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Abstract. Real-world graphs or networks tend to exhibit a well-known set of
properties, such as heavy-tailed degree distributions, clustering and community
formation. Much effort has been directed into creating realistic and tractable mod-
els for unlabelled graphs, which has yielded insights into graph structure and
evolution. Recently, attention has moved to creating models for labelled graphs:
many real-world graphs are labelled with both discrete and numeric attributes.
In this paper, we present AGWAN (Attribute Graphs: Weighted and Numeric), a
generative model for random graphs with discrete labels and weighted edges. The
model is easily generalised to edges labelled with an arbitrary number of numeric
attributes. We include algorithms for fitting the parameters of the AGWAN model
to real-world graphs and for generating random graphs from the model. Using
real-world directed and undirected graphs as input, we compare our approach to
state-of-the-art random labelled graph generators and draw conclusions about the
contribution of discrete vertex labels and edge weights to graph structure.

Keywords: Network models, graph generators, random graphs, labelled graphs,
weighted graphs, graph mining

1 Introduction

Network analysis is concerned with finding patterns and anomalies in real-world graphs,
such as social networks, computer and communication networks, or biological and eco-
logical processes. Real graphs exhibit a number of interesting structural and evolution-
ary properties, such as power-law or log-normal degree distribution, small diameter,
shrinking diameter, and the Densification Power Law (DPL) [6, 19, 21].

Besides discovering network properties, researchers are interested in the mecha-
nisms of network formation. Generative graph models provide an abstraction of how
graphs form: if the model is accurate, generated graphs will obey the same properties
as real graphs. Generated graphs are also useful for simulation experiments, hypothesis
testing and making predictions about graph evolution or missing graph elements. Most
existing models are for unlabelled, unweighted graphs [6, 19], but some models take
discrete vertex labels into account [13, 17, 22]

In this paper, we present AGWAN, a generative model for labelled, weighted graphs.
Weights are commonly used to represent the number of occurrences of each edge: the
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number of e-mails sent between individuals in a social network [1]; the number of calls
to a subroutine in a software call graph [9]; or the number of people walking between a
pair of door sensors in a building access control network [8]. In other applications, the
edge weight may represent continuous values: donation amounts in a bipartite graph of
donors and political candidates [1]; distance or speed in a transportation network [9];
or elapsed time to walk between the sensors in the building network [8]. In some cases,
the weight is a multi-dimensional feature vector [8, 9].

Our main motivation for this work is to create a model to better understand the laws
governing the relationship between graph structure and numeric labels or weights. Fur-
thermore, we want to be able to create realistic random, labelled, weighted graphs for
large-scale simulation experiments for our pattern discovery algorithms [8]. Our exper-
iments in §5 show the extent to which various graph properties are related to labels and
weights, and measure exactly how “realistic” our random graphs are. Graphs generated
with AGWAN are shown to have more realistic vertex strength distributions and spectral
properties than the comparative methods.

This paper is arranged as follows: §2 is an overview of generative graph models; §3
presents AGWAN, our generative model for weighted and numeric labelled graphs. We
include a fitting algorithm to learn AGWAN’s parameters from a real input graph, and
an algorithm to generate random graphs from the model. §4 gives an overview of the
datasets that we use in the experiments, and outlines the statistical measures and tests
that we use to evaluate the generated graphs. The experiments in §5 demonstrate that
the vertex labels and edge weights of a graph can predict the graph structure with high
accuracy. Conclusions are in §6.

2 Related Work

Our understanding of the mathematical properties of graph structure was pioneered by
Paul Erdős and Alfréd Rényi [10]. Graph formation is modelled as a Bernoulli process,
parameterised by the number of vertices and a wiring probability between each vertex
pair. While it has been essential to our understanding of component sizes and expected
diameter, the Erdős-Rényi model does not explain other important properties of real-
world graphs such as degree distribution, transitivity and clustering [6, 21].

Barabási and Albert’s Preferential Attachment model [2] uses the “rich get richer”
principle to grow graphs from a few vertices up to the desired size. The probability
of an edge is proportional to the number of edges already connected to a vertex. This
generates graphs with power-law degree distributions. A number of variants of Pref-
erential Attachment have been proposed [6, 21]. Still, Preferential Attachment models
lack some desired properties, such as community structure.

The RMat algorithm [7] solves the community structure problem with its recursive
matrix approach. RMat graphs consist of 2n vertices and E edges, with four probabilities
a,b,c,d to determine in which quadrant of the adjacency matrix each edge falls. These
parameters allow the specification of power-law or log-normal degree distributions; if
a = b = c = d, the result will be an Erdős-Rényi graph.

Kronecker Graphs [19] fulfil all the properties mentioned above, as well as the DPL
and shrinking diameter effect. The model starts with an initiator matrix. Kronecker
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multipication is recursively applied to yield the final adjacency matrix of the desired
size. This work synthesises the previous work in random graphs in a very elegant way
and proves that RMat graphs are a special case of Stochastic Kronecker graphs.

The models above tend to have a small number of parameters and are analytically
tractable, with simple and elegant proofs of the desired properties. However, graph la-
bels are not taken into consideration. Stochastic models are another class of generative
algorithm which may not be amenable to analytical proofs, but can be fit to real-world
labelled graphs and used to learn the properties of those graphs. Models in this category
include the Stochastic Block Model [22] and Latent Space approaches [13].

