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Abstract

The Dempster-Shafer theory of evidence has been used intensively to deal with uncertainty in
knowledge-based systems. However the representation of uncertain relationships between evidence
and hypothesis groups (heuristic knowledge) is still a major research problem. This paper presents
an approach to representing such heuristic knowledge by evidential mappings which are defined
on the basis of mass functions. The relationships between evidential mappings and multivalued
mappings, as well as between evidential mappings and Bayesian multi- valued causal link models
in Bayesian theory are discussed. Following this the detailed procedures for constructing evidential
mappings for any set of heuristic rules are introduced. Several situations of belief propagation are
discussed. Shafer’s partition technique is used to get the mass function in a complex evidence space
when the antecedent frame of a rule is made of several variables. Matrices and vectors are used to
represent uncertain relationships in heuristic knowledge and pieces of evidence respectively.
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1 Introduction

In the design and implementation of expert systems and decision making systems, the problem of
uncertain knowledge and evidence has to be solved. Several approaches can be used to deal with this
problem, such as Mycin’s certainty factors, Prospector’s inference nets, fuzzy sets, Bayesian nets and
Dempster-Shafer’s belief functions.

Generally speaking, there are two kinds of problem involving uncertainty: one is caused by un-
certain evidence; another is caused by uncertain knowledge, i.e. heuristic knowledge. The former is a
result of ill-defined concepts in the observation, or due to inaccuracy and poor reliability of the instru-
ments used to make the observations. The latter is a result of weak implication which occurs when
the expert or model builder is unable to establish a strong correlation between premise (or evidence)
and conclusion (or hypotheses) (Bonissone and Tong 1985).

The Dempster-Shafer theory of evidence provides a flexible approach to representing uncertain
evidence. This theory, which is claimed as a generalization of Bayesian inference (Shafer 1976, 1981),
has the advantages of representing ignorance of evidence and narrowing the hypothesis space as a
result of evidence accumulation. Several AI implementations have been undertaken (Laskey et al
1989, Lowrance et al 1986, Strat 1987, Wesley 1988, Yen 1989, Zarley et al 1988) based on the theory
or extended versions of the theory (Laskey and Lehner 1989; Yen 1989). In this paper we argue
that it is difficult to represent uncertain heuristic knowledge in this theory; however in most complex
domains, heuristic knowledge plays an important role in solving problems.

Consider the following piece of heuristic knowledge: if X is X, then Y is Y] with a degree of belief
ry1. If we get a piece of evidence which says that X s X1 with a degree of a1, by invoking this rule we
should be able to obtain the corresponding degree y; for Y is Y;. Certainly the value of y; must be a
function F' of a1 and ry (i.e. y3 = F(a1,71)).

More generally, we suppose that a set of heuristic rules R includes:

Ry: if Ey then Hy; with a degree of belief rq1;
Hy with a degree of belief ro;
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Ry: if E5 then Hyy with a degree of belief ro;
Hy, with a degree of belief r99;

R,,: if E, then H,; with a degree of belief r,;
H,» with a degree of belief r,,2;

where E1, Es, ..., E, are values (or propositions) of the variable E, and F; is called an antecedent of
rule R;. H;j in rule R; is a subset of the values (or propositions) of the variable H and it is called one
of the conclusions of rule R;. r;; is called a rule strength.

Assume we have a piece of evidence which says that E; is confirmed with a1, F5 is confirmed with
as, ..., By is confirmed with a,, how can we solve the following problems:

1. what conditions should }; a; satisfy?

2. what conditions should }_; r;; satisfy?

3. what is the function F' to determine h;;(the degree of belief on H;j;) from those a; and
'rij?

4. if more than one set of rules is invoked and the same conclusion H;; is obtained, what
will be the final degree of belief on H;; from those h;j, ..., hy?

Generally, if the variable E is a Cartesian product of variables A, B, ..., C, that is each E; is in a
form of (A; and Bjand... andC},), assuming we know the evidence for A, B, ..., C, then

5.  what is the function F’ to determine the degree of belief on the premise
(A; andBj and... andCy,)?

These problems have been modelled in fuzzy theory using a fuzzy extension of modal logic, based
on Zadeh’s concepts of necessity and possibility (Prade 1981). They were also solved in Mycin’s
certainty factor model (Shortliffe and Buchanan 1976). Can these problems be solved in Dempster-
Shafer theory?

In this paper we analyze these problems and propose our approaches for solving them by extending
the theory of evidence. The paper is organized as follows. In section 2 the basics of Dempster- Shafer
theory are introduced and the approach for representing heuristic knowledge by evidential mappings
is described in which a matrix is used to represent the uncertain relationships between evidence
and conclusions. In section 3 the relations between Bayesian inference and evidential mappings are
examined in which it is proved that the multi-valued causal links between hypotheses space H and
evidence space E (Pearl 1988) in Bayesian theory is consistent with the special case of evidential
mappings. In section 4 the method of constructing a complete evidential mapping matrix for an
evidential mapping of a heuristic rule is discussed. In section 5 belief propagation approaches are
discussed for different situations. Finally a conclusion is given along with some consideration of
related work.

2 Representing heuristic knowledge in the Dempster-Shafer Theory

The Dempster-Shafer theory of evidence (which is also called the theory of belief functions (Smets
1988, Shafer 1990)) provides an alternative approach to drawing plausible conclusions from uncertain
and incomplete evidence. It is a generalization of the Bayesian theory of subjective probability, it is
more flexible, and it allows us to derive degrees of belief for a question from probabilities of a related
question (Shafer 1990).



2.1 The Basics of Dempster-Shafer Theory of Evidence

Suppose O is a finite set, which consists of mutually exclusive and exhaustive propositions of a problem
or all values of a variable, 29 is the set of all subsets of ©. A function Bel: 2©—[0,1] is called a
belief function in Shafer (1976), if it satisfies the following conditions:

1. Bel(0) = 0;
2. Bel(®) =1;
3. for every positive integer n and every collection Ay, ..., A, of subsets of O,

Bel(A1U...UAp)> Y, Bel(A;) = Y Bel(AiN Aj) + —... + (=1)"!' Bel(41 N ... N A,)

Such a set © is called a frame of discernment.
By knowing a belief function on a frame of discernment, another function m can be calculated as:

m(A) = Lpca(-1)*"PIBel(B) vACO

where |A — B| denotes the number of elements in the set of A — B.

The function m is called a basic probability assignment (bpa) or a mass function. Obviously
a mass function has the features that m()) = 0 and > m(A) =1 for all subsets A of ©. A subset A is
called a focal element of the belief function Bel if m(A) > 0. Recovering the belief function Bel from
a mass function m is carried out by

Bel(B) = 2.ACB m(A)

If all the focal elements of a belief function are singletons of ©, then the corresponding mass
function m is a Bayesian subjective probability distribution.

