
History-Guided Conversational Recommendation

Yasser Salem
School of Electronics,
Electrical Engineering
and Computer Science

Queen’s University Belfast
Belfast BT7 1NN, UK

ysalem01@qub.ac.uk

Jun Hong
School of Electronics,
Electrical Engineering
and Computer Science

Queen’s University Belfast
Belfast BT7 1NN, UK
j.hong@qub.ac.uk

Weiru Liu
School of Electronics,
Electrical Engineering
and Computer Science

Queen’s University Belfast
Belfast BT7 1NN, UK
w.liu@qub.ac.uk

ABSTRACT
Product recommendation is an important aspect of many
e-commerce systems. It provides an effective way to help
users navigate complex product spaces. In this paper, we
focus on critiquing-based recommenders. We present a new
critiquing-based approach, History-Guided Recommendation
(HGR), which is capable of using the recommendation pairs
(item and critique) or critiques only so far in the current rec-
ommendation session to predict the most likely product rec-
ommendations and therefore short-cut the sometimes pro-
tracted recommendation sessions in standard critiquing ap-
proaches. The HGR approach shows a significant improve-
ment in the interaction between the user and the recom-
mender. It also enables successfully accepted recommenda-
tions to be made much earlier in the session.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrievals]: On-line
Information Services—Web-based services

Keywords
Conversational Recommendation, critiquing, Recommender
Systems

1. INTRODUCTION
Recommender systems help users select suitable items from

a large collection of items with a range of features. Online
shopping is one area in which recommender systems are use-
ful for giving shoppers better choices [24]. Recommender
systems aim to help users find the item they are looking for
as quickly as possible with the fewest number of steps. To-
day, e-commerce systems rely on recommender systems to
help users to navigate complex product spaces. Amazon’s
use of recommendation technologies is well documented [8].
The recent Netflix competition [1] highlights the value of
sophisticated recommendation techniques in the commercial

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.

world. Many recommendation techniques have been investi-
gated by the research community, from collaborative filtering
methods [5, 9], which rely on simple ratings-based profiles
to generate recommendations from similar users, to content-
based methods [23], which use detailed product knowledge
to make recommendations. Most recommender systems cur-
rently deployed use the single-shot strategy. They produce
a ranked list of recommendations for the user [7, 19, 21].
The single-shot strategy is suitable for the recommendation
of simple products and services, such as ringtones, movies,
books, etc., but it is not so well suited for recommending
items with complex attributes. In the latter case, it is more
effective to offer the user with an opportunity to provide
feedback, and to refine their needs and preferences. This
has motivated researchers to develop so called conversational
recommendation approaches [2, 13, 14, 22]. In these ap-
proaches, users participate in a recommendation dialogue,
receiving recommendations and providing feedback in order
to receive a new set of improved recommendations. Different
approaches to conversational recommendation use different
types of feedback. One type of feedback that forms the basis
of this work is critiquing. Critiquing is a simple form of feed-
back which allows a “show me more like this but ...” type of
response. Recently there has been renewed interest in cri-
tiquing [3, 4, 10, 11, 15, 16, 18] because of its advantages:
it is simple to implement for a variety of interface types,
and it can be appropriate for users who are not experts in a
given product domain. Critiquing-based recommender sys-
tems have proven to be an effective approach to conversa-
tional recommendation. However they have a tendency to
produce protracted recommendation sessions, due in large
part to the limited feedback that critiques can provide. So
researchers have recently concentrated on improving the per-
formance of critiquing-based recommender systems [11, 12,
20, 26]. In this paper, we are interested in improving the
efficiency of critiquing-based recommender systems without
introducing additional critiquing complexity. The starting
point is that critiquing histories, or experiences of past users,
carry important information about feature preferences and
trade-offs, and these experiences can be used to bias the
recommendation process.