The Multiplicative Attribute Graph (MAG) model [17] draws on both of the above
strands of research. MAG is parameterised by the number of vertices, a set of prior prob-
abilities for vertex label values and a set of affinity matrices specifying the probability of
an edge conditioned on the vertex labels. The affinity matrices can be learned from real
graphs using Maximum Likelihood Estimation [16]. [17] proves that Kronecker Graphs
are a special case of MAG graphs, and that suitably-parameterized MAG graphs fulfil
all the desired properties: log-normal or power-law degree distribution, small diameter,
the existence of a unique giant component and the DPL. The MAG model considers
discrete vertex labels only. We believe that our method, described in the next section, is
the first generative model to include numeric labels or weights.

3 AGWAN: A Generative Model for Labelled, Weighted Graphs

In this section, we present our generative model, AGWAN (Attribute Graph: Weighted
and Numeric). The model is illustrated in Fig. 1 for the Enron graph described in §4.

Consider a graph G = (V,E) with discrete vertex label values drawn from a set L. In
Fig. 1, u,v∈V are vertices and wuv,wvu ∈R are edge weights. Edges e∈ E are specified
as a 3-tuple 〈u,v,wuv〉. In the discussion which follows, we restrict ourselves to a single
label on each vertex; we outline how this can be extended to multiple labels in §3.3.

We must choose a suitable probability distribution to model the edge weights ac-
curately and efficiently. The Gaussian distribution is popular as it has an analytically
tractable Probability Density Function (PDF). However, the edge weights W i j = {wi j}
follow an arbitrary probability distribution which is not necessarily Gaussian. By using
a weighted mixture of Gaussian components, we can get a reasonable approximation to
any general probability distribution [3]. The resulting Gaussian Mixture Model (GMM)
is quite flexible and is used extensively in statistical pattern recognition [15].

A parametric GMM can be used where we know the number of components in
advance. In our case, the number of components—and therefore the number of parame-
ters in the model—changes according to the data. We avoid the problem of knowing the
“correct” number of components by using a non-parametric model. We assume that W i j

consists of an infinite number of components and use variational inference to determine
the optimal number for our model [4].

The AGWAN model is parameterised by µ , a set of prior probabilities over L; and
Θ , a set of edge weight mixture parameters: Θ = {Ω i j|i, j ∈ L}. For directed graphs,
|Θ |= |L|2 and we need to generate both wuv and wvu (see Fig. 1). For undirected graphs,
Ω i j = Ω ji, so |Θ |= O(|L|2/2) and wvu = wuv.
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Fig. 1: AGWAN parameters. Vertex labels are selected according to prior probability µ . Edge
weight wuv is selected from mixture model Ω 42 and wvu is selected from mixture model Ω 24.

For each combination of vertex attributes 〈i, j〉, the corresponding mixture model
Ω i j parameterises the distribution of edge weights (with an edge weight of 0 indicating
no edge). Ω i j is a GMM with M Gaussian components:

Ω
i j =

M−1

∑
m=0

ω
i j
m ·η(µ i j

m ,(σ2)i j
m) (1)

where ω
i j
m is the weight of each component and η(µ i j

m ,(σ2)i j
m) is the Gaussian PDF with

mean µ
i j
m and variance (σ2)i j

m. The mixture weights form a probability distribution over
the components: ∑

M−1
m=0 ω

i j
m = 1. We can specify Ω i j such that the first mixture compo-

nent encodes the probability of no edge: ω
i j
0 = 1−P(ei j), where P(ei j) is the probability

of an edge between pairs of vertices with labels 〈i, j〉. The model degenerates to an un-
weighted graph if there are two components, η0(0,0) and η1(1,0). Furthermore, if the
weights ω

i j
m are the same for all 〈i, j〉, the model degenerates to an Erdős-Rényi graph.

As the Gaussian distribution has unbounded support, GMMs can be used to model
any set of continuous values. However, if the edge weight is a countable quantity repre-
senting the number of occurrences of the edge, then W i j is bounded by [0,∞). Although
this case can be modelled as a GMM, it requires a large number of mixture components
to describe the data close to the boundary [20]. We consider alternatives to the GMM
for the semi-bounded and bounded cases in §6.

3.1 Graph Generation

Algorithm 1 describes how to generate a random graph using AGWAN(N,L,µ,Θ ). The
number of vertices in the generated graph is specified by N. After assigning discrete
label values to each vertex (lines 2–3, cf. Fig. 1), the algorithm checks each vertex pair
〈u,v〉 for the occurrence of an edge (lines 4–7). If m = 0, 〈u,v〉 is not an edge (line 7).
If there is an edge, we assign its weight from mixture component m (lines 8–9). The
generated graph is returned as G = (V,E).
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Algorithm 1 AGWAN Graph Generation
Require: N (no. of vertices), L (set of discrete label values), µ (prior distribution over L),

Θ =
{

Ω i j} (set of mixture models)
1: Create vertex set V of cardinality N, edge set E = /0
2: for all u ∈V do
3: Assign discrete label lu ∈ L from prior µ