A belief function (or a mass function) on a frame © can either be directly obtained from a piece of
evidence or calculated from a probability measure P on the related frame T by a multivalued mapping
I’ between T and ©. The term multivalued mapping was originally introduced by Dempster in his
early article (Dempster 1967) in which he defined that a multivalued mapping I" assigns each element
t of T to a subset A of ©. Suppose we get a probability measure P on frame T, two other functions
on frame © will be obtained by a multivalued mapping I as:

m(A)= > P(t) teT,ACO
I(t)=A

Bel(A)= > P(t) teT,ACO
(t)CA

where P(t) is the probability distributed on ¢ by P and }_; P(t;) = 1. Here we suppose that no element
t of T maps to the empty set in ©. It is easy to prove that m is a mass function and Bel is a belief
function on ©. Another name for multivalued mappings is compatibility relations which is used in
Shafer (1987), Lowrance et al (1986), and Shafer and Srivastava (1990).

The impact of several belief functions (or mass functions) on the same frame of discernment is
obtained by using Dempster’s rule of combination which treats Bayesian conditioning probabilities as
a special case (Shafer 1976). Dempster’s rule of combining two belief functions Bely and Bely can be
defined by a relatively simple rule in terms of the corresponding mass functions m; and ms.

> ang=c M1(A)ma(B)

MO =TT e i (Ayms(B)

This rule requires that the combined belief functions (or their mass functions) are independent.
This condition has been further enhanced as DS-independent in Voorbraak (1991).



2.2 Representing Heuristic Knowledge in The Dempster-Shafer Theory

It is obvious that a heuristic rule like {if X is X; then Y is Y7 with a degree of belief r;} cannot
be directly represented in D-S theory. Some work concerning this topic was carried out previously
(Ginsberg 1984, Yen 1988, Liu 1986, Hau and Kashyap 1990). We propose that evidential mappings
which are defined on the basis of mass functions can be used to represent the uncertain relationships
between evidence and conclusions.

Definition 1 An evidential mapping is the mapping from one frame of discernment to another, which
represents causal links among elements of two frames of discernment in the form of mass functions.
Formally an evidential mapping from frame O to frame O is a function I'*: Op — 920110 g
image of each element in O, denoted by T'*(e;), is a collection of subset-mass pairs:

I (e;) = {(Hi1, f(ei = Hit)), ooy (Him, f(ei = Him))}

and let ©; = U;-nleij H;; COp
that satisfies the following conditions:

Q. Hz]?é@ jzl,...,m
b. f(ez — Hz'j) >0 j=1..m
C. Zj(ei — Hij) =1

There is a set of heuristic rules, denoted as R, related to an evidential mapping, each of which is
in the form of

Ri:ei — Hi1 (f(e;—H:));

ei — Him (f(e;—Him))-

f(e; — H;j) represents our belief exactly on H;; given condition e;, and it is in the range of [0,1].

A rule states that if e; is true then the truth of the problem carried by Oy is in H;; with the degree
of belief f(e; — H;p) exactly committed to Hj, ..., in Hj, with the degree of belief f(e; — H;p)
exactly committed to Hj,,. The e; is called the antecedent of rule R; and it is an element of ©g. H;; is
called one of the conclusions of rule R;, and it is a subset of ® . We name O and ©y as antecedent
frame and conclusion frame of R respectively.

The corresponding matrix of this evidential mapping is:

rowf/col Hy Hy; .. ©
{61} mi1 mi2 my
{62} mo1r Moy ... Mo - M
{en} mp1 mpa ... my

The size of matrix M is n x [ where n is the number of elements in O and [ equals [297| — 1
(except ). Hj is a subset of the elements of ©p. For any H;; appearing in (Hjj;, f(e; — Hij))
there is Hy where Hy = H;j. The (i,k)-th entry of M is defined as m;; which equals f(e; — H;j)
if the pair (H;j, f(e; — Hjj;)) is an element of I'*(e;) and Hy, = H;j; otherwise my;, equals 0. Thus
those m;1,m4o, ..., my of line ¢ must satisfy the condition Zj m;; = 1. More precisely based on
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m;1, M2, ..., My, we define a function m;. In fact m; is a mass function on O x O, with its focal
elements as A;;1 = {(z,y)|lz € —{e;} or y € Hiy}, ..., Ain = {(z,y)|z € —{e;} or y € Hj,} and
m;(Aij) = my; for j = 1,...,1. So there are in total n mass functions on frame O x Oy. But we
define that the combination of any two of the above mass functions is meaningless.

In order to identify each row and column in M we call Hy, the title of column k, {e;} the title of
row 1. We also call [{e1},{ea},...,{en}] and [Hi, Ha, ..., O] the row title vector and column title vector
of M respectively. When we mention a matrix M of an evidential mapping, we assume the row title
vector and the column title vector are known. Thus for any given evidential mapping the related
heuristic rule set and the matrix are unique.

An evidential mapping from O to O states that for two related questions represented by O g and
Og, if the truth for the question represented by O is e; then the truth for the question represented by
Op is in a set ©;, but e; has different inter-relationships with different subsets of ©;. The f(e; — H;j)
is used to reflect the sensitivity or strength of interrelation between e; and H;;. Certainly the total
strength should be 1.

Ezample 1: If an evidential mapping I'* specifies a mapping from an evidence space O to a
hypothesis space O as:

F*(el) {({al,ag},O.'?), ({ag,a4},0.3)}
I'*(e2) = {({a2,a3},0.8), (©x,0.2)}
F*(eg) = {({a4,a5},0.9), (@H,O.l)}

and a related set of heuristic rules is

R: er — {a1,a2} (0.7)3 er — {as, a4} (0.3)-
ez — {az, a3} (0.8)} es — O (0.2)-
es — {a4,a5} (0.9)> es — Op (0.1)-

where O = {e1,e2,e3} and Oy = {a1,a2, a3, as,as}, then the matrix M has 25 — 1 columns, most of
which have only zero m;; such as columns {a1}, {a1,a2,a3}. Usually a matrix becomes too big when
O©p contains several elements. So we delete all those columns which have only zero m;; and form
another matrix. We call such a simplified matrix the Basic Matrix and denote it as BM. Thus the
title vector of a basic matrix of an evidential mapping only contains those H;; which appear in I'* (e;).
The BM of this evidential mapping in the above example is

row/col {ay,as} {ag,a3} {az,as} {aq,a5} Op

{e1} 0.7 0.0 0.3 00 00 _
{ea} 0.0 0.8 0.0 0.0 0.2 =BM
{es} 0.0 0.0 0.0 0.9 0.1
with row title vector [{e1},{e2},{es}] and column title vector [{ai,a2}, {as,as},{as, a4},

{a'4aa'5}a ®H ]
Obviously, multivalued mappings in section 2.1 and Bayesian multi-valued causal link models
(Pearl 1988) can all be represented using such evidential mappings.