2. RELATED WORK
Recommender systems are a common way to promote

products or services that may be of interest to a user, usu-
ally based on some profile of interests. The single-shot ap-
proach, which produces a ranked list of recommendations,
is limited by design. It works well when a user’s needs are

999

clear, but it is less suitable when a user’s needs are not
well known, or where they are likely to evolve during the
course of a session. In these scenarios it is more appro-
priate to engage the user in a recommendation dialogue so
that incremental feedback can be used to refine recommen-
dations. This type of conversational recommender systems
are much better suited to help users navigate more com-
plex product spaces. Various forms of feedback are used
in conversational recommender systems: value elicitation,
ratings-based feedback, preference-based feedback and cri-
tiquing [25]. A recent approach to critiquing, incremental
critiquing (IC)[17], maintains a user model made up of the
user’s critiques so far in a recommendation session. The user
model is then used to guide the selection of new recommen-
dations in the session. For example, suppose a camera shop-
per has already provided a number of critiques. The user
model may indicate that the shopper is looking for a DSLR
camera that is cheaper than $500, manufactured by Nikon.
[17] describes how a user model is generated from such a se-
quence of critiques. When the user provides a new critique,
perhaps looking for a resolution higher than 5 mega-pixels,
instead of just selecting a new recommendation based on
its similarity to the current recommendation and its com-
patibility with its critique, the user model is further used
to rank all candidate recommendations. The end result is
that the new recommendation is guaranteed to maximally
match the user’s critiques so far (via the user model). It
has been shown that this approach produces more focused
recommendations that lead to significantly shorter recom-
mendation sessions. A more recent approach to critiquing
[20], History-Aware Critiquing (HAC), is in spirit similar to
incremental critiquing. Instead of allowing the previous cri-
tiques of the current user to influence the selection of the
new recommendation, it uses the critiques of past users.

3. HISTORY-GUIDED RECOMMENDATION
Inspired by ideas in case-based reasoning, our proposed

History-Guided Recommendation technique attempts to har-
ness a new source of knowledge during the critiquing process,
namely the critiquing experiences of other users. We will fo-
cus on past critiquing sessions that have been successful –
in the sense that they have led to an accepted recommen-
dation. Our basic assumption is that these successful ex-
periences must encode useful patterns of recommendations
and critiques, which may help us to short-cut the standard
critiquing process for future users. In what follows we will
describe the HGR technique to leverage these experiences as
part of a conventional critiquing-based recommender system
and we will go on to demonstrate the potential of these expe-
riences to significantly improve the efficiency on incremental
critiquing (IC) and History-Aware Critiquing (HAC).

3.1 Recommendation Sessions
In a typical critiquing session the user will start with a

high-level understanding of their needs. For example, when
choosing a restaurant they might start by indicating a price
range and a location. During the course of a session this
will be refined, as the user critiques the features of recom-
mended restaurants, perhaps indicating that they are look-
ing for somewhere that is less formal but more expensive
than earlier recommendations. Thus, during a particular
critiquing session a user may provide feedback on a range of
different features.

Figure 1: A recommendation session made up of a
sequence of recommendation-critique pairs.

We can model each recommendation session, si, as a se-
quence of recommendation-critique pairs, as shown in Fig-
ure 1 and Equations 1-2, where each ri represents a rec-
ommendation and ci is the critique that is applied by the
user to the recommendation. Each ci is represented as a
triple, (fi, vi, typei) as shown in Equation 4, where fi refers
to the feature fiεri that the critique applies to, vi is the
value of fi in ri (ri.fi), and typei is the type of critique that
is applied (typically, typeiε{<,>,=, <>}). For now we can
assume that each session terminates (as shown in Equation
3)when the user chooses to accept a recommendation, in-
dicating that they are satisfied with the recommendation,
or when they choose to stop a given session, presumably be-
cause they have grown frustrated with the recommendations
received. Thus we can add accept and stop to the set of per-
missible critique types such that every session terminates
with one or other of these types.

si = {p1, ..., pn} (1)

pi = (ri, ci) (2)

terminal(si) = pn = (rn, cn) (3)

ci = (fi, vi, type) (4)