4: for all u,v ∈V : u 6= v do
5: i = lu, j = lv
6: Select Gaussian m uniformly at random from Ω i j

7: if m 6= 0 then
8: Assign edge weight wuv uniformly at random from η(µ

i j
m ,(σ2)

i j
m)

9: Create edge e = 〈u,v,wuv〉 ,E = E ∪{e}
return G = (V,E)

3.2 Parameter Fitting

To create realistic random graphs, we need to learn the parameters µ,Θ from a real-
world input graph G. Let W i j be the set of edge weights between pairs of vertices with
labels 〈i, j〉. During parameter fitting, we want to create a model Ω i j for each W i j in G.
Each GMM Ω i j has a finite number of mixture components M. If M is known, Ω i j can
be estimated using Expectation Maximisation [12]. However, not only is M unknown,
but we expect that it will be different for each Ω i j within a given graph model [8].

We solve this problem by modelling Ω i j as a non-parametric mixture model with
an unbounded number of mixture components: a Dirichlet Process Gaussian Mixture
Model (DPGMM) [4]. “Non-parametric” does not mean that the model has no parame-
ters; rather, the number of parameters is allowed to grow as more data are observed. In
essence, the DPGMM is a probability distribution over the probability distributions of
the model.

The Dirichlet Process (DP) over edge weights W i j is a stochastic process DP(α,H0),
where α is a positive scaling parameter and H0 is a finite measure on W i j; that is, a map-
ping of the subsets of W i j to the set of non-negative real numbers. If we draw a sample
from DP(α,H0), the result is a random distribution over values drawn from H0. This
distribution H is discrete, represented as an infinite sum of atomic measures. If H0 is
continuous, then the infinite set of probabilities corresponding to the frequency of each
possible value that H can return are distributed according to a stick-breaking process.
The stick-breaking representation of H is given as:

ω
i j
m (x)

m−1

∏
n=1

(1−ω
i j
n ) H =

∞

∑
n=1

ω
i j
n (x)δη∗m (2)

where {η∗1 ,η∗2 , . . .} are the atoms representing the mixture components. We learn the
mixture parameters using the variational inference algorithm for generating Dirichlet
Process Mixtures described in [4]. The weights of each component are generated one-
at-a-time by the stick-breaking process, which tends to return the components with
the largest weights first. In our experiments, 3–5 mixture components was sufficient to
account for over 99% of the data. Mixtures with weights summing to less than 0.01 are
dropped from the model, and the remaining weights {ω i j

m} are normalised.



6 Michael Davis et. al

Algorithm 2 AGWAN Parameter Fitting

Require: Input graph G = (V,E)
1: L = {discrete vertex label values}, d = |L|
2: Calculate vertex label priors, apply Laplace smoothing ∀l ∈ L : P(l) = count(l)+α

N+αd
3: µ = the normalised probability distribution over L such that ∑

d
i=1 P(li) = 1

4: ∀i, j ∈ L : W i j = /0
5: for all u,v ∈V : u 6= v do
6: i = lu, j = lv
7: W i j =W i j ∪{wuv} . If 〈u,v〉 is not an edge, then wuv has value zero
8: for all i, j ∈ L do
9: estimate Ω i j from W i j using variational inference

10: Θ =
{

Ω i j}
return µ,Θ

Algorithm 2 is the algorithm for AGWAN parameter fitting. First, we estimate the
vertex priors (lines 1–3). Next, we sample the edge weights for each possible combi-
nation of vertex label values, with no edge counting as a weight of zero (lines 4–7).
Finally, we estimate the GMMs Ω i j from the appropriate set of samples W i j using the
the stick-breaking process described above.

3.3 Extending AGWAN to multiple attributes

We have presented AGWAN for a single discrete vertex label and a single numeric edge
label (the weight). Many graphs have multiple labels on vertices and edges. AGWAN
can be extended to multiple numeric edge labels by generalising the concept of edge
weight to k dimensions. In this case, the mean of each mixture component becomes a k-
dimensional vector and the variance (σ i j

m )2 is replaced with the k×k covariance matrix
Σ

i j
m . The variational algorithm can be accelerated for higher-dimensional data using a

kd-tree [18] and has been demonstrated to work efficiently on datasets of hundreds of
dimensions.

A more difficult question is how to extend the model to multiple discrete vertex la-
bels. With even a small number of labels, modelling the full joint probability across all
possible combinations of label values becomes a complex combinatorial problem with
hundreds or thousands of parameters. The MAG model reduces this complexity by as-
suming that vertex labels are independent, so edge probabilities can be computed as
the product of the probabilities from each label [17]. For latent attributes, MAGFIT en-
forces independendence by regularising the variational parameters using mutual infor-
mation [16]. However, the MAG model has not solved this problem for real attributes,
where independence cannot be assumed. Furthermore, multiplying the probabilities sets
an upper limit (proportional to logN) on the number of attributes which can be used in
the model. In our experiments (§5), MAG typically produced the best results with one
or two latent variables.

