semantic analysis of the I-S-C operator. We first give a definition on
splitting a possibility distribution w.r.t a weight.

Definition 16 Suppose B = {(φi, αi) : i = 1, ..., n} is a possibilistic knowledge base and πB is the
possibility distribution associated with it. For weight αk of formula φk, we can split πB w.r.t αk as
〈π1, π2〉, where

π1(ω) =

{
1 if ω |= φi, ∀(φi, αi)∈B where αi≤αk,
1−max{αi|ω 6|= φi, (φi, αi) ∈ B and αi≤αk} otherwise.

(17)

and

π2(ω) =

{
1 if ω |= φi, ∀(φi, αi)∈B where αi>αk,
1−max{αi|ω 6|= φi, (φi, αi) ∈ B and αi>αk} otherwise.

(18)

Clearly, we have the following propositions.

Proposition 12 Suppose B = {(φi, αi) : i = 1, ..., n} is a possibilistic knowledge base and πB is
the possibility distribution associated with it. (φi, αi) is a formula of B. Suppose B is split w.r.t αi

as 〈C,D〉, πB is split w.r.t αi into π1 and π2. We then have π1 = πC and π2 = πD, where πC and
πD are possibility distributions of C and D respectively.

Proposition 13 Let B1 and B2 be two equivalent possibilistic knowledge base, and πB1 and πB2 are
possibility distributions associated with them. Let (φk, αk) ∈ B1. Suppose π11 and π12 are possibility
distributions obtained by splitting πB1 w.r.t αk using Equation 17 and Equation 18 respectively.
Suppose π21 and π22 are possibility distributions obtained by splitting πB2 w.r.t αk using Equation
17 and Equation 18 respectively. We then have π11(ω) = π21(ω) and π12(ω) = π22(ω) for all ω.

Proposition 13 shows that the splitting of the possibility distribution associated with a possibilistic
knowledge base using Equation 17 and Equation 18 is syntax-independent.

Let B1 and B2 be two possibilistic bases and πB1 and πB2 be their associated possibility dis-
tributions respectively. The idea of the semantic I-S-C method can be described as follows. We
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first find a splitting point by the algorithm below and then split πB1 and πB2 into 〈π11, π12〉 and
〈π21, π22〉 respectively by the splitting point (πi1 are obtained by Equation 17 and πi2 are obtained
by Equation 18). After that, we combine π11 and π21 using a t-conorm operator (the result is
a possibility distribution π1) and combine π12 and π22 using a t-norm operator (the result is a
possibility distribution π2). Finally, the resulting possibility distribution of our semantic I-S-C
operator is defined as πI−S−C(ω) = min(π1(ω), π2(ω)). The following algorithm is the semantic
counterpart of Algorithm 1.
Algorithm 3
Input: two posssibility distributions πB1 and πB2 which are associated with B1 = {(φi, αi) : i =
1, ..., n} and B2 = {(ψj , βj) : j = 1, ..., m} respectively.
Output: a splitting point γ.

Step 1 Let B = B1∪B2 = {(ϕi, γi) : i = 1, ..., n+m}. Rearrange the weights of formulas in B such
that γ1>γ2>...>γn1 . Let γn1+1 = 0.
Step 2 Compute Inc(B), assume Inc(B) = γk. Let l = k.
Step 3 Split πB1 and πB2 with regard to γl into πB1 = 〈π11, π12〉 and πB2 = 〈π21, π22〉, where πi1

(i = 1, 2) are obtained by Equation 17 and πi2 (i = 1, 2) are obtained by Equation 18.
Step 4 Combine π11 and π21 using a t-conorm operator ct and combine π12 and π22 using a t-norm
operator tn. The results are π1(ω) = tn(π11(ω), π21(ω)) and π2(ω) = ct(π12(ω), π22(ω)), for all ω.
Step 5 Let πS−C(ω) = min(π1(ω), π2(ω)) for all ω.
Step 6 If πS−C is subnormal, let l = l − 1 and go to Step 3.
Step 7 Return γl.

The semantic I-S-C operator is then defined as follows.

Definition 17 Let B1 = {(φi, αi) : i = 1, ..., n} and B2 = {(ψj , βj) : j = 1, ..., m} be two pos-
sibilistic knowledge bases, πB1 and πB2 be their associated possibility distributions. Let γ be the
splitting point obtained by Algorithm 3. Suppose πBi (i = 1, 2) are split into πi = 〈πi1, πi2〉 w.r.t
γ, where πi1 and πi2 are obtained by Equation 17 and 18 respectively. Suppose π1 and π2 are
defined by π1(ω) = ct(π11(ω), π21(ω)) and π2(ω) = tn(π12(ω), π22(ω)), for all ω. The resulting
possibility distribution of the semantic incremental S-C operator, denoted as πI−S−C , is defined as
πI−S−C(ω) = min(π1(ω), π2(ω)), for all ω.

The following proposition shows that the semantic I-S-C operator resulting in a possibility
distribution which is equivalent to that associated with the possibilistic knowledge base obtained
by the I-S-C merging operator.

Proposition 14 Let B1 = {(φi, αi) : i = 1, ..., n} and B2 = {(ψj , βj) : j = 1, ...,m} be two
possibilistic knowledge bases, πB1 and πB2 be their associated possibility distributions. We have
πBI−S−C

(ω) = πI−S−C(ω), for all ω.

We have the following relationship between the resulting possibility distributions of the semantic
I-S-C operator and t-conorm based merging operator.

Proposition 15 Let B1 and B2 be two possibilistic bases, and their associated possibility distribu-
tions are πB1 and πB2 respectively. Let πI−S−C be the resulting possibility distribution of merging
by the semantic I-S-C operator and πct be the resulting possibility distribution by the t-conorm,
then πI−S−C is more specific than πct, that is πI−S−C(ω) ≤ πct(ω) for all ω ∈ Ω.
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6 An Alternative Way to Split Possibilistic Knowledge Bases

6.1 An alternative splitting approach

When defining the I-S-C operator, given two possibilistic bases B1 and B2, we split each of them
using a weight obtained by Algorithm 1 such that B1 = C1 ∪ D1 and B2 = C2 ∪ D2. We then
combine C1 and C2 by a t-conorm operator weakening conflicting information. Since C1∪C2 consists
of possibilistic formulas in B1 ∪ B2 with necessity degrees less than the splitting point, there may
exist some free formulas in C1 or C2. So, when we combine C1 and C2 by a t-conorm operator,
these free formulas are combined with other formulas as disjunctive forms. However, we know free
formulas will not cause inconsistency, so it is safe to keep them unchanged. Therefore, we propose
the following alternative approach to splitting the knowledge bases.

Definition 18 (free-formulas-based splitting) Given a possibilistic base B, the splitting of B with
regard to Free(B) is a pair < CCon,DFree > such that B = CCon ∪ DFree, where

DFree = {(φ, α)|(φ, α)∈Free(B)},

CCon = B \ DFree = {(φ, α)|(φ, α)6∈Free(B)}.

That is, DFree contains all the free formulas, and CCon contains all the conflict formulas in B.

Lemma 1 Let B be a possibilistic knowledge base. Let B be split by the upper-free-degree approach
and free-formulas approach respectively, with the splitting results as B = C∪D and B = CCon∪DFree.
Then D ⊆ DFree, and CCon ⊆ C.

We omitted the proof of Lemma 1, as it is easy to prove.
Now we define the free-formulas-based S-C operator.

Definition 19 Let B1 = {(φ1, α1), ..., (φn, αn)} and B2 = {(ψ1, β1), ..., (ψm, βm)} be two possi-
bilistic bases. Let < C′,D′ > be a splitting of B1 ∪ B2 with regard to Free(B1 ∪ B2). Suppose B1

is split into a pair < CCon1 ,DFree1 > such that CCon1 = C′ ∩ B1 and DFree1 = D′ ∩ B1, and B2 is
split into a pair < CCon2 ,DFree2 > such that CCon2 = C′ ∩ B2 and DFree2 = D′ ∩ B2. Let CCon and
DFree be the possibilistic knowledge bases obtained by merging CCon1 and CCon2 using a t-conorm
operator and merging DFree1 and DFree2 using a t-norm operator respectively. The result of the
F -S-C merging operator, denoted by BF−S−C , is defined as BF−S−C = CCon ∪ DFree.

The resulting possibilistic knowledge base of the F -S-C operator is always consistent.

Lemma 2 The possibilistic base BF−S−C obtained in F -S-C method is consistent.

The proof of Lemma 2 is similar to that of Proposition 3.