Corollary 1 If all the m;; in a basic matriz BM of an evidential mapping from O to O are either
1 or 0 then the evidential mapping is a multivalued mapping. For any e;, the mass function m; on
Op X O is a simple support function with a focal element A;j(Aij; = {(z,y)|z € ~{e;} ory € Hi;}),
and m;(A;;) = 1.

Corollary 2 If a basic matrix BM has |Op| columns, and the titles of all columns are singletons
of ©g then the evidential mapping from O to O of this matriz is exactly a Bayesian multi-valued
causal link model. For any e;, the mass function m; on O X O is a Bayesian probability distribution.
We refer to this kind of evidential mappings as Bayesian evidential mappings.



If a piece of evidence gives a probability distribution P on ©f, then a new function m on O can
be calculated by the evidential mapping from Of to Op:

m(Hg) = >; P(ei) x mi, =Y, P(ei) x f(e; = Hj) When Hy, is the title of a column
m(Hg) =0 Otherwise (2)

The function m is a basic probability assignment in the hypothesis space and has the following
features:
1) m(@) =0
2) >pm(Hg) =1 where Hy, C ©

This can be proved by the following according to definition 1, probability distribution P and
features of a mass function.

Ypm(Hy) =31 22 Plei) x f(ei — Hy)
=22 2k Ple) x fei — Hy)
= (32 Pei)) (g f(ei — Hi))
= (32, P(ei)) (X f(ei — Hij)) (because there exists an H;; such that Hy = H;j)
=1lx1=1

Corollary 3 A function m is a mass function on frame Oy if it is given by formula 2 under the
condition that P is a probability distribution on space O and I'* is an evidential mapping from Of
to ®H

The theoretical support of the formula (2) is Bayes’ formula
P(A) =3 P(AB:)P(B;)
i

where B; is an element of an exhaustive and mutually exclusive event set (Pearl 1988).
We suppose that any evidence e giving P(B;/e) has no effect on P(A|B;). This rule is also called
Jeffrey’s rule of conditioning (Jeffrey 1965, Shafer 1981).

2.3 Creating Evidential Mappings for Incomplete Heuristic Rule Sets

We have seen in the above section that an evidential mapping can be associated with a set of heuristic
rules. The other way around, given a set of heuristic rules in the form of (1), if all the antecedents
of rules can form a frame of discernment O, all the conclusions of rules can form another frame of
discernment O, and for any heuristic rule R; the sum of r;; (for j = 1,..,m) is 1, then an evidential
mapping can be established between O and ©p. Unfortunately, the antecedents (or conclusions) of
a set of rules normally cannot form a frame of discernment which is mutually exclusive and exhaustive
and usually the sum of r;; for rule R; is less than 1. For example if there is only one rule in a set of
heuristic rules: if X is X; then Y is Y7 with a degree of belief r1, then the antecedent (X is X1) itself
does not form a frame of discernment at all nor does the conclusion (Y is Y7).

Definition 2 If at least one of the antecedent frame and conclusion frame of a heuristic rule set R is
not a frame of discernment or there is a rule R; in rule set R where 3_;ri; < 1, then we define such
a heuristic rule set as an incomplete heuristic rule set. Otherwise we call it a complete heuristic
rule set.

Corollary 4 Given an incomplete heuristic rule set R, let E={e, ..., ey} represent the antecedent set,
and H={hy,...,hn} represent the conclusion set of R,



1) if E is not a frame of discernment then define e,+1 = —(e1 V... Ve,) and Op = {ep1}UE;
otherwise define O = E.
2) if H is not a frame of discernment then define hyi1 = —(h1 V ...V hy,) and O = {hp41}U
H; otherwise define ©g = H.
3) if eny1 emists then add the rule Ry 1 : (ent1 — Opn (1)) to rule set R.
Then ©g and Og are two frames of discernment representing the antecedent frame and the con-
clusion frame of R respectively.

Corollary 5 For each rule R; in R, if 3_;rij < 1 then we add an extra conclusion ©p with belief
ripn = (1 — > rij) to R;. That is, if the original R; is

R;: e; — Hj; (rig)s s € — H;p, (Fim)- where Z]- Tij < 1
then a new R} is
R; : e; — Hjp (ri1)5 =3 €i — H;p, (Tim)3 €i — G)H (rin) where Tih = 1-— Zj Tij-

Now the heuristic rule set R is complete and an evidential mapping from ©g to © g can be created.

In fact the added part of a rule represents our ignorance. In other words, based on the current
knowledge of a specific domain, we have no knowledge to identify any more ad-hoc relationships among
elements of reasons and results.

Ezample 2: Suppose we have a rule set R which consists of a rule as follows:

Smoke alarm is ringing — There is a fire (g ).

We construct © g={(smoke alarm is ringing), not(smoke alarm is ringing)}, ©y={(there is a fire),
not(there is a fire)} based on corollary 4, and a new rule set R’ based on corollary 5,

R’ has: R;: Smoke alarm is ringing — There is a fire (og);
Smoke alarm is ringing — Op ;-
Ry: Not (Smoke alarm is ringing) — Op ;.

This rule set can be associated with an evidential mapping from O to Oy. In particular, if O is
the same as Op then the corresponding evidential mapping represents self-relations of O (it is also
called delta-©f compatibility relation by Lowrance et al (1986)).

Now we can represent any heuristic rule set (either complete or incomplete) in the Dempster-
Shafer theory of evidence by the means of evidential mappings. In the following we simply use a triple
(R,©p,0Op) to represent an evidential mapping where R is a heuristic rule set, © g is the antecedent
frame of discernment of R and ©p is the conclusion frame of discernment of R.

3 The Relation Between Evidential Mappings and Bayesian Condi-
tional Probabilities

The Dempster-Shafer theory of evidence as an generalization of Bayesian inference includes two mean-
ings: mass functions are the general form of Bayesian subjective probabilities in representing evidence;
Bayesian conditional probabilities are a special case of Dempster’s rule of combination (Shafer 1976).
Pearl (1988) gave a general formula to calculate posterior-probabilities (on hypotheses) or predict fu-
ture events in multi-valued causal link models of Bayesian theory when a set of evidence (for evidence
variable) is given. In fact, Pearl’s work is the extension of traditional Bayesian inference theory to
the situation when the relationships among elements of an evidence space and a hypothesis space
are multi-valued causal mappings. In this section we prove that Bayesian inference performed on
multi-valued causal link models can be carried out in D-S theory by using evidential mappings.