In general, a critiquing-based recommender system has many
users who will produce a large collection of critiquing ses-
sions (S = {s1, ..., sk}) as they engage with the recom-
mender system. The sessions reflect the experience of these
users and capture potentially useful knowledge about their
preferences and the different trade-offs they tend to make.
In this paper, we are interested in the potential for these
experiences to inform the recommendation process itself. In
other words, these critiquing sessions are the cases in a case
base of critiquing experiences. For the remainder of this pa-
per we will assume that only successful sessions — that is,
those sessions where the user accepts a recommendation —
are stored in the case base. We can then treat the accepted
recommendation as the solution of the case and the critique
pairs that proceed it as the specification of the case. We
will describe how to harness these critiquing experiences to
improve the efficiency of the recommendation process by us-
ing a new critique-based recommendation approach, called
History-Guided Recommendation (HGR), which differs from
the traditional approach to critiquing in the manner in which
new recommendations are generated; see Figure 2 for a brief
overview.

3.2 Conventional Critiquing
In a conventional critiquing-based recommender system,

when a user applies a critique ci to an item ri, the recom-

1000

Figure 2: History-Guided Recommendation (HGR) reuses past successful sessions.

mender responds by retrieving an item, rT , which is com-
patible with ci, in the sense that the item satisfies the cri-
tique ci, and which is maximally similar to ri, as in Equa-
tions 5-6. Note that r.f represents the value of feature
f in recommended item r. apply(type, u, v) is true if and
only if the predicate denoted by type is satisfied by the val-
ues u and v; for example, apply(<, 25, 40) is true whereas
apply(=, casual, formal) is not.

rT = argmax
∀ rjε items ∧ satisfies(ci,rj)

(
sim(ri, rj)

)
(5)

satisfies(ci, rj) ↔ apply(typei, rj .fi, ri.fi) (6)

3.3 Harnessing History-Guided Recommenda-
tion

History-Guided Recommendation extends conventional cri-
tiquing by reusing past sessions to guide the critiquing pro-
cess. Instead of retrieving a new item that is maximally
similar to the current recommendation, and compatible with
the user’s critique, we recommend one of the items that
past users have ended up purchasing/accepting in similar
critiquing sessions. This can be best understood in terms of
three basic steps: (1) identifying past critiquing sessions that
are similar (i.e., relevant) to the current session; (2) rank-
ing recommendation candidates from the terminal items of
these similar sessions; (3) filtering the ranked candidates to
eliminate those that do not satisfy the current user’s own
critiques.

3.3.1 Identifying Relevant Critiquing Sessions:
When a user applies a critique ci to a recommended item

rm we will use the user’s current (partial) critique session,
(r1, c1), ...(rm, cm), as a query (qT), over the case base of
past critique sessions, in order to identify a set of relevant
sessions; see (a) and (b) in Figure 2. Briefly, a relevant ses-
sion is one which has at least some overlap with the current
query (see Equation 9, where typically t = 0), based on a
particular overlap metric. In this case, we propose to use the
simple overlap score defined in Equation 7, which computes
the number of recommendation pairs (item and critique) in
qT that are also present in the current session. If there is no
relevant session, and thus there is no candidate to recom-
mend, then we use Equation 8, which computes the number
of critiques only in qT that are also present in the current ses-
sion. Finally we use Equation 9 to get the relevant sessions.
Note that in the case that there is no relevant session and
hence no candidate to recommend, we revert to incremental

critiquing (IC) and retrieve a new item that is maximally
similar to the current recommendation and compatible with
the critique.

OverlapScore(qT , si) =∑
(ri,ci)∈qT

∑
(rj ,cj)∈si

match((ri, ci), (rj , cj)) (7)

OverlapScore(qT , si) =
∑
ci∈qT

∑
cj∈si

match(ci, cj) (8)

SREL = RelevantSessions(qT , S) ={
siεS : OverlapScore(qT , si) > t

}
(9)

3.3.2 Ranking Recommendation Candidates:
These relevant sessions (SREL) have previously led a user

to a successful outcome. Each relevant session terminates
with an accepted recommendation rF , which forms a can-
didate for the next recommendation in the current session.
Generally speaking, an accepted recommendation may be
associated with more than one past session. Intuitively, it
makes sense to give preference to a recommended item that
is accepted in more relevant sessions. Therefore, we can
rank these recommendation candidates based on their score
as defined in Equation 10; see (c) in Figure 2.