Example 10 Suppose there are two persons whose beliefs on Tweety the penguin are expressed by
two possibilistic knowledge bases B1 and B2 respectively, where B1 = {(penguin(Tweety), 1), (bird
(Tweey), 0.8), (eatfish(Tweety), 0.8)} and B2 = {(bird(Tweety) → fly(Tweety), 1), (¬fly(Tweety),
0.8), (eatfish(Tweety) → swim(Tweety), 0.6)}. Since Free(B1 ∪ B2) = {(penguin(Tweety), 1),
(eatfish(Tweety), 0.8), (eatfish(Tweety) → swim(Tweety), 0.6)}, B1 and B2 are split into 〈CCon1 ,
DFree1〉 and 〈CCon2 ,DFree2〉, where CCon1 = {(bird(Tweety), 0.8)} and DFree1 = {(penguin(Tweety),
1), (eatfish(Tweety), 0.8)}, and CCon2 = {bird(Tweety) → fly(Tweety), 1), (¬fly(Tweety), 0.8)}and
DFree2 = {(eatfish(Tweety) → swim(Tweety), 0.6)}. Suppose the t-conorm is the probabilistic
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sum and the t-norm is the product operator. Then combining CCon1 and CCon2 using the probabilistic
sum and combining DFree1 and DFree2 using the product operator we get CCon = {(bird(Tweety)∨
¬fly(Tweety), 0.64)}, and DFree = {(penguin(Tweety), 1), (eatfish(Tweety), 0.8), (eatfish(Tweety)
→ swim(Tweety), 0.6), (penguin(Tweety)∨(eatfish(Tweety) → swim(Tweety)), 1)}. So BF−S−C =
{(bird(Tweety)∨¬fly(Tweety), 0.64), (penguin(Tweety), 1), (eatfish(Tweety), 0.8), (eatfish(Tweety)
→ swim(T weety), 0.6), (penguin(Tweety) ∨ (eatfish(Tweety) → swim(Tweety)), 1)}. The con-
flicting formulas (bird(Tweety), 0.8), bird(Tweety) → fly(Tweety), 1), (¬fly(Tweety), 0.8) are
weakened to be (bird(Tweety) ∨ ¬fly(Tweety), 0.64). That is, after merging, we are moderately
confident that either Tweety is a bird or it cannot fly.

The resulting knowledge base of F -S-C operator and that of I-S-C operator are not comparable
in general. Let us look at Example 8 again.

Example 11 (Continue Example 8) Free(B1 ∪ B2) = {(φ, 0.7), (¬φ, 0.6)}. So B1 and B2 are split
as < CCon1 ,DFree1 > and < CCon2 ,DFree2 >, where CCon1 = {(φ, 0.7)}, DFree1 = {(ψ, 0.7)},
and CCon2 = {(¬φ, 0.6)}, DFree2 = {(ψ, 0.4)}. Combining CCon1 and CCon2 using the probabilistic
sum and combining DFree1 and DFree2 using product operator we get CCon = {(>, 0.42)} and
DFree ≡s {(ψ, 0.88)}. Therefore BF−S−C ≡s {(ψ, 0.88)}. Clearly, BF−S−C is not comparable with
BI−S−C in Example 8.

However, we have the following results.

Proposition 16 Given two possibilistic bases B1 and B2, if BF−S−C is the possibilistic base ob-
tained by the F -S-C method and BUpper−S−C is the possibilistic base obtained by the U -S-C method,
then

BF−S−C `π (φ, α), for all (φ, α) ∈ BUpper−S−C , (19)

but not vice verse.

6.2 Properties

We now consider the logical properties of the F -S-C operator. It is easy to generalize the F -S-C
operator to n possbilistic knowledge bases. We denote the generalized F -S-C operator by 4F−S−C .
We have the following proposition for the logical properties of operator 4F−S−C .

Proposition 17 The F -S-C operator 4F−S−C satisfies (P1), (P2), (P4). It does not satisfy (P3),
(P5) and (P6) in general.

Since the F -S-C operator does not satisfy (P3), it is syntax-dependent. However, it satisfies the
following important postulate, which is falsified by all the other possibilistic merging operators.

(P7) Let (φ, α) ∈ ⋃ E . If (φ, α) is free in
⋃ E , then ∆(E) `π (φ, β), where β≥α.

Proposition 18 4F−S−C satisfies (P7). The I-S-C operator, t-conorm based operator, and renor-
malization based operator do not satisfy (P7).

The computational complexity of the F -S-C operator is worse than other operators (under the
usual assumption in complexity theory).

Proposition 19 Generating a knowledge base by the F -S-C method is FΣp
2-complete.
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6.3 Application of the F -S-C operator to merge flat knowledge bases

6.3.1 F -S-C operator: flat case

It has been pointed out in [15] that when the necessity degrees of all the possibilistic formulas
are taken as 1, possibilistic logic regresses to classical logic. So classical logic is a special case of
possibilistic logic in which all the formulas have the same level of priority. That is, given a set
of formulas K = {φ1, ..., φn} in classical logic, we can relate it to a set of possibilistic formulas
K = {(φ1, 1), ...(φn, 1)}. Therefore, our F -S-C method can be applied to merge flat (or classical)
knowledge bases. For notational simplicity, we omit “flat” and use “knowledge base” only in this
section.

Definition 20 Given a knowledge base K, the splitting of K w.r.t Free(K) is a pair < KCon,KFree >
such that KFree = {φ|φ∈Free(K)}, KCon = K \KFree.

It is clear that we have the following proposition.

Proposition 20 Let E = {K1, ...,Kn} be a set of n knowledge bases. Let < K ′,K ′′ > be a splitting
of ∪E w.r.t Free(∪E). Suppose Ki is split into a pair < KConi ,KFreei > such that KConi = K ′∩Ki

and KFreei = K ′′ ∩ Ki. Let KCon = {(∨n
i=1φi : φi∈KConi} and KFree = ∪n

i=1KFreei. Suppose
the result of the F -S-C merging operator in the flat case is KF−S−C , we then have KF−S−C =
KCon ∪KFree.

In [4], a consequence relation called free consequence relation is defined to cope with inconsis-
tency in knowledge bases.

Definition 21 A formula φ is said to be a free consequence of a knowledge base K, denoted
K |=Free φ, if and only if φ is logically entailed by Free(K), namely,

K |=Free φ, iff Free(K) |= φ

Given two knowledge bases K1 and K2, a method was introduced in [4] which concatenated K1

and K2, i.e., the result of merging is K1∪K2. When K1∪K2 was inconsistent, some inconsistency
tolerant consequence relations, for example, the free consequence relation, could be used to deal
with it.

Proposition 21 Let K1 and K2 be two flat knowledge bases. Let KF−S−C be the knowledge base
obtained by merging K1 and K2 using the F -S-C merging operator. Then every free consequence
of K1∪K2 can be inferred from KF−S−C .

The proof of Proposition 21 shows that KF−S−C keeps all the free formulas unchanged, and com-
bines all the subbases containing conflict formulas using the maximum. In contrast, if we combine
K1 and K2 by concatenation and deal with the inconsistency using the free consequence relation,
then only free formulas are used and the conflict formulas are ignored. Consequently, the converse
of Proposition 21 is false.

Example 12 Given two flat bases K1 = {φ, ¬φ ∨ ¬ψ}, K2 = {ψ, ¬φ ∨ δ, ψ ∨ δ}, the free base
of K1∪K2 is Free(K1∪K2) = {¬φ∨ δ, ψ ∨ δ}. Splitting K1 and K2 with regard to Free(K1∪K2),
we have K1 = KCon1 ∪ KFree1 such that KCon1 = {φ, ¬φ ∨ ¬ψ} and KFree1 = ∅, and K2 =
KCon2 ∪KFree2 such that KCon2 = {ψ} and KFree2 = {¬φ ∨ δ, ψ ∨ δ}. We then have

KCon = {φ ∨ ψ} and KFree = {¬φ ∨ δ, ψ ∨ δ}.
Finally, KF−S−C = {φ∨ψ, ¬φ∨ δ, ψ ∨ δ}. Clearly, φ∨ψ cannot be inferred from Free(K1∪K2).
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Application to the merging of flat knowledge bases is a very important characteristic for the
F -S-C merging operator. In the flat case, the I-S-C operator is reduced to the t-conorm based
operator. The renormalization based merging operator is not applicable to flat knowledge bases
because the resulting knowledge base is equivalent to a knowledge base with no information.

Proposition 22 Let E = {K1, ...,Kn} be a set of knowledge bases. Let KI−S−C(E) and Kct(E)
be the resulting knowledge base of I-S-C operator and t-conorm based operator respectively. Then
KI−S−C(E) = Kct(E) = {∨n

i=1φi : φi∈Ki}. Let KN,tn(E) be the resulting knowledge base of a
renormalization based operator. Then KN,tn(E) ≡ >.

6.3.2 Comparison with other syntax-based merging methods

Let 4F−S−C denote our F -S-C merging operator. It is clear that for any knowledge profile E,
4F−S−C(E) is consistent, so 4F−S−C satisfies (A1). We also have the following properties for
4F−S−C .

Proposition 23 Let E be a knowledge profile. If E is consistent, then 4F−S−C(E) =
∧

E.

Proposition 24 If K1∪K2 is not consistent, then 4F−S−C({K1}t{K2}) 6 `K1.

Proposition 25 4F−S−C(E1) ∪4F−S−C(E2) ` 4F−S−C(E1tE2)

Propositions 23, 24, 25 show that the operator 4F−S−C satisfies (A2), (A4), and (A5).
However, our F -S-C merging operator does not satisfy all the other postulates in Definition 14.