3.1 Predicting Future Events in D-S Theory

Ezample 3: Let S be a variable for “alarm sound” and D for “a person’s call”. If we use the same
capital letter to represent both a variable name and the name of the frame which includes all the
values of the variable, we have S= {alarm on, alarm off} and D={a person will call, a person will
not call} each of which represents an exhaustive and mutually exclusive set of propositions. Suppose
the causal link between S and D is

S/D will call  will notcall

alarm on 0.7 0.3
alarm off 0.0 1.0
Bayesian inference produces
P(d;) = 325 P(di]s;)P(s;) (3)

which is a shorthand notation for the statement
d|6 ZPd|S], 8]|e)

where d; is an element of D and s; is an element of S and we assume that a piece of evidence has no
effect on the causal link between S and D. Given a probability distribution of a piece of evidence on
S, the probabilities on D can be calculated from formula (3).

Suppose P(s1=0n)=0.2686, P(so=0ff)=0.7314,

then P(dy = will call) = ZP(Ch | s;)P(sj) = [0.2686,0.7314] x l ] = 0.188 (4)

This is called predicting future events by Pearl in Bayesian inference.

Obviously the causal link above forms an evidential mapping from S to D in Dempster-Shafer
theory. In the condition of prior probabilities P(s; = on) = 0.2682, P(se = of f) = 0.7314, applying
formula (2) we get a mass function on D which is the same as that showed in formula (4).

= ZP(si) x f(s; — {d1}) = 0.2686 x 0.7 4 0.7314 x 0.0 = 0.188

ZP ) x f(s; = {d3}) = 0.2686 x 0.3 +0.7314 x 1.0 = 0.812

In Bayesian multi-valued causal link models, the causal link between the hypothesis space H and
the evidence space E is identified by a n X m matrix M, where n and m are the numbers of values of
H and FE respectively, and the (i, j)-th entry of M is M;; = P(e; | h;) (Pearl 1988).

It is easy to see (corollary 3) that the causal link model above is consistent with the special case
of evidential mappings. The mass function on D obtained from formula (2) is exactly the same as the
probability distribution on D obtained in Bayesian inference.

3.2 Calculating Posterior Probabilities in D-S Theory

Furthermore, in Bayesian multi-valued causal link models, given a prior probability distribution on
hypothesis space H, causal link matrix M with M;; = P(e; | h;)



{e1} {ea} {em}

{h1} pler | h1) ple2 | h1) ... plem | h1)
{ho} pler | h2) ple2|h2) ... plem | ho)

{hn} pler | hy)  plez | hyp) ... plem | hn)

and a set of evidence e', €2, ..., e"N

on h; of H is:

on evidence space E, then posterior-probability P(h; | e!, €2, ...,e")

P(hi | e',e?,....eN) =aP(e', e, ...,e" | hy)P(h;) (5)

where a = [P(e!, €?,...,e™)] 7! is a normalizing constant to be computed by requiring that Eq.(5) sum
to unity. Assuming e',e?,...,e"V are independent with each other and conditional independence of
respect to each h;, Pearl (1988) indicated that,

P(h; | €', €2, ...,eN) = aP(h;)[II_, P(e* | hy)] (6)

Here we should make it clear that Pearl assumes that for each piece of evidence e there exists an
element e; in F where p(e;) = 1 given by e so that P(e* | h;) = P(e; | hi).

Can these posterior probabilities be calculated in D-S theory using evidential mappings based on
the above causal link matrix under these assumptions? The following theorem indicates that they
can.

Theorem 1 Let E and H be two frames of discernment, I'* be a Bayesian evidential mapping from
H to E, BM be the basic matriz of the mapping I'* with (i,7)-th entry as p(e; | h;). Assume the prior
probability on h; of H is p(h;), a set of evidence on E is e',e2,...,eN for each of which there exists an
e; where p(e;) = 1. Then the final belief function Bel on H using D-S theory is

Bel(h;) = ozp(hi)[Hljcvﬂp(ek | hi)]

n

where o = (Z(p(hi)[ﬂiv:ﬂ’(ek | hi)]))_l
1

and p(e* | h;) = p(e; | h;) for each k when the evidence e makes p(e;) = 1.

The theorem can be proved by the following steps. The mathematical proof is given in Appendix
A.

step 1: form an evidential mapping from a frame of discernment H to a frame of discernment F,
the corresponding basic matrix BM is M in the Bayesian multi-valued causal link model and m;; in
BM is P(e; | h;). The titles of rows from 1 to n are {h1},...,{hyn}, and the titles of columns from 1 to
m are {e1}, ..., {em}.

step 2: a prior probability p(h;) is transformed into a basic probability assignment mg(h;) = p(h;)
on H.

step 3: construct an evidential mapping from E to H through the evidential mapping from H to
E, the corresponding basic matrix is BM” with (4,4)’-th entry as

p(ej | hi)

/
b (hl | 6‘) = n
! i:lp(ej | hi)

(7)



and the titles of rows from 1 to m are {ei},...,{em}, and the titles of columns from 1 to n are
{h1},....,{hn}.

step 4: for each probability distribution p; on E provided by a piece of evidence e, calculate
k-th mass function my on H using (2).

step 5: obtain the final belief function by using Dempster’s combination rule to combine all those
basic probability assignments because of independence of evidence.

Ezample J (from Pearl 1988, p.39): Let a hypothesis space have four propositions H={hy, hg, hs,
hs} and an evidence space have three propositions E={ej, ey, es}. The causal link matrix between H
and F is

{er} {e2} A{es}
(h} 05 04 0.1
{hy} 0.06 05 044 =BM
(hs) 05 01 04
(b} 1.0 00 0.0

Assume prior probabilities for the hypotheses in H are a vector p(h;)=[0.099 0.009 0.001 0.891],
two pieces of evidence are e! providing P(e3) = 1, and e? providing P(e;) = 1.
* In Bayesian inference, applying formula (6), the posterior probabilities are

P(hy | ', e?) = 0.919, P(hy | €', e?) = 0.0439,
P(h3 | e!,e?) = 0.0375, P(hy ety e?) =0.0

* Now we use evidential mappings in D-S theory to analyze the example again. Given the above
causal link matrix we can form a set of heuristic rules with its evidential mapping as:

R: r:

h1 — e (0.5); hi — e (0.4); hi — e3 (0.1). F*(hl) = {({61},0.5), ({62}, 0.4), ({63}, 0.1)}
h1 — €1 (006), h1 — €2 (05), h1 — €3 (04:4) F*(hQ) = {({61},006), ({62},0.5), ({63},044)}
h1 — e (0.5); hi — e (0.1); hi — e3 (0.4). F*(hg) = {({61},0.5), ({62}, 0.1), ({63}, 0.4)}
h1 — €1 (10), h1 — €2 (00), h1 — €3 (00) F*(h4) = {({61}, 10), ({62}, 00), ({63}, 00)}

Based on this evidential mapping to construct another evidential mapping from E to H using
formula (7), we get

I (e1) = {({h1},50/206), ({h2},6/206), ({hs},50/206), ({h4},100/206)}
I (e2) = {({M},0.4), ({h2},0.5), ({hs},0.1), ({4}, 0.0)}
r' (63) = {({hl}a 10/94)a ({h2}v 44/94)v ({h?)}v 40/94)v ({h4}a 0'0)}

and

{1} {ho}  {hs} {ha}
{erd 50/206 6/206 50/206 100/206
{e2d 04 05 0.1 0.0
{es} 10/94 44/94 40/94 0.0

= BM'

Based on the prior probability distributions on H, the first mass function on H is obtained as:
mo(hl) = 0099, mo(hQ) = 0009, mg(hg) = 0001, mo(h4) = 0.891.