An alternative to multiplying independent probabilities is to calculate the GMM
for each edge as the weighted summation of the GMM for each individual attribute.
It is likely that some attributes have a large influence on graph structure while others
affect it little or not at all. The contribution of each attribute could be estimated using a
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(a) Undirected graph of who
exercised with whom

(b) Directed graph of who e-mailed whom

Fig. 2: Input Graph Datasets, from (a) a health study and (b) the Enron e-mail corpus

conditional probability distribution as an approximation to the the joint probability, for
example using Markov Random Fields (MRF) or Factor Graphs. This problem remains
a topic for further research.

4 Experiments

We evaluate our approach by comparing AGWAN with the state-of-the-art in labelled
graph generation, represented by the MAG model [16, 17]. AGWAN and MAG parame-
ters are learned from real-world graphs. We generate random graphs from each model
and calculate a series of statistics on each graph. These statistics are used to compare
how closely the model maps to the input graph.

Our input datasets are a graph of “who exercised with whom” from a behavioural
health study [14] (Fig. 2a, |V | = 279, |E| = 1308) and the “who communicates with
whom” graph of the Enron e-mail corpus [1] (Fig. 2b, |V |= 159, |E|= 2667). Vertices
in the health study graph are labelled with 28 attributes representing demographic in-
formation and health markers obtained from questionnaire data. Edges are undirected
and weighted with the number of mutual coincidences between actors during the study.
Vertices in the Enron graph are labelled with the job role of the employee. As e-mail
communications are not symmetric, edges are directed and weighted with the number
of e-mails exchanged between sender and recipient.

We evaluated AGWAN against the following models:
Erdős-Rényi random graph (ER): The ER model G(n, p) has two parameters. We
set the number of vertices n and the edge probability p to match the input graphs as
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closely as possible. We do not expect a very close fit, but the ER model provides a
useful baseline.
MAG with real attributes (MAG-R1): The MAG model with one real attribute is
similar to AGWAN with one real attribute, with the difference that the set of GMMs
Θ = {Ω i j} is replaced with a set of binary edge probabilities, Θ = {pi j}.
MAG with latent attributes (MAG-Lx: The MAG model also allows for modelling
the graph structure using latent attributes. The discrete labels provided in the input
graph are ignored; instead MAGFIT [16] learns the values of a set of latent attributes
to describe the graph structure. To investigate the relative contributions of vertex labels
and edge weights to graph structure, we compared MAG models with x = 1 . . .9 latent
binary attributes against AGWAN models with synthetic attributes taking 20 . . .29 values.

As ER and MAG do not generate weighted graphs, we set the weight of the edges
in the generated graphs to the mean edge weight from the input graphs. This ensures
that statistics such as average vertex strength are not skewed by unweighted edges.

To evaluate the closeness of fit of each model, we use the following statistics:
Vertex Strength: For an unweighted graph, one of the most important measures is the
degree distribution (the number of in-edges and out-edges of each vertex). Real-world
graphs tend to have heavy-tailed power-law or log-normal degree distributions [6, 21].
For a weighted graph, we generalise the concept of vertex degree to vertex strength [11]:

su = ∑
v6=u

wuv (3)

For the undirected graphs, we plot the Complementary Cumulative Distribution Func-
tion (CCDF) of the total strength of each vertex. For the directed graphs, we plot the
CCDFs for in-strength and out-strength.
Spectral Properties: We use Singular Value Decomposition (SVD) to calculate the
singular values and singular vectors of the graph’s adjacency matrix, which act as a
signature of the graph structure. In an unweighted graph, the adjacency matrix contains
binary values, for “edge” or “no edge”. In a weighted graph, the adjacency matrix con-
tains the edge weights (with 0 indicating no edge). For SVD UΣV , we plot Cumulative
Distribution Functions (CDFs) of the singular values Σ and the components of the left
singular vector U corresponding to the highest singular value.
Clustering Coefficients: the clustering coefficient C is an important measure of com-
munity structure. It measures the density of triangles in the graph, or the probability
that two neighbours of a vertex are themselves neighbours [21]. We extend the notion
of clustering coefficients to weighted, directed graphs using the equation in [11]:

Cu =
[W

[ 1
3 ]

u +(WT
u )

[ 1
3 ]]3uu

2[dtot
u (dtot

u −1)−2d↔u ]
(4)

where Cu is the weighted clustering coefficient for vertex u, Wu is the weighted ad-
jacency matrix for u and its neighbours, WT is the transpose of W, dtot

u is the total
degree of a vertex (the sum of its in- and out-degrees) and d↔u is the number of bilateral
edges in u (the number of neighbours of u which have both an in-edge and an out-edge
between themselves and u).
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Fig. 3: Triad Patterns in a Directed Graph

Triad Participation: Closely related to the clustering coefficient is the concept of tri-
angle or triad participation. The number of triangles that a vertex is connected to is a
measure of transitivity [21]. For the directed graphs, the triangles have a different inter-
pretation depending on the edge directions. There are four types of triangle pattern [11],
as shown in Fig. 3. To generalise the concept of triad participation to weighted, directed
graphs, we consider each of the four triangle types separately, and sum the total strength
of the edges in each triad:

ty
u = ∑

v,z∈Wu\u
Wy

uvz (5)

where y = {cycle,middleman, in,out} is the triangle type and Wy
uvz is calculated as

shown in Fig. 3 for each triangle type y.
To give a more objective measure of the closeness of fit between the generated

graphs and the input graph, we use a Kolmogorov-Smirnov (KS) test and the L2 (Eu-
clidean) distance between the CDFs for each statistic. As the CDFs are for heavy-tailed
distributions, we use the logarithmic variants of these measures [16]. The KS and L2
statistics are calculated as:

KS(D1,D2) = maxx| logD1(x)− logD2(x)| (6)

L2(D1,D2) =

√
1

logb− loga

b

∑
x=a

(logD1(x)− logD2(x))2 (7)

where [a,b] is the interval for the support of distributions D1 and D2.
The model that generates graphs with the lowest KS and L2 values for each of the

statistics discussed above has the closest fit to the real-world graph.