Proposition 26 The F -S-C merging operator 4F−S−C does not satisfy (A3) and (A6) in general.

By Proposition 26, in the flat case, our F -S-C operator belongs to syntax-based or formula-
based merging operators [1, 24]. Compared with model-based operators, formula-based ones are
usually computationally more expensive (inference can be Πp

2-complete) and satisfy less rationality
postulates [27]. However, formula-based operators may outperform model-based ones w.r.t other
criteria, such as strategy-proofness and discriminating power (see [16, 17, 18]). We now compare F -
S-C operator with other syntax-based merging operators. Let us first introduce a merging operator
in [1].

Definition 22 Let K be a knowledge base. A subset M⊆K is called a maximal consistent subset
of K if it satisfies the following conditions:

1. M 6|= ⊥,

2. ∀M ′⊆K, if M⊂M ′, then M ′ |= ⊥.

The set of all maximal consistent subsets of K is denoted as MAXCONS(K).

Definition 23 Let E be a knowledge profile. The maximal-consistent-subsets (MCS for short)
based merging operator, denoted as ∆MC , is defined as

∆MC(E) =
∨

MAXCONS(∪E).
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It was shown in [24] that the MCS-based operator satisfies (A1), (A2), (A4) and (A5). However,
it does not satisfy (A3) and (A6).

The resulting knowledge base of our operator is not comparable with that of MSC-based operator
in general. Let us look at an example.

Example 13 Let E = {K1,K2} contains two knowledge bases K1 = {φ,¬φ ∨ ¬ψ,ϕ} and K2 =
{ψ, ,¬φ ∨ ¬ϕ}. Since {φ,¬φ ∨ ¬ψ,ψ} and {φ,¬φ ∨ ¬ϕ,ϕ} are two minimal inconsistent subbases
of K1∪K2, Free(K1∪K2) = ∅. Using the F -S-C merging operator, we get KF−S−C = {φ ∨
ψ,¬φ ∨ ¬ψ ∨ ¬ϕ,ψ ∨ ϕ}. By contrast, K1∪K2 contains five maximal consistent knowledge bases
B1 = {φ, ψ, ϕ}, B2 = {φ, ψ,¬φ ∨ ¬ϕ}, B3 = {φ, ϕ,¬φ ∨ ¬ψ}, B4 = {φ,¬φ ∨ ¬ψ,¬φ ∨ ¬ϕ},
B5 = {ψ, ϕ,¬φ ∨ ¬ψ,¬φ ∨ ¬ϕ}. So ∆MC(E) =

∨5
i=1 Bi. It is easy to check that ψ ∨ ϕ can not be

inferred from B4, therefore, it is not inferred from ∆MC(E). However, ψ ∨ ϕ∈KF−S−C , so it can
be inferred from KF−S−C . Conversely, φ ∨ ϕ can be inferred from each Bi, so it is inferred from
∆MC(E). However, φ ∨ ϕ cannot be inferred from KF−S−C .

The MCS merging operator does not take into account the source of information in the com-
bination process. That is, it simply conjoins the original knowledge bases first and then takes the
disjunction of all the maximal consistent subsets as the resulting knowledge base. In [24], several
selection functions were defined to choose among maximal consistent subsets those subsets that
best fit a “merging criteria”. Generally, the merging operators based on selection functions do not
satisfy (A3) and (A6). One exception is a merging operator called intersection operator, which is
defined as follows.

Definition 24 [24] Let E be a knowledge set, M and K be two knowledge bases. Let us denote
dist∩(M,K) = |K∩M | and dist∩(M,E) = ΣK∈Edist∩(M, K). Let distmax = maxMi∈MAXCONS(∪E)

(dist∩(Mi, E)). Then the intersection operator is defined as

∆∩,Σ(E) = {M∈MAXCONS(∪E) : dist∩(M, E) = distmax}.

The intersection operator selects those maximal consistent subsets that fit the knowledge bases on
a maximum of formulas. It was shown that operator ∆∩,Σ satisfies (A1),(A2),(A5),(A6). However,
it does not satisfy (A3) and (A4) in general.

Let us look at Example 13 again. It is easy to check that distmax = 4 and ∆∩,Σ(E) = B5. So
∆∩,Σ(E) |= φ for all φ∈KF−S−C . However, this conclusion is not always true.

Example 14 Let E = {K1,K2}, where K1 = {φ, ϕ} and K2 = {ψ,¬φ∨¬ψ,¬ϕ∨¬δ, δ}. K1∪K2 =
{φ, ϕ, ψ,¬φ∨¬ψ,¬ϕ∨¬δ, δ}. There are nine maximal consistent subsets of K1 ∪K2, for example,
B1 = {ψ,¬φ∨¬ψ,¬ϕ∨δ, δ} and B2 = {φ,¬φ∨¬ψ,¬ϕ∨¬δ, δ}. It is easy to check that dist∩(Bi, E) =
4 for all i. So distmax = 4 and ∆∩,Σ(E) =

∨9
i=1 Bi. A formula can be inferred from ∆∩,Σ(E) iff

it can be inferred from all Bi’s. Next, we consider F -S-C operator. The set of free formulas
of K1∪K2 is ∅. So K1 and K2 are split into KCon1 = {φ, ϕ} and KFree1 = ∅, and KCon2 =
{ψ,¬φ ∨ ¬ψ,¬ϕ ∨ ¬δ, δ} and KFree2 = K1∨K2. We then have KCon = {φ ∨ ψ} and KFree = ∅.
Thus, KF−S−C = {φ∨ψ, φ∨¬ϕ∨¬δ, φ∨ δ, ϕ∨ψ,¬φ∨¬ψ ∨ϕ,ϕ∨ δ}. It is clear that φ∨¬ϕ∨¬δ
is not inferred from B1 and ψ ∨ ϕ is not inferred from B2, so both φ ∨ ¬ϕ ∨ ¬δ and ψ ∨ ϕ cannot
be inferred from ∆∩,Σ(E).

¿From the analysis above we conclude that 4F−S−C satisfies the most important postulates for
merging operators in the flat cases. It is a good alternative to syntax-based operators in classical
logic. More importantly, 4F−S−C can be applied to merge uncertain knowledge bases in the
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framework of possibilistic logic, where the formulas in conflict are weakened to resolve inconsistency
and the weights of free formulas are reinforced. So it provides a very good choice to deal with the
problem of combining sources of information, especially when uncertain and incomplete information
exists.

7 Related Work

Many possibilistic merging operators have been proposed [3, 6, 5, 7, 9, 10], which are very powerful
for dealing with the merging problem when information is pervaded with uncertainty. A common
deficiency for existing merging operators is that they are defined by a single operator, so it is
not possible to differentiate different classes of information, such as free and conflict information,
during the process of merging. In contrast, our merging operators split each knowledge base into
two subbases and then merge different classes of subbases using different merging operators.

Possibilistic logic is closely related to Spohn’s ordinal conditional functions [7, 14]. It was
pointed out in [7] that semantic representation in ordinal conditional functions is basically the
same as that in possibilistic logic. The only difference is that we associate each interpretation ω
with an integer κ(ω) in ordinal conditional functions, and the lower κ(ω) is, the more preferred it is.
So the possibilistic merging problem is related to merging problem in ordinal conditional functions.
Much work has been done on merging sources of information in the framework of ordinal conditional
functions [7, 30, 31, 32]. Similar to merging operators in possibilistic logic, merging in the ordinal
conditional functions framework can be done semantically by aggregating kappa distributions (see
[7]) or epistemic states (see [30]), which are functions from the set of interpretations to the set
of integers or naturals. The syntactical representations of semantic merging operators are then
obtained as in possibilistic logic (see Equation 6). The problem for merging operators in possibilistic
logic is also applied to merging operator in ordinal conditional functions. That is, they also use
a single operator to aggregate kappa distributions or epistemic states. In a future work, we will
consider applying our split-combination operators to merging sources of information in ordinal
conditional functions to solve this problem.

In [33], some aggregation operators have been proposed to combine the belief states of a set of
information sources, which are defined as modular, transitive relations over possible worlds. The
authors also differentiate conflict and conflict-free belief states in the context of merging. Our work
differs from theirs in that our merging operators are defined on possibilistic knowledge bases, whilst
their aggregation operators are defined on a set of belief states.

8 Conclusions and Further Work

In this paper we first proposed an incremental split-combination (I-S-C) merging operator which
resolves inconsistency between individually consistent possibilistic knowledge bases. The I-S-C
operator uses a weight obtained by an incremental algorithm to split each possibilistic knowledge
base Bi into two subbases Ci and Di and then combines Ci’s and Di’s by a t-conorm based merging
operator and a t-norm based merging operator respectively. We proved that the resulting knowledge
base of the I-S-C operator contains more important information than that of the t-conorm based
operator. We then proposed another splitting approach, called a free-formulas-based splitting. The
split-combination merging operator based on this splitting approach, called the F -S-C operator,
can be applied to merge knowledge bases which are flat. In the flat case, the F -S-C operator
satisfies most of the postulates in [23].
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When discussing the logical properties of I-S-C operator, we adapted the set of postulates for
merging propositional knowledge bases in [23] to possibilistic logic. However, there is no possibilistic
merging operator satisfying all the postulates (our I-S-C merging operator satisfies most of the
postulates). A future work is to propose such a possibilistic merging operator. Another future
work is to propose more postulates for merging possibilistic knowledge bases. Postulate (P2) is a
postulate which takes the weights of formulas into account. Because possibilistic logic is a kind of
weighted logic, we may expect to find some additional postulates for possibilistic merging operators
which utilize weights.