According to two pieces of evidence on E, the evidential mapping from E to H, and the Corollary
1, we get another two mass functions:
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ml(hl) = P(eg) X f(63 — {hl}) =1x 10/94 = 10/94
m1(h2) = P(€3) X f(€3 — {hg}) =1x 44/94 = 44/94
ml(h3) = P(eg) X f(63 — {hg}) =1x 40/94 = 40/94
ml(h4) = P(€3) X f(€3 — {h4}) =1x0.0=0.0

and
mQ(hl) = P(el) X f(€1 — {hl}) =1x 50/206 = 50/206
m2(h2) = P(el) X f(61 — {hg}) =1x 6/206 = 6/206
mQ(hg) = P(el) X f(€1 — {h3}) =1x 50/206 = 50/206
ma(ha) = P(e1) x fer — {ha}) = 1 x 100/206 = 100/206

Combining these three mass functions using Dempster’s rule of combination we eventually get
m(h;) =mo ® m1 & ma(h;)

that is
m(h1) = 0.099 x 0.1 x 0.5 = aP(hy)[H=12P (" | h1)]
m(ha) = 0.009 x 0.44 x 0.06cc = aP(hy)[Tg—1 2P (" | ha)]
m(hs) = 0.001 x 0.4 x 0.5 = aP(h3)[H=12P (" | h3)]
m(hs) = 0.891 x 0.0 x 1.0ac = aP(hy)[Mg—1 2P (" | ha)]

where a is (0.099 x 0.1 x 0.5 4 0.009 x 0.44 x 0.06 + 0.001 x 0.4 x 0.5+ 0)~!. The result of D-S theory
is exactly the same as what we get in Bayesian inference.

4 Constructing Complete Evidential Mapping Matrices to Propa-
gate Mass Functions From an Evidence Space O to a Hypothesis
Space Opy

In Dempster-Shafer theory a multivalued mapping is used to calculate a mass function on a frame
based on either a probability distribution or a mass function on another frame (Lowrance et al 1986,
Zarley 1988, Laskey et al 1989). What we have assumed in the previous two sections is that a piece
of evidence on an evidence space (a frame of discernment O ) is represented in the form of Bayesian
subjective probabilities. A mass function on Oy will be obtained based on the probability distribution
on O through an evidential mapping from Of to Oy.

In section 2, we gave the definition of evidential mappings. Let ©p and Of be two frames of
discernment, I'* be an evidential mapping from ©p to ©p. Assuming a piece of evidence indicates
that m(E) = p,m(©g) = 1 —p, E is a subset of O, what is the impact of the evidence on ©y?
Obviously the impact of the evidence on Oy is easyly obtained if ['* is a multivalued mapping. But
it is not so easy when I'* is an evidential mapping.

In this section, we introduce the approach to constructing complete evidential mapping matrices
between two frames. A complete evidential mapping matrix between two frames allows the propagation
of a mass function from one frame to another.

Definition 3 If I'* is an evidential mapping from ©f to © g, BM is the basic matriz of I'* with m;;
as its (i, j)-th entry, the titles of rows of BM are {e1}, ..., {en} C O, the titles of columns of BM
are A1, ..., Ay € Op, then a matriz is called a complete evidential mapping matrix of BM, denoted
as CEM, if it is defined as:

1. all the subsets of Op except O are titles of rows of CEM and {e1}, ..., {e,} are the first n row
titles; Ay, ..., Ay, are the titles of the first m columns of CEM.
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2. the mi; of BM is the value of (i,j)-th entry of CEM and denoted as m;]
3. for a row | with the title E, and |l > n , suppose E = {e;,, e, ..., e, }, then (I,j)-th entry of
CEM is

my; = (muyj + muyj + ... +my) [k if all my; 70 fori=1,..k
my; = 0 otherwise

4. for my; =0, create a column r with the title A,
let A, =U;0; fori=1Iy,..,lg. (for ©; see definition 1 in 2.2)
if Ay is not an element of column title vector, then add A, as an column title and the value of
(1,7)-th entry is my, = (my,j +mi,j+...+my, ;) /k. Otherwise there is a column r' satisfying Ay = A,
and we update my as myr + (Mg + my,j + ... +my ) /k
5. for any other entry (x,y), define myy = 0.
Obuviously we have the unequal formula

mam(mllj,mbj...,mlkj) > (mhj =+ Miyj + ...+ mlkj)/k > min(mhj,ml?j, ...,mlkj) (8)

The basic idea of constructing a complete evidential mapping matrix is that if the causal links
from e, e ..., e to A’ are my, j,my,; ..., my, j respectively, then the causal link from {e;1, €2, ..., e}
to A’ is something between max(my, j, my,j, ..., my, ;) and min(my, ;,my,j, ..., my, ;). Here we use the
average value of my, j,my,j, ..., my,; to represent approximate causal link from {e;1, e ..., e} to A'.

Ezample 5: Assume a BM of an evidential mapping from O = {e1,es,e3} to O = {hy, ha, hs,

h4} is
{h1,ha} {h3} {ha}

{es} 05 05 00 =BM
{es} 0.7 00 03
{est 0.0 00 1.0

with row title vector [{e1},{ea}, {es}], and column title vector [{hi, ha}, {hs}, {ha}].
Then the corresponding CEM is

{h1,h2}  {hs} {ha} Op {h1,h2, ha}
{e1} 0.5 0.5 0 0 0
{es} 0.7 0 0.3 0 0
{es} 0 0 1 0 0
{e1,e2} (05+0.7)/2 0 0 0.5/2+ 0.3/2 0
{e1,es} 0 0 0 0.5/2+0.5/2+1/2 0
{es,e3} 0 0  (0.3+1)/2 0 0.7/2
O 0 0 0 (0.5+0.7)/3+0.5/3+ (0.3 +1)/3 0

with row title vector [{e1},{e2},{es}, {e1,e2}, {e1,e3}, {e2,e3},Or] and column title vector [{hy,
h?}a {h3}? {h4}a ®Ea {hla h?a h4}]
Ezample 6: Assume a BM of an evidential mapping from ©p={e1, ez, e3} to O g={hq, ho, hs, hy}

is a multivalued mapping as:
{h1,h2} {h2,h3, he}

{61} 1 0
{ea} 1 0
{63} 0 1

Then the corresponding CEM is
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{h1,ha} {ho,h3,hs} Opg

{er}
{e2}
{es}
{e1,e2}
{e1,e3}
{e2,e3}
OF

O OO R O
OO OO = OO
el e es B es Bl an Bl an

It is easy to prove that a CEM is a basic matrix of an evidential mapping from 2% to ©. So any
piece of evidence, which is in the form of bpa on ©f can be propagated to O g through the CEM. If
a BM is the matrix of an multivalued mapping then its related CEM is also associated with the same
multivalued mapping.