5 Results

For each model, we generated 10 random graphs and calculated statistics for each. The
plots of the averaged CDFs of the 10 graphs for each model are shown in Figs. 4–11.
Tables for the closeness of fit of each CDF (KS and L2 statistics) are in the appendix.
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Fig. 4: Vertex Strength Distribution—Real Attributes
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Fig. 5: Spectral Properties—Real Attributes

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

Vertex Degree (Total)

C
lu

s
te

ri
n

g
 C

o
e

ff
ic

ie
n

t 
(C

C
D

F
)

 

 

Real−world graph

Erdos−Renyi

MAG−R1, Age

MAG−R1, T1 Total Mins

MAG−R1, T1 EQ5D State

MAG−R1, Floor

AGWAN, Age

AGWAN, T1 Total Mins

AGWAN, T1 EQ5D State

AGWAN, Floor

(a) Undirected

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

Vertex In−degree

C
lu

s
te

ri
n

g
 C

o
e

ff
ic

ie
n

t 
(C

C
D

F
)

 

 

Real−world graph

Erdos−Renyi

MAG−R1

AGWAN

(b) Directed (In-edges)

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

Vertex Out−degree

C
lu

s
te

ri
n

g
 C

o
e

ff
ic

ie
n

t 
(C

C
D

F
)

 

 

Real−world graph

Erdos−Renyi

MAG−R1

AGWAN

(c) Directed (Out-edges)

Fig. 6: Clustering Coefficients—Real Attributes
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Fig. 7: Triad Participation—Real Attributes

5.1 Real Attributes

For the undirected graph (Health Study, Fig. 2a), we show results for four vertex at-
tributes: age; total minutes spent exercising; EQ5D State (a quality-of-life metric de-
termined by questionnaire); and Floor (the building and floor number where the person
works; people who work on the same floor were highly likely to exercise together). For
the directed graph (Enron, Fig. 2b), we have one vertex attribute, the person’s job role.
Vertex Strength (Fig. 4): The graphs generated from AGWAN have vertex strength
distributions which map very closely to the input graphs. The graphs generated from
MAG-R1 are better than random (ER), but the vertex strength distribution is compressed
into the middle part of the range, with too few high- and low-strength vertices. This
indicates that vertex strength depends on both the label distribution and the edge weight
distribution; AGWAN models both of these, whereas MAG models only the former.
Spectral Properties (Fig. 5): The spectral properties of the AGWAN graphs map very
closely to the input graphs. The singular values follow the same curve as the input
graphs, indicating that graphs generated with AGWAN have similar connectivity to the
input graph [6]. The primary singular vector components also follow the same shape and
map very closely to the input graph. For MAG-R1, the singular values follow a straight
line rather than a curve, because MAG does not model the edge weight distribution. The
primary singular vector components are no better than random, because it is not possible
to accurately model singular vectors without taking the edge weights into account.
Clustering Coefficients (Fig. 6): The accuracy of AGWAN and MAG-R1 is similar;
better than random but not as close a fit as for the first two statistics. The results for
vertex strength and spectral properties did not strongly depend on which attribute was
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chosen, but here it makes a difference: Total Mins and EQ5D State give better results
than Age and Floor. This implies that some attributes can predict community formation
better than others. As the results for both approaches are similar, we conclude that the
processes that give rise to clustering are independent of the edge weight distribution.
Triad Participation (Fig. 7): As triad participation is closely related to clustering, it is
no surprise that the results are comparable: the accuracy of AGWAN and MAG-R1 is
similar; better than random, but not as close as for vertex strength and spectral proper-
ties. Triad participation appears to be dependent to some extent on vertex label values
but independent of the edge weight distribution.

One of the findings in [16] was that clustering arises from multiple processes (ho-
mophily and core-periphery). “Simplified MAG” (where all attributes are the same)
could not model the clustering property, implying that it is not possible to accurately
reproduce clustering when the model has only one attribute. We propose to extend our
model to more than one attribute as outlined in §3.3 to investigate whether this produces
a more accurate model of clustering and triad participation.