9 Appendix

Proposition 3 The resulting possibilistic base BUpper−S−C of U -S-C operator is consistent.
Proof. Suppose BUpper−S−C is inconsistent, then we have (C ∪ D)∗|=false. By Equation 10, we
have C∗1 |= C∗. Therefore (C1 ∪ D)∗|=false. However we have assumed that B1 is consistent, so C∗1
must be consistent. Since D = D1 ∪ D2 ∪ {(φi ∨ ψj , ct(αi, βj))|(φi, αi) ∈ D1 and (ψj , βj) ∈ D2},
D∗≡D∗1 ∪ D∗2. Therefore there must exist some formulas in D∗1 ∪ D∗2 which are in conflict with
formulas in C∗. This is a contradiction, because all formulas in D∗1 ∪ D∗2 are free in B∗1 ∪ B∗2. This
completes our proof.

Proposition 4 Given two possibilistic knowledge bases B1 and B2, suppose BUpper−S−C and
BI−S−C are the merging results of B1 and B2 using U -S-C operator and I-S-C operator respectively,
then we have

BI−S−C ` (φ, α), for all (φ, α)∈BUpper−S−C ,

but not vice versa.
Proof: Suppose αi is the splitting point obtained by Algorithm 1. It is clear that αi≤αm, where
αm = Freeupp(B1 ∪ B2). Suppose B1 and B2 are split by αm into B1 =< C1,D1 > and B2 =<
C2,D2 > respectively. Suppose B1 and B2 are split by αi into B1 =< C′1,D′1 > and B2 =< C′2,D′2 >
respectively. We have C′j⊆Cj and Dj⊆D′j , where j = 1, 2. Suppose (φ, α)∈BUpper−S−C , we need to
consider two cases:

Case 1: (φ, α)∈D1∪D2, then we have (φ, α)∈D′1∪D′2. So BI−S−C ` (φ, α).
Case 2: (φ, α) = (φ1 ∨ φ2,min(α1, α2)), where (φ1, α1) ∈ C1 and (φ2, α2) ∈ C2. If (φ1, α1) or

(φ2, α2) belong to D′1∪D′2, then we have BI−S−C ` (φ, α). Otherwise, (φ1, α1)∈C′1 and (φ2, α2) ∈ C′2.
Then (φ, α) ∈ BI−S−C , so BI−S−C ` (φ, α).

BI−S−C is not always equivalent to BUpper−S−C . By Example 4 and Example 6, we have
BI−S−C = {(φ∨δ, 0.9), (¬φ∨ϕ, 0.8), (¬ψ∨δ, 0.7), (¬φ∨ψ, 0.6), (δ∨ϕ, 0.5), (φ, 0.5)} and BUpper−S−C =
{(φ∨δ, 0.9), (¬φ∨ϕ, 0.8), (¬ψ∨δ, 0.7), (¬φ∨ψ∨δ∨ϕ, 0.5), (φ∨δ∨ϕ, 0.5), (φ∨ψ, 0.3), (¬φ∨ψ, 0.3)}.
It is clear that (¬φ ∨ ψ, 0.6) in BI−S−C cannot be inferred from BUpper−S−C .

Proposition 5 Given two possibilistic bases B1 and B2, let BUpper−S−C be the possibilistic base
obtained by the U -S-C method (which is based on a t-norm tn and a t-conorm ct) and Bct be the
resulting possibilistic base of merging using ct, then

BUpper−S−C `π (φ, α), for all (φ, α) ∈ Bct (20)

Proof. By Equation (5), every formula in Bdm has the form (φi∨ψj , min(αi, βj)), where (φi, α) ∈
B1 and (ψj , βj) ∈ B2, so we consider four cases:

Case 1: αi, βj≤Freeupp(B1 ∪ B2), then we have (φi ∨ ψj , min(αi, βj)) ∈ BUpper−S−C . So
BUpper−S−C `π (φi ∨ ψj , min(αi, βj)).
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Case 2: αi>Freeupp(B1∪B2), and βj≤Freeupp(B1∪B2), then min(αi, βj) = βj and BUpper−S−C `π

(φi, αi). Since φi |= (φi ∨ ψj) and αi ≥ βj , we have BUpper−S−C `π (φi ∨ ψj , min(αi, βj)).
Case 3: αi≤Freeupp(B1 ∪ B2), and βj>Freeupp(B1 ∪ B2), this case is a dual to case 2.
Case 4: αi>Freeupp(B1∪B2) and βj>Freeupp(B1∪B2), we can suppose αi>βj , then min(αi, βj) =

βj . Since φi |= (φi ∨ ψj), we have BUpper−S−C `π (φi ∨ ψj , min(αi, βj)).

Proposition 8 The G-I-S-C operator ∆G−I−S−C satisfies (P1)-(P3). It does not satisfy (P4)-(P6)
in general.
Proof: It is clear that (P1) holds.

(P2)If B1 ∪ ... ∪ Bn is consistent, then Inc(B) = 0. So Inc(B) = γn1 and l = n1. Then Ci = ∅
and Di = Bi for i = 1, 2. So ∆G−I−S−C(E) = ∆ct(E), where ∆tn(E) is the resulting possibilistic
knowledge base of merging Bi using the t-norm tn. By Equation 9, it is clear that (P2) holds.

(P3) Before the proof of (P3), we need two lemmas.

Lemma 3 Suppose E1 ≡s E2, then ∪E1≡s ∪ E2.

Lemma 4 Let E1 = {B1, ...,Bn} and E2 = {B′1, ...,B′n}, where Bi and B′i are individual consistent.
Suppose E1 ≡s E2, and Bi and B′i (i = 1, ..., n) are split w.r.t a weight γ into Bi = 〈Ci,Di〉 and
B′i = 〈C′i,D′i〉 respectively, then Ci≡sC′i and Di≡sD′i.

The proofs of Lemma 3 and Lemma 4 are clear from the definitions of equivalence of possibilistic
knowledge profiles and possibilistic knowledge bases, we do not provide them here.

We now continue the proof of (P3).
Suppose γE1 and γE2 are splitting points of E1 and E2 obtained by Algorithm 2 respectively,

we now prove that ∆G−I−S−C(E1)≡s∆G−I−S−C(E2) by induction over number t of times that the
algorithm goes to Step 3. It is clear that if ∪E1 or ∪E2 is consistent, the conclusion holds. We
assume ∪Ei (i = 1, 2) are inconsistent.

1) When t = 1, by Lemma 3, ∪E1≡2 ∪ E2, we have Inc(∪E1) = Inc(∪E2) = γk and then
lE1 = lE2 = k − 1. Suppose BEi

S−C (i = 1, 2) are resulting possibilistic knowledge bases of merging
Ei by the S-C operator which uses γk−1 as the splitting point. By Lemma 4, it is clear that
BE1S−C≡sBE2S−C . If BE1S−C (or BE2S−C) is consistent, then the algorithm stops and we can conclude that
∆G−I−S−C(E1)≡s ∆G−I−S−C(E2). Otherwise, the Algorithm goes to Step 3.

2) Suppose t = j. Let γl1 and γl2 be the splitting point for E1 and E2 respectively, BE1,j
S−C and

BE2,j
S−C be resulting possibilistic knowledge bases of merging E1 and E2 by the S-C operator which

uses γl1 and γl2 as the splitting point respectively. Let us assume that γl1 = γl2 , BE1,j
S−C ≡s BE2,j

S−C ,
and BEi,j

S−C (i = 1, 2) are inconsistent. Since γl1 = γl2 , we have l1 = l2. Suppose t = j +1. It is clear
that γl1−1 = γl2−1. Let BE1,j+1

S−C and BE2,j+1
S−C be resulting possibilistic knowledge bases of merging

E1 and E2 by the S-C operator which uses γl1−1 and γl2−1 as the splitting point respectively. We
only need to prove that BE1,j+1

S−C ≡s BE2,j+1
S−C . This is easy to follow from Lemma 4. If BE1,j+1

S−C is
consistent, then the algorithm stops and we can conclude that ∆G−I−S−C(E1)≡s ∆G−I−S−C(E2).
Otherwise, the Algorithm goes to Step 3.