RecScore(rF , qT , S
REL) =∑

{∀siεSREL:rF=terminal(si)}

OverlapScore(qT , si) (10)

3.3.3 Filtering Conflicting Candidates:
There is no guarantee that the ranked recommendation

candidates are compatible with the user’s critiques. Thus,
in the final step we eliminate incompatible recommendation
candidates. The simplest way to do this is to eliminate those
candidates that fail to satisfy all of the user’s critiques so
far, (r1, c1), ...(rk, ck), in the current session. However, this
is not ideal since in many cases, users may change mind
during a session, and as a result the critiques in the session
may be conflicting [17]. For example, a user might start
by looking for a product that is cheaper than $100 only to
later shift towards looking for a product in the $100 - $150
range, once they start to recognise the different tradeoffs
that exist in the target product space. So eliminating rec-
ommendation candidates in the $100 - $150 range in the

1001

current session, based on the earlier critique, would be inap-
propriate. Accordingly we edit the current user’s critiques
by working backwards through the session starting with the
most recent critique. If a critique conflicts with a more re-
cent critique (that has already been processed) then it is
eliminated. This leaves a set of core critiques which repre-
sent the boundaries of the user’s preferences with respect to
the features that have been already critiqued. Items that do
not satisfy the core critiques are eliminated from the ranked
list of recommendation candidates and the remaining top-
ranked candidate is selected, as rT , and recommended to the
user.

4. EVALUATION
In conventional critique-based recommendation systems,

new recommendations are influenced by the sequence of cri-
tiques in the current session. These critiques help to focus
the recommender within the recommendation space. Ac-
cording to the new technique presented in this paper, the
critiquing experiences of other users can also play a role in
guiding the session. We evaluate this new technique, by
comparing it to conventional critiquing, using a number of
different performance metrics. To do this we have developed
a restaurant recommender system, based on a comprehen-
sive database of tripadvisor restaurants.

4.1 Datasets
For the purposes of the evaluation, two datasets are used:

restaurants as recommended items and experience cases as
recommendation sessions of past users. The restaurant dataset
[6], contains a total of 10,000 restaurants that were crawled
from an online restaurant database. Each restaurant is rep-
resented by 39 different features (e.g. price, quality, etc.),
including 3 nominal features, 14 numeric features, and 22 bi-
nary features. We divided the 10,000 restaurant into 6,000,
8000 and 10,000 restaurant groups to test HGR’s perfor-
mance with a few thousands to 10 thousand restaurants.
Ideally, we would like to be able to evaluate HGR using real
users. However, this is not currently feasible since it would
require a major live deployment over an extended period of
time. In the alternative, we adopt the approach taken by
[11, 16, 12, 20] to automatically generate critiquing sessions
based on the behaviour of rational users, using the standard
approach to critiquing described in Section 3.2. We do this
by selecting a random restaurant as our target. From this
target we automatically create a query, by selecting 2-3 fea-
tures from the target at random, which acts as a starting
point for each session. Each session begins by the recom-
mender retrieving a best-matching restaurant for the query.
From here the ‘user’ must select a feature to critique. To
do this we automatically select one of the features of the
recommended restaurant and critique it in the direction of
the target restaurant. For example, if the target restaurant
has a price range of $20-$30 and the retrieved case has a
price range of $40-$50, then if the price feature is selected
for critiquing we will apply the cheaper (<) critique. More-
over, features are selected for critiquing based on a proba-
bility model that favours nominal and numeric features over
binary features to simulate a more realistic critiquing ses-
sion. Each session terminates once the target case has been
recommended. We can repeat this process to generate an
arbitrary number of critiquing sessions. In the case of this
experiment, we generate between 4-5 different queries for

each of the 10,000 restaurant cases to generate a total of a
million distinct critiquing sessions. These sessions can then
be used as the case base for our HGR technique.