5.2 Synthetic Attributes

An alternate interpretation of the MAG model ignores the true attribute values from
the input graph and represents attributes as latent variables, which are learned using a
variational inference EM approach [16]. To compare AGWAN with this approach, we re-
placed the real labels in the input graph with a synthetic vertex attribute taking 20 . . .29

values allocated uniformly at random, then learned the edge weight distributions us-
ing variational inference as normal. We have plotted AGWAN with one real attribute
alongside for comparison.
Vertex Strength (Fig. 8): AGWAN with synthetic attributes has similar accuracy to AG-
WAN-R1. Varying the number of synthetic attributes has a small effect on the accuracy.
MAG with latent attributes has similar accuracy to MAG-R1. Varying the number of
synthetic attributes causes a large variation in the accuracy. We conclude that vertex
strength is dependent on both edge weight and vertex label distribution, but the edge
weights play a more important role.
Spectral Properties (Fig. 9): For AGWAN, the spectral properties follow the same
curves as the input graphs. For singular values, varying the number of synthetic at-
tributes causes a small variation in the closeness of fit. For singular vectors, the accu-
racy is highly dependent on the number of synthetic attributes. For MAG, the singular
values are almost a straight line, as the edge weight distribution is not taken into ac-
count. The singular vectors in general do not match very closely. It is possible to get a
good fit using many latent attributes, but this compromises the other statistics which fit
better with few latent attributes. We conclude that spectral properties are dependent on
both edge weight and vertex label distribution.
Clustering Coefficients (Fig. 10): Both approaches are significantly more accurate us-
ing synthetic attributes than they were with real attributes. This implies that while real
labels are influenced by the (unobserved) process which gives rise to clustering, syn-
thetic labels with more degrees of freedom can model it more accurately. As before,
clustering appears to be independent of the edge weight distribution.
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Fig. 8: Vertex Strength Distribution—Synthetic Attributes
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Fig. 9: Spectral Properties—Synthetic Attributes
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Fig. 10: Clustering Coefficients—Synthetic Attributes
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Fig. 11: Triad Participation—Synthetic Attributes

Triad Participation (Fig. 11): As with clustering, synthetic vertex labels can model
the process that gives rise to triad participation, while edge weights have little or no
influence.

In general, MAG acheives the best results when there are one or two vertex at-
tributes, whereas AGWAN performs best when there are 7 or 8 attributes. MAG assumes
that each attribute is independent, so there is a limit on the number of attributes that
can be included in the model (proportional to logN). Above this limit, the performance
of the model degrades. With AGWAN, there is no independence assumption, so the
attributes model the full joint probability. As the number of attribute values (2x) ap-
proaches N, there is a danger of overfitting and the model performance degrades.

6 Conclusions

We presented AGWAN, a model for random graphs with discrete labels and weighted
edges. We included a fitting algorithm to learn a model of graph edge weights from real-
world data, and a generative algorithm to generate random labelled, weighted graphs
with similar characteristics to the real-world graph.

We measured the closeness of fit of our generated graphs to the input graph over a
range of graph statistics, and compared our approach to the state-of-the-art in random
graph generative algorithms. Our results demonstrate that AGWAN produces an accurate
model of the properties of a weighted real-world graph. For vertex strength distribution
and spectral properties, AGWAN is shown to produce a closer fit than MAG.
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For clustering and triad participation, we achieved a closer fit using synthetic at-
tributes than using real attributes. This is consistent with the results for MAG for un-
weighted graphs [17]. Further research is required into the relationship between vertex
attributes and triangle formation in graphs; our results indicate that edge weights do not
play an important part in these processes. We propose to extend AGWAN to multiple
vertex labels to investigate the effect on clustering.

In §3, we considered the case where edge weights are countable quantities bounded
by [0,∞). As GMMs are unbounded, it may be more appropriate to model the edge
weights using a truncated GMM [20] or Beta Mixture Model [5]. We propose to inves-
tigate these alternatives in future work.

As discussed in §3.3, MAG’s method of combining multiple vertex attributes is
unsatisfactory when applied to real attributes, due to the assumption of independence
and the limit on the number of attributes which can be modelled. We have proposed a
future line of research based on a weighted summation of the GMM for each edge. The
fitting algorithm would need to regularise the individual contributions of each edge to
take account of dependencies. The complexity of modelling the full joint distribution
could be reduced with an approach based on Markov Random Fields or Factor Graphs.
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Appendix: KS and L2 Statistics

E-R MAG-R1 Agwan
Age Total Mins EQ5D State Floor Age Total Mins EQ5D State Floor

Vertex Strength 6.064 5.940 2.957 3.689 5.799 0.799 1.081 0.635 1.674
Singular Values 36.193 35.644 35.393 35.612 36.001 34.482 32.319 33.720 34.946
Singular Vector 1.323 1.239 0.964 0.984 1.134 0.248 0.491 0.450 0.371
Clustering Coefficient 5.224 5.048 2.083 3.343 4.895 5.132 2.493 2.042 5.161
Triad Participation 7.012 6.877 5.704 5.704 6.685 6.328 5.106 5.829 6.768

Table 1: KS Statistic for Undirected Graph, Real Attributes (Figs. 4–7)

E-R MAG-R1 Agwan
Age Total Mins EQ5D State Floor Age Total Mins EQ5D State Floor

Vertex Strength 9.686 7.281 8.265 9.377 10.039 1.829 2.589 1.765 3.294
Singular Values 41.815 41.298 41.052 41.227 41.623 39.629 38.211 39.100 40.060
Singular Vector 5.004 4.940 4.614 4.742 4.852 1.486 3.257 2.914 2.307
Triad Participation 16.879 17.334 18.828 18.861 17.101 19.746 19.434 18.348 20.288