By 1) and 2) we have proven that ∆G−I−S−C(E1)≡s∆G−I−S−C(E2).
(P4)-(P6): Let us consider the following counterexample.
Let E1 = {B1,B2} and E2 = {B3,B4}, where B1 = {(φ, 0.9), (¬ψ, 0.7)}, B2 = {(ψ, 0.8), (¬φ, 0.6)},

B3 = {(ϕ, 0.4)} and B4 = {(χ, 0.4)}. Let ct = max and tn = min. It is easy to check that
∆G−I−S−C(E1) = {(φ, 0.9), (¬φ∨¬ψ, 0.6)}, ∆G−I−S−C(E2) = {(ϕ, 0.4), (χ, 0.4)}. Since ∆G−I−S−C

(E1)∪∆G−I−S−C(E2) is consistent, ∆G−I−S−C({∆G−I−S−C(E1)}, {∆G−I−S−C(E2)}) = {(φ, 0.9), (¬φ∨
¬ψ, 0.6), (ϕ, 0.4), (χ, 0.4)}. In contrast, we have ∆G−I−S−C(E1tE2) = {(φ, 0.9), (ψ, 0.8), (¬φ∨¬ψ∨
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ϕ ∨ χ, 0.4)}. (χ, 0.4) ∈ ∆G−I−S−C({∆G−I−S−C(E1)}, {∆G−I−S−C(E2)}), but it cannot be inferred
from ∆G−I−S−C (E1 t E2). Conversely, (ψ, 0.8) ∈ ∆G−I−S−C(E1 t E2), but it cannot be inferred
from ∆G−I−S−C({∆G−I−S−C(E1)}, {∆G−I−S−C(E2)}). So (P4) and (P5) are not satisfied. We
consider (P6). Since ∆G−I−S−C(E1)∗ ∧ ∆G−I−S−C(E2)∗≡φ ∧ ¬ψ ∧ ϕ ∧ χ and (∆G−I−S−C(E1 t
E2))∗ ≡ φ ∧ ψ ∧ (ϕ ∨ χ), so ∆G−I−S−C(E1)∗ ∧∆G−I−S−C(E2)∗ 6≡(∆G−I−S−C(E1 t E2))∗. However,
∆G−I−S−C(E1) ∪∆G−I−S−C(E2) is consistent, so (P6) is not satisfied.

Proposition 9 The t-conorm based merging operator ∆ct satisfies (P1),(P3)-(P5). It doesn’t not
satisfy (P2) in general. The operator ∆N,tn satisfies (P1)-(P3). It does not satisfy (P4) and (P5)
in general.
Proof: We first consider operator ∆ct.

It is clear that (P1) is satisfied by ∆ct. We give an counterexample for (P2).

Example 15 Let E = {B1,B2}, where B1 = {(p, 0.7)} and B2 = {(q, 0.9)}, where p, q are two
propositional symbols. Let ct be a t-conorm, By Equation 10, ∆ct(E) = {(φ ∨ ψ, α)}, where α =
tn(0.7, 0.9). It is easy to check that ∆ct(E) 6`π (p, 0.7), so 6 ∃β≥0.7 such that ∆ct(E) 6`π (p, β).

(P3) holds because ∆ct is semantically defined by aggregation of possibility distributions asso-
ciated Bi.

(P4) and (P5): Let πct,E1 , πct,E2 and πct,E1tE2 be possibility distributions obtained by aggregating
possibility distribution associated with possibilistic bases of E1, E2 and E1tE2 using ct respectively.
Let πct be the possibility distribution obtained by aggregating πct,E1 and πct,E2 using ct. To prove
∆({∆ct(E1)}, {∆ct(E2)})≡s∆(E1 t E2), we only need to prove πct(ω) = πct,E1tE2(ω), for all ω. This
equation holds because ct is a associative and commutative operator.

It is clear that ∆ct does not satisfy (P6).
Next we consider operator ∆N,tn.
(P1): By Equation 11, (P1) holds clearly.
(P2): If B1∪...∪Bn is consistent, ∆N,tn(E) = ∆tn(E), where ∆tn(E) is the resulting possibilistic

knowledge base of merging Bi using the t-norm tn. By Equation 9, it is clear that (P2) holds.
(P3): By Equation 11, it is clear that (P3) holds due to ∆tn(E1)≡s∆tn(E2).
(P4) and (P5): Let us consider the following counterexample.
Let E1 = {B1,B2} and E2 = {B3,B4}, where B1 = {(φ, 0.8), (ψ, 0.4), (ϕ, 0.4)}, B2 = {(φ →

¬ψ, 0.6)}, B3 = {(ϕ, 0.4)} and B4 = {(χ, 0.4)}. Let tn be the product operator. By Equa-
tion 9, we have ∆tn(E1) = {(φ, 0.8), (¬φ ∨ ¬ψ ∨ ¬ϕ, 0.76), (φ → ¬ψ, 0.6), (ψ, 0.4), (ϕ, 0.4)} and
∆tn(E2) = {(ϕ ∨ χ, 0.64), (ϕ, 0.4), (χ, 0.4)}. So ∆N,tn(E1) = {(φ, 0.8), (¬φ ∨ ¬ψ ∨ ¬ϕ, 0.76), (φ →
¬ψ, 0.6)} and ∆N,tn(E2) = {(ϕ ∨ χ, 0.64), (ϕ, 0.4), (χ, 0.4)}. Combining ∆N,tn(E1) and ∆N,tn(E2)
by tn we get ∆tn({∆N,tn(E1)}, {∆N,tn(E2)}) = {(φ ∨ ϕ ∨ χ, 0.93), (φ ∨ ϕ, 0.88), (φ ∨ χ, 0.88), (¬φ ∨
¬ψ ∨ χ, 0.86), (¬φ ∨ ¬ψ ∨ ϕ ∨ χ, 0.85), (φ, 0.8), (¬φ ∨ ¬ψ ∨ ϕ, 0.76), (¬φ ∨ ¬ψ ∨ χ, 0.76), (¬φ ∨ ¬ψ ∨
¬ϕ, 0.76), (ϕ ∨ χ, 0.64), (φ → ¬ψ, 0.6), (ϕ, 0.4), (χ, 0.4)}. Since ∆tn({∆N,tn(E1)}, {∆N,tn(E2)}) is
consistent, we have ∆N,tn({∆N,tn(E1)}, {∆N,tn(E2)}) = ∆tn({∆N,tn(E1)}, {∆N,tn(E2)}). In con-
trast, since E1 t E2 = {B1,B2,B3,B4}, we have ∆tn(E1 t E2) = {(φ ∨ ϕ ∨ χ, 0.93), (φ ∨ ϕ, 0.88), (φ ∨
χ, 0.88), (¬φ∨¬ψ∨χ, 0.86), (¬φ∨¬ψ∨ϕ∨χ, 0.85), (φ, 0.8), (ϕ∨χ, 0.78), (ψ∨ϕ∨χ, 0.78), (¬φ∨¬ψ∨
ϕ, 0.76), (¬φ∨¬ψ∨χ, 0.76), (¬φ∨¬ψ∨¬ϕ, 0.76), (ϕ∨χ, 0.64), (ψ∨ϕ, 0.64), (ψ∨χ, 0.64), (ϕ, 0.64), (ϕ∨
ψ, 0.64), (φ → ¬ψ, 0.6), (ϕ, 0.4), (χ, 0.4), (ψ, 0.4)}. The inconsistency degree of ∆tn(E1 t E2) is 0.4,
so ∆N,tn(E1 t E2) = {(φ ∨ ϕ ∨ χ, 0.93), (φ ∨ ϕ, 0.88), (φ ∨ χ, 0.88), (¬φ ∨ ¬ψ ∨ χ, 0.86), (¬φ ∨ ¬ψ ∨
ϕ ∨ χ, 0.85), (φ, 0.8), (ϕ ∨ χ, 0.78), (ψ ∨ ϕ ∨ χ, 0.78), (¬φ ∨ ¬ψ ∨ ϕ, 0.76), (¬φ ∨ ¬ψ ∨ χ, 0.76), (¬φ ∨
¬ψ ∨¬ϕ, 0.76), (ϕ∨χ, 0.64), (ψ ∨ϕ, 0.64), (ψ ∨χ, 0.64), (ϕ, 0.64), (ϕ∨ψ, 0.64), (φ → ¬ψ, 0.6)}. It is
clear that (ϕ, 0.4) in ∆N,tn({∆N,tn(E1)}, {∆N,tn(E2)}) cannot be inferred from ∆N,tn(E1 t E2) and
(ϕ, 0.64) in ∆N,tn(E1 t E2) cannot be inferred from ∆N,tn({∆N,tn(E1)}, {∆N,tn(E2)}).
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(P6) Let us look at the counterexample in the proof of Proposition 8. Let tn = min. ∆N,tn(E1) =
{(φ, 0.9), (ψ, 0.8)} and ∆N,tn(E2) = {(ϕ, 0.4), (χ, 0.4)}. Clearly, ∆N,tn(E1)∪∆N,tn(E2) is consistent.
We also have ∆N,tn(E1tE2) = {(φ, 0.9), (ψ, 0.8)}. It is clear that ∆N,tn(E1)∗∧∆N,tn(E2)∗ 6≡(∆N,tn(E1t
E2))∗.