Certainly if a rule in a rule set specifies the causal link between a subset F of ©g and A4, ..., A,
of O, then the values of row i, with the row title as E, are (f(E — A1), ..., f(E — A;)) in CEM.
But these f(E — A;) must satisfy the condition of (8).

5 Propagating Beliefs Using Heuristic Knowledge

Belief propagation in a rule based system such as that described above indicates that, given belief
functions on an antecedent frame and a set of rules with rule strengths in the form of mass functions,
the belief functions on the conclusion frame can be deduced. If (R, Op, Og), (R', O, 0Y%), (R”,
"2, ©m), (R1, ©p, ©p) and (R2, O, Op) are five triples associated with five evidential mappings,

generally we need to solve the following belief propagation problems:

(i). given a piece of evidence on O, (R, O, ©f) is known, to deduce belief on Oy.

(ii). given a piece of evidence on Op, (R, O, Op), and (R, O, ©';) are known, to deduce belief
on ©.

(iii). given two pieces of evidence on O and O respectively, (R, O, Op) and (R”, 0%, Op)
are known, to deduce belief on Of.

(iv). given a piece of evidence on Op, (R1, O, Of) and (R, O, Op) are given independently,
to deduce belief on O©f.

(v). given several pieces of evidence each of which is on A, B, ..., C respectively, (R, O, O) is
known where ©p=A x Bx...xC, to deduce belief on O.

These problems can be solved by the following three theorems.

Theorem 2 Let (R, Op, Op) be a triple associated with an evidential mapping T*, BM and CEM
are the basic matriz and the complete evidential mapping matriz of I'*, if a mass function m on Of
s known, then a mass function my on O is calculated by the formula

mi1 ... Mim
[ (H1)...mi (Hm)] = [m(E1)...m(E)] (= CEM) (9)

mp1 .. Mpm

where [E1, ..., Ey] is the row title vector of CEM, and [Hy, ..., Hp] is the column title vector of CEM.

Specifically, if m is a Bayesian subjective probability assignment then m; on O is calculated by
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[mi(Hy)...mq(Hp)] = [m(er)..m(ey)] X (= BM)

mp1 ... Mnpm
Ezample 7: Assume there are two rules in a rule set R:

Ri p—={d}(e); p = ~{a}a_ay P = Ona—o-
R2—|p — @H(l)

and a piece of evidence says that [m(p) m(-p) m(©g)]=[a 1—0b b— a], where a,b,c, and d are all
real numbers between [0, 1] with conditions b > a, and d > ¢, what is the belief distribution on ¢?
Obviously the CEM of this evidential mapping is

{¢} {~a} ©n

{p} ¢ 1—-d d—c¢ =CEM

{=p} 0 0 1
©r 0 0 1

with row title vector [{p}, {—-p}, O] and column title vector [{q}, {—¢},On].
Applying formula (9) to (R,Op, O), we get

[m1(q) mi(=g) m1(On)]

¢c 1—d d—c¢
= [m(p) m(-p) m(Og)]x | 0 0 1
0 0 1

=lac a(l—=d) 1—ac—a+ ad

This result is the same as formula (12) by Hau and Kashyap (1990).

Theorem 3 Let (R,Op,0r) and (R',0,0";) be two triples associated with two evidential mappings
I'* and T, CEM; and CEM; are two complete evidential mapping matrices of T'* and T"*, if a mass
function m on Of is known, then a mass function my on O is calculated by the formula

mi1 ... Mim
[ma (HY)...m1 (Hy, )] = [m(Ey)...m(Ep)] X
Myl ... Mom
where CEM=CEM; x CEMs.
Theorem 3 indicates that if we know a series of evidential mappings from Op, to Op,, ..., from

©fg,_, to O, and those CEM; of evidential mappings from Op, to ©g, , for : = 1,...n — 1, then we
will get an evidential mapping from Op, to O, with its CEM as CEM; x...xCEM,,_;.
Ezample 8: Assume two rule sets R and R’ are as following

R: A—>B(a); A—>—IB(1,I,); A— Op (b—a)-
-A — Op (1)-

R B—>C(c); B—>—IC(1_d); B — O¢ (d—c)-
-B — O¢ (1)-
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CEM; and CEM, are:

B -B ©Op

A a 1—-b b—a =CEM,
-A 0 0 1
©4 0 0 1

and

¢ -C ©O¢

B ¢ 1-d d—c =CEM,
-B 0 0 1
O 0 0 1

Given a mass function m on © 4 then the mass function on O is

[m1(C) mi(=C) mi(O¢)]
ac a(l—d) a(ld—c)+1—a

= [m(A) m(=A) m(©4)] x| 0 0 1 (= CEM)
0 0 1

This formula is identical to the formula (14) in Hau and Kashyap (1990) and the formula (4) in
Ginsberg (1984).

Theorems 2 and 3 can be used to solve problems (i) and (ii). Dempster’s combination rule is
used to deal with the problem in (iii) where we suppose that any two pieces of evidence bearing on
the same frame are DS-independent (Voorbraak1991). DS-independence will guarantee that if we use
Dempster’s rule to combine two probability distributions we should obtain the same result as what
we get from Bayesian theory.

Theorem 4 Let (R,05,0y) and (Re,Op,Op) be two triples associated with two evidential map-
pings T'* and T, m; and m} are two mass functions indicating causal links from e; to Oy in I'* and
' respectively (for i =1,...,n), that is

[*(e;) = {(Hi1, f(ei = Hi1)), oy (Hins, f(€i = Hipr)) }

mi(Ay) = f(e; = Hy) where Ay = {(z,y)|z € ~{e;} ory € Hy} fori=1, ..., n'
and

F,*(ei) = { Hz(lif(ei - Hzll))a ey (Hz(n”af(ei - Hzln”))}

mi(AL) = f(e; — H},) where Al = {(z,y)|x € ~{e;} ory€ H],} forr=1, .., n"

then the joint impact of two evidential mappings is the third evidential mapping I'”* from Of to O
in which:
7% (ei) = {(H” i1, f(ei = H"i1)), o, (H" ik, fe; = Hir)) } (10)
mi(A”ij) = f(e; — H”ij) =m; D m;(A”ij) forj=1,..,k
where A”ij =A;N A;rv and H”ij =H;N Hz(r'

Here & indicates that Dempster’s rule is used to combine m; and m),.
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Proof: Because m; @& m/ is still a mass function in the Dempster-Shafer theory, we only need to
prove that any focal element A”;; in m; ® m! is in the form of {(z,y)|z € —{e;} or y € H”};}.