Table 2: L2 Statistic for Undirected Graph, Real Attributes (Figs. 4–7)
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E-R MAG-R1 Agwan

In-Vertex Strength 2.469 4.700 1.455
Out-Vertex Strength 2.708 2.659 2.303
Singular Values 37.235 35.752 34.894
Singular Vector 1.915 1.801 0.282
Clustering Coefficient (In-Edges) 3.444 2.208 2.220
Clustering Coefficient (Out-Edges) 3.728 0.769 0.702
Clustering Coefficient 4.347 1.651 3.163
Triad Participation (Cycles) 4.787 4.248 3.555
Triad Participation (Middlemen) 4.382 4.500 4.500
Triad Participation (Ins) 4.700 4.500 2.436
Triad Participation (Outs) 4.382 4.094 4.248

Table 3: KS Statistic for Directed Graph, Real Attributes (Figs. 4–7)

E-R MAG-R1 Agwan

In-Vertex Strength 5.679 4.912 1.816
Out-Vertex Strength 5.100 3.534 2.117
Singular Values 25.044 19.546 18.360
Singular Vector 7.316 7.587 0.988
Clustering Coefficient (In-Edges) 3.528 1.607 1.528
Clustering Coefficient (Out-Edges) 3.145 1.191 1.002
Clustering Coefficient 6.949 1.438 2.284
Triad Participation (Cycles) 3.823 3.000 3.101
Triad Participation (Middlemen) 5.144 4.178 4.207
Triad Participation (Ins) 4.630 4.826 4.332
Triad Participation (Outs) 3.727 3.295 3.203

Table 4: L2 Statistic for Directed Graph, Real Attributes (Figs. 4–7)

MAG Latent Agwan
1 2 3 4 5 6 7 8 9 EQ5D State

Vertex Strength 2.243 5.106 5.886 5.886 5.670 5.481 4.605 5.561 6.234 0.635
Singular Values 30.901 46.771 89.148 93.658 81.082 93.413 125.855 72.059 85.863 33.720
Singular Vector 0.645 0.654 0.821 0.694 0.590 0.561 0.645 0.579 0.313 0.450
Clustering Coefficient 1.283 4.406 3.863 4.575 4.401 3.470 3.256 4.397 4.773 2.042
Triad Participation 3.829 6.292 6.709 6.593 6.016 5.768 4.868 5.914 6.877 5.829

Agwan
0 1 2 3 4 5 6 7 8 9

Vertex Strength 3.401 2.197 2.303 1.050 1.758 0.916 0.975 0.875 0.854 1.589
Singular Values 35.238 35.194 35.226 35.341 35.542 33.763 32.824 27.713 34.052 37.384
Singular Vector 0.675 0.827 0.847 0.950 1.139 0.559 0.183 0.221 0.258 0.361
Clustering Coefficient 5.353 5.350 3.561 4.615 4.395 4.054 4.470 3.676 3.401 3.440
Triad Participation 6.985 7.090 6.994 5.991 5.872 6.607 6.131 5.561 2.238 1.204

Table 5: KS Statistic for Undirected Graph, Synthetic Attributes (Figs. 8–11)

MAG Latent Agwan
1 2 3 4 5 6 7 8 9 EQ5D State

Vertex Strength 7.944 8.473 9.236 10.783 10.103 8.635 9.120 9.603 21.027 1.765
Singular Values 55.080 94.881 106.265 109.813 104.160 109.673 120.108 113.166 173.884 39.100
Singular Vector 3.231 3.324 3.895 3.622 2.894 3.092 2.873 3.079 0.396 2.914
Triad Participation 12.047 15.550 15.821 17.494 11.038 11.646 10.367 14.507 29.136 18.348

Agwan
0 1 2 3 4 5 6 7 8 9

Vertex Strength 6.266 4.537 3.754 2.584 2.160 1.731 1.343 0.873 0.693 1.229
Singular Values 40.448 40.394 40.391 40.504 40.873 38.980 37.613 27.296 44.148 74.019
Singular Vector 4.477 5.513 5.671 6.316 7.530 3.612 0.866 1.237 1.719 2.351
Triad Participation 22.841 20.975 23.682 17.878 17.287 16.174 15.254 10.310 5.753 2.803

Table 6: L2 Statistic for Undirected Graph, Synthetic Attributes (Figs. 8–11)
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MAG Latent Agwan
1 2 3 4 5 6 7 8 9 Employee Type