Proposition 10 Generating a consistent possibilistic knowledge base by I-S-C operator is in F∆p
2

(O(n)), where ∆p
2(O(n)) denotes the set of decision problems decidable in polynomial time with

no more than O(n) calls to an NP oracle, where n is the number of different valuations involved in
B. [22], and “F” in F∆p

2(O(n)) stands for function and is intended to turn a complexity class for
decision problem into one for search problem, i.e., problems that have answers.
Proof: In Step 1, rearranging the weights of formulas in B is a sort problem, which can be solved
in polynomial time. By Proposition 13 in [20], computing Inc(B) is NP -hard and requires dlog2ne
satisfiability checks. Steps 3, 4 and 5 can be carried out in polynomial time. Step 6 needs a
satisfiability check, so it is NP -hard. Since Inc(B) and Freeupp(B) are lower and upper bound
respectively for the splitting point, we know that Steps 3-6 will be repeated at most k-m+1 times,
where k and m are such that ak = Inc(B) and am = Freeupp(B). Therefore, computation of I-S-C
operator needs at most k-m+dlog2ne+1 satisfiability checks. This proves the proposition.

Proposition 11 Generating a consistent possibilistic knowledge base by a t-cornorm based merging
operator is in FP and generating a consistent possibilistic knowledge base by a renormalization
based merging operator is in F∆p

2.
Proof: To generate a possibilistic knowledge base by a t-cornorm based merging operator, we
only need to take the disjunctions of formulas in Bi’s and compute the weight associated with the
disjunctions. Both computations can be done in polynomial time.

The renormalization based merging operator is computed in two steps. The fist step is to com-
bine the original possibilistic knowledge bases using a t-norm. This step can be done in polynomial
time. In the second step, we need to compute the inconsistency degree of the possibilistic knowledge
base obtained by the first step. Then only those possibilistic formulas whose weights are greater
than the inconsistency degree are kept in the resulting possibilistic knowledge base. By Proposi-
tion 13 in [20], computing the inconsistency degree of a possibilistic knowledge base is NP-hard
and requires dlog2ne satisfiability checks, where n is the number of different valuations involved in
B. Therefore, computation of renormalization based operator needs at most dlog2ne satisfiability
checks. This proves the proposition.

Proposition 14 Let B1 = {(φi, αi) : i = 1, ..., n} and B2 = {(ψj , βj) : j = 1, ..., m} be two
possibilistic knowledge bases, πB1 and πB2 be their associated possibility distributions. We have
πBI−S−C

(ω) = πI−S−C(ω), for all ω.
Proof: Let us compare Algorithm 1 and Algorithm 3 step by step.

Step 1 and Step 2: two algorithms have the same Step 1 and Step 2;
Step 3: by Proposition 12, we have π11 = πC1 and π12 = πD1 , and π21 = πC2 and π22 = πD2 ;
Step 4: by Equation 6 and discussions in Section 2, we have π1 = πC and π2 = πD;
Step 5: by Equation 6 and discussions in Section 2, we have πI−S−C = πC∪D, that is, πI−S−C =

πBI−S−C
;

Step 6: Since πI−S−C = πBI−S−C
, πI−S−C is subnormal if and only if BI−S−C is inconsistent.

By the comparison above, we can infer that Algorithm 1 and Algorithm 3 output the same
splitting point γ. Therefore, by Proposition 12, it is clear that πBI−S−C

= πI−S−C .

Proposition 15 Let B1 and B2 be two possibilistic bases, and their associated possibility distrib-
utions are π1 and π2 respectively. Let πI−S−C be the resulting possibility distribution of merging
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by the semantic I-S-C operator and πct be the resulting possibility distribution by the t-conorm,
then πI−S−C is more specific than πct, that is πI−S−C(ω) ≤ πct(ω) for all ω ∈ Ω.
Proof: Let ω be an arbitrary possible world. By Definition 17, we have πI−S−C(ω) = min(ct(π11(ω),
π21(ω)), tn(π12(ω), π22(ω))). In contrast, πct(ω) = ct(πB1(ω), πB2(ω)). Since πB1(ω) = min(π11(ω),
π12(ω)) and πB2(ω) = min(π21(ω), π22(ω)), we have πct(ω) = ct(min(π11(ω), π12(ω)),min(π21(ω),
π22(ω))). We now prove that πI−S−C(ω)≤πct(ω). Since tn(π12(ω), π22(ω))≤min(π12(ω), π22(ω)),
πI−S−C(ω)≤min(ct(π11(ω), π21(ω)),min(π12(ω), π22(ω))). We consider the following two cases:

Case 1: Suppose min(π12(ω), π22(ω))≥ct(π11(ω), π21(ω)). Then πI−S−C≤ct(π11(ω), π21(ω)).
Since ct(π11(ω), π21(ω))≥max(π11(ω), π21(ω)), we have min(π12(ω), π22(ω))≥max(π11(ω), π21(ω)).
So π11(ω)≤min(π12(ω), π22(ω)) and π21(ω)≤min(π12(ω), π22(ω)). We then have πct(ω) = ct(π11(ω),
π21(ω)). Therefore, πI−S−C(ω)≤πct(ω).

Case 2: Suppose min(π12(ω), π22(ω))<ct(π11(ω), π21(ω)). Then πI−S−C≤min(π12(ω), π22(ω)).
We can prove that min(π12(ω), π22(ω))≤πct(ω). Suppose either π11(ω)≥π12(ω) or π21(ω)≥π22(ω),
then πct(ω)≥min(π12(ω), π22(ω)). So πI−S−C(ω)≤πct(ω). Otherwise, suppose π11(ω)<π12(ω) and
π21(ω)<π22(ω), then πct(ω) = ct(π11(ω), π21(ω)). By assumption, we have πI−S−C(ω)≤πct(ω).

According to Case 1 and Case 2, we can conclude that πI−S−C(ω)≤πct(ω). This completes the
proof.

Proposition 16 Given two possibilistic bases B1 and B2, if BF−S−C is the possibilistic base obtained
by F -S-C method and BUpper−S−C is the possibilistic base obtained by U -S-C method, then

BF−S−C `π (φ, α), for all (φ, α) ∈ BUpper−S−C , (21)

but not vice verse.
Proof. Let (ϕ, δ) ∈ BUpper−S−C , since BUpper−S−C = C ∪ D, where C is obtained by Equation (7)
and D is obtained by Equation (8), we have (ϕ, δ) ∈ C ∪D. On the one hand, suppose (ϕ, δ) ∈ D,
then (ϕ, δ) ∈ D1∪D2. By Lemma 2, D1 ⊆ DFree1 and D2 ⊆ DFree2 . So (ϕ, δ) ∈ DFree1 ∪DFree2 =
DFree. Since BF−S−C = CCon ∪ DFree, we have (ϕ, δ) ∈ BF−S−C , so BF−S−C `π (ϕ, δ). On the
other hand, suppose (ϕ, δ) ∈ C, then (ϕ, δ) has the form (φi∨ψj , min(αi, βj)), where (φi, αi) ∈ C1

and (ψj , βj) ∈ C2. By Lemma 2, CCon1 ⊆ C1 and CCon2 ⊆ C2. We consider following two cases:
Case 1: (φi, αi) ∈ CCon1 and (ψj , δj) ∈ CCon2 . In this case, we have (ϕ, δ) = (φi ∨

ψj , min(αi, βj)) ∈ CCon. So (ϕ, δ) ∈ BF−S−C and BF−S−C `π (ϕ, δ).
Case 2: (φi, αi) 6∈ CCon1 or (ψj , βj) 6∈ CCon2 . Assume (ψj , βj) 6∈ CCon2(for (φi, αi) 6∈ CCon1 ,

the proof is similar). In this case, (ψj , βj) ∈ DFree, so (ψj , βj) ∈ BF−S−C . Since ψj |= ϕ, and
βj≥min(αi, βj) = δ, we have BF−S−C `π (ϕ, δ).

Conversely, let us look at Example 8 again. Freeupper(B1 ∪ B2) = 0.7. So B1 is split into
C1 = {(φ, 0.7), (ψ, 0.7)} and D1 = ∅, and B2 is split into C2 = {(¬φ, 0.6), (ψ, 0.4)} and D2 = ∅. So
BUpper−S−C = {(φ ∨ ψ, 0.4), (¬φ ∨ ψ, 0.6), (ψ, 0.4)}. By Example 11, BF−S−C = {(ψ, 0.88)}. So
every possibilistic formula in BUpper−S−C can be inferred from BF−S−C . In contrast, (ψ, 0.88) in
BF−S−C cannot be inferred from BUpper−S−C .

Proposition 17 The F -S-C operator 4F−S−C satisfies (P1), (P2), (P4). It does not satisfy (P3),
(P5) and (P6) in general.
Proof: By Lemma 2, (P1) is satisfied. (P2) is satisfied because F -S-C operator is equivalent to
the t-norm based operator when B1 ∪ ... ∪ Bn is consistent. (P3) is falsified. Let us look at an
counterexample.