Given that A”;; = Ay N A, Ay = {(z,y)|lz € ~{e;} or y € Hy} and Aj, = {(z,y)|z € ~{e;} or

H/.}, we have

A”z'j =A;N A;r
={(z,y)|lz € ~{e;} or y € Hy} n{(z,y)|z € ~{e;} or y € H},}

( {ez} X OgUBOE x Hil) N (ﬁ{ei} X OgUOE x Hzlr)

{ei} X OgU {ez} X Hil) N (—u{ei} X OgU {ez} X Hzlr)

{ei} xOm) U ({ei} x HiyN{ei} x Hy,)
—{ei} x Of) U ({ei} x (Hy N H],.))
(z,y)|z € ={e;} or y € Hy N H]}
(z,y)|z € ~{e;} ory € H”;j = Hy N H},}

(=
(=
(
{
{

End.

The meaning of this theorem is that if there are two independent heuristic rule sets (as in figure
1) given by different domain experts respectively, each of those specifies one kind of causal link from
frame Of to frame O, then the joint impact of the two causal links can be substituted by the third
heuristic rule set which is produced from them.

Ry

<

Ry

Figure 1: Two evidential mappings from e to h.

Here we need to address the issue that the meaning of this theorem is different from using theorem
2 twice through two evidential mappings. Using theorem 2 in that way gives a wrong result because
of the dependency of the two mass functions on Op.

The formula (6) given by Ginsberg (1984) is achieved from formula (10) in a special case when
(Ry, ©p, Oy) and (Rs, ©p, ©f) are as follows:

R1 e — H(a); e — —IH(b); e — @H(l_b_a).
—16—>®H(1).
and
R2 6—>H(C); 6—>_‘H(d);€_>®H(1,C,d)-
—I6—>®H(1).

Then the joint evidential mapping produces a new rule set as:

R: e > H (1 T+l)c)))
e—H ( ad-l—bc)))
e — Og (l—x— ).
—16—>®H (1)

Here if b = 0 and d = 0 then it is identical with the result of parallel reduction given by Pearl
(1990).
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For problem (v), given a triple of an evidential mapping (R, O, Op), Op=A x Bx...xC, and
a series of evidence in the form of mass functions on A, B, ..., C respectively, we must first get the
joint mass function on O in order to obtain the impact of those pieces of evidence on ©p. Shafer’s
partition theory and technique (Shafer 1976, Shafer, Shenoy and Mellouli 1987; Shafer and Logan
1987) provide a sound background for propagating mass functions (or belief functions) from A, B, ...,
C to their Cartesian product frame of discernment ©g. Thus applying theorem 2 the mass function
on O will be calculated. Certainly computational complexity is a major problem which has been
widely researched (Barnett 1981, Shafer and Logan 1987).

Generally speaking, when O = A x B X ... x C, we can solve problem (v) by following steps:

1) establishing evidential mappings "4, 'p,..., ['c (in fact they are multivalued mappings) from
A, B, ..., C to Of respectively.

Ca(a;) = {({ai} x B x ... x C,1)} for each q; in A
FB(bi) = {(A X {bl} X ... X C, 1)} for each bi in B

(11)
Co(ei)) ={(A x B x ... x {¢;},1)} for each ¢; in C

2) given a series of pieces of evidence on A, B, ..., C, based on those evidential mappings, geting
a number of mass functions on the joint frame from each simple frame.

3) suppose A, B, ..., C are different from each other and the pieces of evidence are independent,
using Dempster’s combination rule to get the final mass function on Op.

4) so based on this final mass function on O and an evidential mapping associated with (R, Op,
©p), applying theorem 2 eventually to deduce a mass function on O.

Example 9: Assume we have four heuristic rules as follows. Given that p,q,v are certain, what is
the degree of belief on ¢?

riipAg—s (my);
ro:sAt—c (m2);
r3:v — u (m3);
T4 U — ¢ (Mmy).

Intuitively, the relations of the rules can be described as in figure 2. The degree of belief on ¢ will
be obtained through the following steps.

Ve Y4 q

c
Figure 2: An AND/OR graph representing four heuristic rules

Step 1. construct a rule set for each rule above:

Ry : PANG =S (my); p/\q—)@S(I,ml).
PAq— Og .
pA—G— Og .
“pA-g— Og .

Ry : S/\t—)C(mQ); 3At—>®C(1_m2)'

—IS/\t—>@C(1).
8/\—It—>@c(1).
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~s At = Oc ).

Rs: V= U (1py)3 v_>®U(17m3)-
—IU—>®U(1).

Ry : u—>0(m4); u—)@c(l_m4).
—ru—>®c(1).

Step2: construct the corresponding basic matrices and complete evidential mapping matrices of
those rule sets.

Step3: according to formula (11) for rule set R;, because of p and ¢ are certain, the joint mass
function mp, on O, is calculated:

mpe({(p,q)}) = 1.

(because of my, ({p} X ©,4) =1 and m” (0, x {¢q}) = 1)

then based on theorem 2, calculate a mass function on Oy :

ms(s) = ma; ms(0g) =1 —my.

Step4: according to formula (11), for rule set Rs, because ¢ is certain and the mass function on
O; is known in step3, then the joint mass function on O is:

mst({(s,t)}) = ma; mst(Os X {t}) =1 —my.

then based on theorem 2, a mass function on O, is

me(c) = mymeo; me(O) =mi(l —mao)+1—my =1—myms.

Step5: using theorem 3 to rule sets R3 and Ry, we obtain another mass function on O¢ as

m’.(c) = mamy; m.L(O¢) =1 — mzmy.

Step6: because m. and m,, are independent, we get a mass function on ©¢ by combining them

me”(c) =1 — (1 —mima)(l — mama); me” (O¢) = (1 —mimz)(1 — mamy).

Eventually we have Bel(c) =1 — (1 — myms2)(1 — msmy).

In fact this example is a variation of Pearl’s example (Pearl 1990, p.561). In r3, we use the logical
formula v — u with m; instead of p — u with my in order to avoid the dependency problem. We
achieve the same result as Pearl did using his own explanation (random-switch metaphor).