In-Vertex Strength 4.700 3.602 5.991 6.522 6.142 5.704 3.951 5.347 5.193 1.455
Out-Vertex Strength 4.942 4.605 5.768 5.991 6.234 5.075 4.317 3.466 3.401 2.303
Singular Values 35.715 35.591 27.492 89.063 148.080 32.392 1.708 31.555 37.163 34.894
Singular Vector 1.636 1.630 1.453 0.190 0.765 1.586 1.525 1.526 1.552 0.282
Clustering Coefficient (In-Edges) 2.961 0.897 4.775 5.294 4.578 4.357 3.302 3.770 4.512 2.220
Clustering Coefficient (Out-Edges) 3.164 0.513 5.193 5.877 5.463 4.363 3.142 3.273 2.865 0.702
Clustering Coefficient 3.278 2.347 5.251 6.255 5.839 4.387 3.739 4.339 4.000 3.163
Triad Participation (Cycles) 3.912 2.996 5.347 5.940 6.867 5.247 4.094 3.843 5.704 3.555
Triad Participation (Middlemen) 4.248 3.401 4.942 5.920 6.319 4.339 3.602 3.689 5.858 4.500
Triad Participation (Ins) 3.912 3.912 5.670 5.940 7.170 5.704 4.700 5.075 6.153 2.436
Triad Participation (Outs) 1.476 2.526 4.571 5.695 6.768 5.075 4.500 4.094 4.745 4.248

Agwan
0 1 2 3 4 5 6 7 8 9

In-Vertex Strength 2.418 2.513 2.345 2.590 1.120 2.303 1.897 2.015 2.303 0.693
Out-Vertex Strength 2.996 2.234 2.090 4.248 1.122 1.150 1.514 1.966 1.386 1.204
Singular Values 37.497 37.866 37.377 36.590 36.159 34.801 33.812 32.696 26.494 8.327
Singular Vector 1.887 1.962 1.811 1.665 0.616 1.130 0.824 0.908 0.887 0.789
Clustering Coefficient (In-Edges) 3.477 3.567 4.386 4.159 3.704 3.682 2.678 0.662 0.460 0.492
Clustering Coefficient (Out-Edges) 4.945 4.316 5.134 4.969 4.948 4.747 2.563 3.200 2.605 3.204
Clustering Coefficient 4.580 4.018 4.837 2.691 4.369 3.933 1.501 1.075 2.620 0.848
Triad Participation (Cycles) 4.500 4.500 2.659 3.912 3.602 3.283 2.996 3.912 1.204 1.548
Triad Participation (Middlemen) 4.787 4.787 4.094 5.247 3.843 3.314 3.807 4.248 1.609 1.099
Triad Participation (Ins) 4.700 4.700 4.007 5.298 4.700 3.283 2.862 4.094 1.609 1.099
Triad Participation (Outs) 4.942 4.942 3.624 4.094 3.977 3.912 3.114 2.862 1.696 0.916

Table 7: KS Statistic for Directed Graph, Synthetic Attributes (Figs. 8–11)

MAG Latent Agwan
1 2 3 4 5 6 7 8 9 Employee Type

In-Vertex Strength 5.023 3.055 8.856 19.820 15.718 8.678 6.171 8.672 7.066 1.816
Out-Vertex Strength 3.001 3.704 7.805 14.329 10.882 3.740 3.120 2.668 3.737 2.117
Singular Values 19.285 18.938 13.768 90.672 160.831 28.601 6.158 28.074 38.490 18.360
Singular Vector 7.470 7.530 7.100 0.388 4.062 7.453 7.200 7.266 7.339 0.988
Clustering Coefficient (In-Edges) 2.507 1.786 6.733 12.533 7.692 5.841 4.184 5.705 4.819 1.528
Clustering Coefficient 2.450 2.419 10.611 22.886 13.922 5.851 4.568 5.381 7.653 2.284
Triad Participation (Cycles) 2.060 1.800 7.788 15.981 16.270 6.781 6.121 5.378 8.763 3.101
Triad Participation (Middlemen) 2.828 1.771 11.094 19.126 18.575 7.016 7.204 6.517 11.150 4.207
Triad Participation (Ins) 3.293 1.902 11.473 12.061 16.361 9.756 8.905 9.124 13.740 4.332
Triad Participation (Outs) 1.459 1.816 6.646 17.093 14.603 5.950 5.399 4.698 6.315 3.203

Agwan
0 1 2 3 4 5 6 7 8 9

In-Vertex Strength 5.638 5.774 5.473 4.355 3.151 2.071 1.367 1.299 1.412 0.665
Out-Vertex Strength 5.128 4.807 4.732 4.756 3.060 2.224 1.918 2.034 1.415 1.045
Singular Values 25.020 25.815 24.922 22.017 20.767 18.270 16.748 15.010 12.516 8.758
Singular Vector 7.814 6.764 7.798 5.949 2.643 5.471 4.088 4.421 2.725 1.396
Clustering Coefficient (In-Edges) 3.987 4.972 5.834 4.314 3.846 3.413 2.575 1.524 0.999 0.686
Clustering Coefficient 7.065 8.188 9.244 6.606 7.581 6.872 4.951 4.189 3.658 2.536
Triad Participation (Cycles) 3.212 3.017 2.407 4.816 3.728 3.856 3.566 3.733 1.113 1.014
Triad Participation (Middlemen) 4.670 4.310 3.586 7.121 5.734 5.924 5.288 4.942 2.382 0.611
Triad Participation (Ins) 4.391 3.757 3.575 7.742 6.376 6.616 5.902 5.306 2.464 0.936
Triad Participation (Outs) 4.887 4.537 3.305 4.615 4.540 4.963 4.359 3.978 1.947 0.589

Table 8: L2 Statistic for Directed Graph, Synthetic Attributes (Figs. 8–11)