Example 16 Let E1 = {B1,B2}, where B1 = {(φ, 0.6), (ψ, 0.6)} and B2 = {(¬ψ, 0.9)}. Let E2 =
{B3,B4}, where B3 = {(φ ∧ ψ, 0.6)} and B4 = {(¬ψ, 0.9)}. It is clear that E1 ≡s E2. Suppose
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ct = max and tn = min. We have ∆F−S−C(E1) = {(φ, 0.6)} and ∆F−S−C(E2) = {(φ ∨ ¬ψ, 0.6)}.
So ∆F−S−C(E1) 6≡s ∆F−S−C(E2).

(P4): Let E1 = {B1, ...,Bm} and E2 = {Bm+1, ...,Bn}. Let B = B1 ∪ ... ∪ Bn. Suppose Bi

(i = 1, ..., n) are split w.r.t Free(B) into Ci and Di. Let C and D be the possibilistic knowledge
bases obtained by merging Ci by a t-conorm ct (its dual t-norm is tn) and Di by t-norm tn′ (its
dual t-conorm is ct′). By Equation 10 and Equation 9, we have C = {(φ1 ∨ ...∨ φn, tn(α1, ..., αn)) :
(φi, αi) ∈ Ci} and D = D1 ∪ ... ∪ Dn ∪ {(Dj , 1 − tn′(x1, ..., xn)) : j = 2, ..., n}} (see Proposition 2
for the definition of Dj). Then ∆F−S−C(E1 t E2) = C ∪ D. Next, suppose Bi (i = 1, ...,m) are
split w.r.t Free(B1 ∪ ...∪Bm) into C′i and D′i, and Bi (i = m + 1, ..., n) are split w.r.t Free(Bm+1 ∪
... ∪ Bn) into C′i and D′i. It is clear that C′i ⊆ Ci and Di ⊆ D′i. Let C′ and D′ be the possibilistic
knowledge bases obtained by merging C′i (i = 1, ..., m) by ct and D′i (i = 1, ..., m) by tn′, and C′′
and D′′ be the possibilistic knowledge bases obtained by merging C′i (i = m + 1, ..., n) by ct and
D′i (i = m + 1, ..., n) by tn′. By Equations 10 and 9, we have C′ = {(φ1 ∨ ... ∨ φm, tn(α1, ..., αm)) :
(φi, αi) ∈ C′i, i = 1, ..., m} and D′ = D′1 ∪ ... ∪ D′m ∪ {(D′

j , 1 − tn′(x1, ..., xm)) : j = 2, ..., m}},
and C′′ = {(φm+1 ∨ ... ∨ φn, tn(αm+1, ..., αn)) : (φi, αi) ∈ C′i, i = m + 1, ..., n} and D′′ = D′m+1 ∪
... ∪ D′n ∪ {(D′′

j , 1 − tn′(x1, ..., xn)) : j = 2, ..., n}}. By Definition 7, ∆F−S−C(E1) = C′ ∪ D′ and
∆F−S−C(E2) = C′′ ∪ D′′. Suppose ∆F−S−C(E1) is split w.r.t Free(∆F−S−C(E1) ∪ ∆F−S−C(E2))
into CE1 and DE1 , and ∆F−S−C(E2) is split w.r.t Free(∆F−S−C(E1) ∪ ∆F−S−C(E2)) into CE2 and
DE2 . Let CE1,E2 and DE1,E2 be obtained by merging CE1 and CE2 by ct and merging DE1 and DE2
by tn respectively. By Equations 10 and 9, we have CE1,E2 = {(φi ∨ ψj , tn(αi, βj)) : (φi, αi) ∈
CE1 and (ψj , βj) ∈ CE2} and DE1,E2 = DE1 ∪DE2 ∪{(φi ∨ψj , ct

′(αi, βj) : (φi, αi) ∈ DE1 and (ψj , βj) ∈
DE2}}. So ∆F−S−C({∆F−S−C(E1)}, {∆F−S−C(E2)}) = CE1,E2 ∪DE1,E2 . We now prove that for every
(φ, α) ∈ ∆F−S−C(E1 t E2), ∆F−S−C({∆F−S−C(E1)}, {∆F−S−C(E2)}) `π (φ, α).

Suppose (φ, α) ∈ D, then we have the following two cases:
Case 1: Suppose (φ, α) ∈ D1 ∪ ... ∪ Dn, without loss of generality, we assume that (φ, α) ∈ Di

for some i≤m. Since Di ⊆ D′ and D′ ⊆ ∆F−S−C(E1), (φ, α) ∈ ∆F−S−C(E1). We must have
(φ, α)∈Free(∆F−S−C(E1) ∪∆F−S−C(E2)). Otherwise, there exist C′s ⊆ C′, D′s ⊆ D′, C′′s ⊆ C′′ and
D′′

s ⊆ D′′, such that (φ, α) ∈ D′s and (C′s ∪ D′s ∪ D
′′
s ∪ D

′′
s )∗ is a minimally inconsistent subbase of

(∆F−S−C(E1) ∪∆F−S−C(E2))∗. It follows that (φ, α) is in conflict in B. So (φ, α) ∈ Ci for some i,
which is a contradiction. Therefore, (φ, α) ∈ DE1 and so ∆F−S−C({∆F−S−C(E1)}, {∆F−S−C(E2)}) `π

(φ, α).
Case 2: Suppose (φ, α) = (Dj , 1 − tn′(x1, ..., xn)) for some k≥2. That is, (φ, α) = (φi1 ∨ ... ∨

φik , ct′(αi1 , ..., αik)), where (φij , αij )∈Dij and ij∈{1, ..., n}. Without loss of generality, we assume
that i1<...<il<m<...ik . According to discussions in Case 1, we have (φi1∨...∨φil , ct

′(αi1 , ...αil))∈D′
and (φil+1

∨ ...∨φik , ct′(αil+1
, ..., αik)) ∈ D′′. So (φi1 ∨ ...∨φik , ct′(ct′(αi1 , ...αil), ct

′(αil+1
, ..., αik)) ∈

∆F−S−C({∆F−S−C (E1)}, {∆F−S−C(E2)}) and then (φi1 ∨ ... ∨ φik , ct′(αi1 , ..., αik)) ∈ ∆F−S−C

({∆F−S−C(E1)}, {∆F−S−C(E2)}). Therefore, we have ∆F−S−C({∆F−S−C(E1)}, {∆F−S−C(E2)}) `π

(φ, α).
Suppose (φ, α) ∈ C, then (φ, α) = (φ1∨...∨φn, tn(α1, ..., αn)), where (φi, αi)∈Ci for all i. Suppose

(φi, αi)∈C′i for all i, then (φ1∨...∨φm, tn(α1, ..., αm))∈C′ and (φm+1∨...∨φn, tn(αm+1, ..., αn)) ∈ C′′.
If (φ1 ∨ ... ∨ φm, tn(α1, ..., αm)) ∈ DE1 or (φm+1 ∨ ... ∨ φn, tn(αm+1, ..., αn)) ∈ DE2 , then it is
clear that ∆F−S−C({∆F−S−C(E1)}, {∆F−S−C(E2)}) `π (φ, α). Otherwise, we have (φ1 ∨ .. ∨
φn, tn(tn(αm+1, ..., αn), tn(αm+1, ..., αn))) ∈ ∆F−S−C({∆F−S−C(E1)}, {∆F−S−C(E2)}). So ∆F−S−C

({∆F−S−C(E1)}, {∆F−S−C(E2)}) `π (φ, α). Suppose, without loss of generality, (φi, αi)∈D′i for
some i < m and (φj , αj)∈C′i for all j 6=i. Then (φi, αi) ∈ D′, (φ1 ∨ ... ∨ φi−1 ∨ φi+1 ∨ .. ∨
φm, tn(α1, ..., αi−1, αi+1, ..., αm)) ∈ C′ and (φm+1∨...∨φn, tn(α1, ..., αn)) ∈ C′′. So ∆F−S−C({∆F−S−C

(E1)}, {∆F−S−C(E2)}) `π (φ, α).
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Therefore, we have proven that ∆F−S−C({∆F−S−C(E1)}, {∆F−S−C(E2)}) `π (φ, α).
(P5): Let us look at a counterexample.
Let E1 = {B1,B2} and E2 = {B3,B4}, where B1 = {(φ, 0.8), (ϕ, 0.4)}, B2 = {(ψ, 0.4)}, B3 =