6 Conclusions

6.1 Related Work

Several approaches to dealing with heuristic knowledge in the Dempster-Shafer theory of evidence have
been proposed (Ginsberg 1984, Liu 1986, Yen 1988, Hau and Kashyap 1990). Pearl also mentions this
problem in Pearl (1990). The approach proposed in this paper is different from those approaches
among which Liu’s approach and Yen’s approach are two proper subsets of our evidential mappings.
In Ginsberg’s as well as in Hau and Kashyap’s representation formalisms of heuristic rules, a rule is
associated with a pair of real numbers between [0,1] in the form of

if E then H with uncertainty [c, d].
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The meaning of ¢ and d defined by Ginsberg is: ¢ is the extent to which we believe a given
proposition to be confirmed by the available evidence, and d is the extent to which it is disconfirmed.
That is: F — H with c and E — —H with d.
While Hau and Kashyap gave two explanations:
1. cis the credibility to which E supports H, d is the plausibility to which £ supports H, so 1 —d
is the degree to which E supports = H.
That is FE — H with cand £ — H with 1 —d.
2. Let ® = Op ® Oy where O and O are frames of discernment of £ and H, then ¢ and d form
a mass function on ©

m(A) =c¢,m(=A) =1—d, and m(©) =d—c.
where A= {(z,y)|lr € ~F or ye H}

Obviously Ginsberg’s representation can be incorporated into an evidential mapping from ©g to
Op by the rule set R below.

R: E—)H(c);E—)ﬁH(d);E_)G)H(I,d,C)-
-FE — @H(l)'

Hau and Kashyap’s first explanation can also be incorporated into an evidential mapping from Op
to Oy by the rule set R’

R : E—)H(C);E—)‘lH(I,d);E%GH(d_C).
-F — @H(l).

In fact the second explanation given by Hau and Kashyap is to construct a mass function (further-
more a belief function) on a joint frame of discernment. Similar explanations of a rule are adopted
by Laskey and Lehner (1989), by Lowrance et al (1986), and by Zarley et al (1988). This is also
consistent with our explanation in section 2.2.

In section 5 we only discuss one situation involving the dependency problem. Hau and Kashyap
(1990) discussed several situations based on their representation of heuristic rules.

6.2 Summary

Evidential mappings are the main concept proposed in this paper. The extended Dempster-Shafer
theory is more powerful for propagating beliefs while at the same time keeping all the features of the
original theory. The following are main features in our approach: 1) representing uncertain relations
between evidence spaces and hypothesis spaces by evidential mappings; 2) by creating evidential
mappings for incomplete heuristic rule sets, more heuristic knowledge can be represented in D-S theory;
3) by constructing complete evidential mapping matrices any piece of evidence bearing on an evidence
space can be propagated to the corresponding hypothesis space; 4) when a set of heuristic rules is
detailed enough to form a Bayesian multi-valued causal link model, any result produced by Bayesian
inference can also be carried out by D-S theory under evidential mappings; 5) evidential mappings are
consistent with other previous research work in this respect; 6) a series of belief propagation procedures
are easily deduced based on evidential mappings.

Heuristic knowledge is important in knowledge based systems. Representing this kind of knowledge
and propagating beliefs are the main and the most difficult tasks for designers of knowledge based
systems. This paper makes some progress in this area. Future work concerning evidential mappings
in the Dempster-Shafer theory should focus on exploring more features of evidential mappings and
more approaches to dealing with dependency relations.

Appendix A:
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Let E and H be two frames of discernment, I'* be a Bayesian evidential mapping from H to £, BM

be the basic matrix of the mapping I'* with (¢, j)-th entry as p(e;|h;). Assume the prior probability

on h; of H is p(h;), a set of evidence on E is e',e?, ..., eV, for each of which there is an e; where

p(e;) = 1. Then the final belief function Bel on H using D-S theory is
Bel(hi) = ap(hi)TTR_p(e*|h;)

n

where o = (Z(p(hi)nljgv:1p(ek|hz’)))_l
1

and p(e¥|h;) = p(e;|h;) for each k when the evidence e* makes p(e;) = 1.

PROOF:

Stepl: According to the conditions in the theorem, the given BM of the evidential mapping from
H to FE is:

{er} {ez} o Hem}  X;p(ejlhi)

{h1} pleilhy) plealh1) ... plem|h1) (=1)
{ha} pleilh2) plealhz) ... pleml|ha2) (=1)

{hn}  plerlhn) plealhn) ... plemlhn) — (=1)

Yipleilhi) (B (B (Ba")

where we suppose H contains n elements and E contains m elements. Then another matrix from F
to H will be obtained as follows and it is also an Bayesian evidential mapping from E to H.

{h1} {h2} {hp}

{er}  plealh)Br  plerlh2)Br ... pleilhn)Br
{ea}  plealh1)B2  plealh2)Bz ... plezlhn)pB2

{em} plemlh1)Bm plem|h2)Bm .. plem|hn)Bm
where Bjis (X1 p(ejlh;))™" for j =1,...,m.

Step2: Assume we only get one piece of evidence e', and there exists an ej that e! makes p(ej) = 1.
Applying Theorem 2 to p(e;) = 1 and the Bayesian evidential mapping from F to H, a mass function
my on H is calculated as

ml(hz) = p(€j|hi),3j fO’I"i = 1, ceny T

The prior probability gives another mass function on H

mo(hi) = p(hi)

Applying Dempster’s combination rule to mg and mq, there will be
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(mo(hi)p(e;lhi)Bi)
(>iz1 mo(h)p(ejlhi)B;)

Let a1 = (Z mo(hi)P(€j|hi))_1

mo D ml(hz) =

i=1
Then m'l(hz) =mgo D ml(hz)
= army(hi)p(ej|hi)
= aip(hi)p(e;lh;) because of p(h;) = mg(h;)
= a1p(h;)p(et|h;) we use el instead of e; because of e! making p(e;) = 1
= a1p(hi) I p(e*|hi)

So  Bel!(h;) = cqp(hi)Ii_,p(e¥|h;), the theorem is true when N = 1.

Step3: Assume for N — 1 pieces of evidence we have proved the theorem, that is

miy_1(hj) =mo@m1 @ ... @ my_1(h;)
= Belly_,(hi)
= an_1p(hi) I}~ p(e¥|h;)

Spet4: Given n-th evidence e, eV makes p(e,) = 1 for a particular e,, then my is a corresponding

mass function produced from p(e,) = 1 and the Bayesian evidential mapping. That is

m(hi) = plenhi)Br for i=1,...,m.
So

miy(hi) = my @ miy_;(h)

_ my (hi)m'y _; (hs)
Qi mn (hi)mly_ (hi))

_ an_1p(hi) Ty p(e*|hi)p(er|hi)Br
(C 0, (@ —1p(h) I Ip(e [ha)pler [h)Br)

= anp(hi)TIY_ p(e¥|h;) by using e instead of e,
where an = (X7 (p(hi) I p(e*|hi)))
Because Bel(h;) = m/y(h;). The theorem is true for N pieces of evidence.
END.
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