{(¬φ∨¬ψ, 0.6)} and B4 = {(ϕ, 0.6)}. Suppose the t-norm is the product operator and the t-norm is
the probabilistic sum. We then have ∆F−S−C(E1) = {(φ∨ψ, 0.88), (φ, 0.8), (ψ∨ϕ, 0.64), (ϕ, 0.4), (ψ, 0.4)}
and ∆F−S−C(E2) = {(¬φ ∨ ¬ψ ∨ ϕ, 0.84), (¬φ ∨ ¬ψ, 0.6), (ϕ, 0.6)}. ∆F−S−C(E1) is split w.r.t
Free(∆F−S−C(E1) ∪ ∆F−S−C(E2)) into CE1 = {(φ, 0.8), (ψ, 0.4)} and DE1 = {(φ ∨ ψ, 0.88), (ψ ∨
ϕ, 0.64), (ϕ, 0.4)}, and ∆F−S−C(E2) is split w.r.t Free(∆F−S−C(E1) ∪ ∆F−S−C(E2)) into CE2 =
{(¬φ∨¬ψ, 0.6)} andDE2 = {(¬φ∨¬ψ∨ϕ, 0.84), (ϕ, 0.6)}. So (ψ∨ϕ, 0.856) ∈ ∆F−S−C({∆F−S−C(E1)},
{∆F−S−C(E2)}). In contrast, E1 t E2 = {B1, ...,B4}. Let B = B1 ∪ ... ∪ B4. Bi (i = 1, 2, 3, 4)
are split w.r.t Free(B) into C1 = {(φ, 0.8)} and D1 = {(ϕ, 0.4)}, C2 = {(ψ, 0.4)} and D2 =
∅, C3 = {(¬φ ∨ ¬ψ, 0.6)} and D3 = ∅, and C4 = ∅ and D4 = {(ϕ, 0.6)}. Combining Ci us-
ing the probabilistic sum we get C = ∅, and combining Di using the product operator we get
D = {(ϕ, 0.76), (ϕ, 0.6), (ϕ, 0.4)}, which is equivalent to {(ϕ, 0.76)}. So ∆F−S−C(E1 t E2) ≡s

{(ϕ, 0.76)}. It is clear that ∆F−S−C(E1 t E2) 6`π (ψ ∨ ϕ, 0.856). Therefore, ∆F−S−C(E1 t E2) 6`π

∆F−S−C({∆F−S−C(E1)}, {∆F−S−C(E2)}).
(P6): We have the following counterexample.
Let E1 = {B1,B2} and E2 = {B3,B4}, where B1 = {(φ, 0.8), (ϕ, 0.4)}, B2 = {(ψ, 0.4)}, B3 =

{(¬φ ∧ ¬ψ, 0.6)} and B4 = {(ψ, 0.6)}. Suppose the t-norm is the product operator and the t-norm
is the probabilistic sum. We then have ∆F−S−C(E1) = {(φ∨ψ, 0.88), (φ, 0.8), (ψ∨ϕ, 0.64), (ϕ, 0.4),
(ψ, 0.4)} and ∆F−S−C(E2) = {(¬φ ∨ ψ, 0.64)}. It is clear that ∆F−S−C(E1) ∪∆F−S−C(E2) is con-
sistent. However, we have ∆F−S−C(E1 t E2) = {(ϕ, 0.4)}. Clearly, ∆F−S−C(E1)∗ ∧∆F−S−C(E2)∗ 6≡
(∆F−S−C(E1 t E2))∗. So ∆F−S−C does not satisfy (P6).

Proposition 18 4F−S−C satisfies (P7). The G-I-S-C operator, t-conorm based operator, and
renormalization based operator do not satisfy (P7).
Proof: It is clear that 4F−S−C satisfies (P7). Clearly, t-conorm based operator, and renormaliza-
tion based operator do not satisfy (P7). To show that G-I-S-C operator does not satisfy (P6), we
consider the following counterexample. Let B1 = {(φ, 0.8), (ψ, 0.7)} and B2 = {(¬ψ, 0.6), (ϕ, 0.5)}.
It is easy to check that BI−S−C = B1. (ϕ, 0.5) is a free formula in B1 ∪ B2, however, it is deleted
after merging.

Proposition 19 Generating a knowledge base by the F -S-C method is FΣp
2-complete.

Proof: It has been proven in [11] that the computation of all the free formulas and conflict formulas
is Σp

2-complete. So the splitting of B1 ∪ B2 is Σp
2-complete. The combination step can be done in

polynomial time. The proposition follows clearly.

Proposition 21 Let K1 and K2 be two flat knowledge bases. Let KF−S−C be the knowledge base
obtained by merging K1 and K2 using the F -S-C merging operator. Then every free consequence
of K1∪K2 can be inferred from KF−S−C .
Proof. By Proposition 20, KF−S−C = D1∪D2∪{φ∨ψ|φ∈K1, ψ∈K2, φ, ψ 6∈Free(K1∪K2)}. Since
D1 ∪D2 = Free(K1∪K2), we have

KF−S−C = Free(K1∪K2) ∪ {φ ∨ ψ|φ∈K1, ψ∈K2, φ, ψ 6∈Free(K1∪K2)}.
So Free(K1∪K2)⊆KF−S−C . If ϕ is a free consequence of K1∪K1, then Free(K1∪K2) ` ϕ.
Therefore, KF−S−C ` ϕ.

Proposition 24 If K1∪K2 is not consistent, then 4F−S−C(K1tK2) 6 `K1.
Proof: Suppose 4F−S−C(K1 t K2) ` K1, then we have 4F−S−C(K1 t K2) ` KCon1 , which is
equivalent to KFree1∪KFree2∪KCon ` KCon1 , where KCon = {φ∨ψ : φ∈KCon1 , ψ ∈ KCon2}. Since
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KCon2 ` KCon, KFree1 ∪KFree2 ∪KCon2 ` KCon1 . However, KFree1 ∪KFree2 ∪KCon2 is consistent,
so KFree1 ∪KFree2 ∪KCon2 ∪KCon1 is consistent, which is contradictory to the assumption.

Proposition 25 4F−S−C(E1) ∪4F−S−C(E2) ` 4F−S−C(E1tE2)
Proof: If 4F−S−C(E1) ∪4F−S−C(E2) is inconsistent, the conclusion clearly holds, so we assume
that it is consistent. Let K ′ = ∪(E1), K ′′ = ∪(E2) and K = ∪(E1tE2). Suppose K ′, K ′′ and
K are split as K ′

Con and K ′
Free, K

′′
Con and K ′′

Free, and KCon and KFree respectively. It is clear
K ′

Con∪K
′′
Con⊆KCon and KFree⊆K

′
Free∪K

′′
Free. Suppose E1 = {K11, ...,K1k}, E2 = {K21, ....,K2m},

and E = {K1, ..., Kn}, where n = k + m. So K1i in E1 are split into K1i,Con = K ′
Con ∩K1i and

K1i,F ree = K
′
Free∩K1i, K2j in E2 are split into K2j,Con = K

′′
Con∩K2j and K2j,Free = K

′′
Free∩K2j ,

and Kk in E are split into Kk,Con = KCon ∩Kk and Kk,Free = KFree ∩Kk. So 4F−S−C(E1) =
∨i(K1i,Con) ∪K

′
Free

3, 4F−S−C(E2) = ∨j(K2j,Con) ∪K
′′
Free, and 4F−S−C(E1tE2) = ∨j(Kk,Con) ∪

KFree. We now need to prove ∨i(K1i,Con) ∪ ∨j(K2j,Con) ∪ K
′
Free ∪ K

′′
Free ` ∨k(Kk,Con) ∪ KFree.

Since KFree⊆K
′
Free ∪K

′′
Free, it is clear every formula in KFree can be inferred from ∨i(K1i,Con) ∪

∨j(K2j,Con) ∪ K
′
Free ∪ K

′′
Free. For any formula φ∈ ∨k (Kk,Con) such that φ = φ1 ∨ ... ∨ φn, if

there exists a φi such that φi ∈ K
′
Free or φi ∈ K

′′
Free, then it is clear φ can be inferred from

∨i(K1i,Con)∪∨j(K2j,Con)∪K
′
Free ∪K

′′
Free. Otherwise, there must exist a formula ψ ∈ ∨i(K1i,Con)

and a formula ψ′ ∈ ∨j(K2j,Con) such that φ = ψ ∨ ψ′. So φ is inferred from ∨i(K1i,Con) ∪
∨j(K2j,Con) ∪ K

′
Free ∪ K

′′
Free. Therefore, every formula in ∨k(Kk,Con) ∪ KFree can be inferred

from ∨i(K1i,Con) ∪ ∨j(K2j,Con) ∪K
′
Free ∪K

′′
Free.

Proposition 26 The F -S-C merging operator 4F−S−C does not satisfy (A3) and (A6) in general.
Proof: For (A3), let us consider the following counter-example:

E1 = {{φ, ψ}, {¬φ}}, E2 = {{φ ∧ ψ}, {¬φ}}.
It is clear E1 ↔ E2. However, 4F−S−C(E1) = {ψ}, whilst 4F−S−C(E2) = {¬φ∨ψ}. So (A3) does
not hold.

For (A6), let us consider the following counter-example:

E1 = {{φ ∧ ¬ψ}, {ψ}}, E2 = {{φ → ¬ψ}, {γ}}.
We have ∆F−S−C(E1) = {φ ∨ ψ} and ∆F−S−C(E2) = {φ → ¬ψ, γ}. It is clear that ∆F−S−C(E1)
and ∆F−S−C(E2) are consistent. So ∆F−S−C(E1)∪∆F−S−C(E2) = {φ∨ψ, φ → ¬ψ, γ}. However,
E1tE2 = {{φ ∧ ¬ψ}, {ψ}, {φ → ¬ψ}, {γ}}, so ∆F−S−C(E1tE2) = {γ}. φ ∨ ψ cannot be inferred
from ∆F−S−C(E1tE2), so (A6) is not satisfied.
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