4.2 Algorithms & Methodology
We are interested in comparing the performance of an

incremental critiquing (IC) recommendation algorithm [17]
and HAC [20] to our HGR algorithm. We generate a sepa-
rate set of 500 target problems as our test set by using the
aforementioned technique to generate a query-target pair.
Next, we ‘solve’ each target problem, simulating the actions
of a rationale user using: (a) IC; (b) HAC; and (c) the HGR
approach. In the case of the latter we leverage different
sized case bases and overlap thresholds. A target problem
is deemed to be solved once the problem’s target restaurant
has been recommended, at which point we note the session
length.

4.3 Results
The key performance issue to consider is whether the HGR

technique leads to earlier target recommendations, when
compared to IC or HAC, and thus shorter sessions? If it
does then this can lead to some very tangible benefits both
for the user and for the recommendation service provider,
since all other things being equal, shorter sessions mean less
effort for the user and improved conversion rate for the ser-
vice provider. HGR achieves significant performance than
IC and HAC. HGR achieves much more reduction in session
length; for the largest case base, the average session length
of HGR is reduced to under 9 cycles (compared to 35 for
IC) as shown in Figure 3, a relative reduction of more than
74% compared to IC and 37% compared to HAC. Note that
the benefits were calculated with 10,000 cases in the case
base. The first point to notice is the performance of the IC
approach to critiquing. On average its sessions extend to 35
steps. In reality it would be a rare user that would tolerate
the need to provide feedback almost 35 times before receiv-
ing an acceptable recommendation. In Fig. 4, HGR has
much more benefits over IC across various case bases size,
ranging from 27% for smaller case bases (500 cases) to over
64% for full case base of 10,000 cases. The benefits of HGR
over HAC grows from 8% when there are 500 possible cases
in the case bases space up to over 30% when the full case base
are available. Clearly, this benefit is not independent of case
base size. Fewer cases mean fewer relevant sessions are avail-
able as basis for ranking and selection. Figure 5 shows the
average session lengths of HGR, IC and HAC with reverting
back to IC. HGR achieves better reduction in session length;
for the largest case base, the average session length of HGR
is reduced to 10 cycles (compared to 24 cycles for IC and 13
cycles for HAC). We looked at the benefits of HGR over IC
and HAC as the complexity of the product space increases.
In our experiments, the complexity is approximated by the
number of restaurants available for recommendation and the
benefits are calculated on the basis of reduction in session
length, that is, how much reduction HGR achieves over IC
and HAC. As shown in Figure 6, HGR has much more bene-
fits over IC across various complexities of the product space,
ranging from 58% to about 74% when the full set of 10,000
restaurants are available in the product space. Figure 6 also
shows how much reduction HGR achieves over HAC, the
benefits of HGR over HAC grows from 21% when there are
6,000 possible restaurants in the product space up to over

1002

5	

10	

15	

20	

25	

30	

35	

40	

500	 1000	 3000	 5000	 10000	

Av
er
ag
e	
Se
ss
io
n	
Le
ng
th
	 	

Case	 Base	 size	

IC	 HAC	 HGR	 	

Figure 3: The average session lengths of HGR com-
pared to IC and HAC (using 10,000 restaurants)

5	

10	

15	

20	

25	

30	

35	

40	

500	 1000	 3000	 5000	 10000	

Av
er
ag
e	
Se
ss
io
n	
Le
ng
th
	 	

Case	 Base	 size	

IC	 HAC	 HGR	 	

Figure 4: The average session lengths of HGR com-
pared to IC and HAC (using 8,000 restaurants)

5	

10	

15	

20	

25	

30	

500	 1000	 3000	 5000	 10000	

Av
er
ag
e	
Se
ss
io
n	
Le
ng
th
	 	

Case	 Base	 size	

IC	 HAC	 HGR	 	

Figure 5: The average session lengths of HGR com-
pared to IC and HAC (using 6,000 restaurants)

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

6000	 8000	 10000	

Pe
rc
en

ta
ge
	 B
en

efi
t	

Number	 of	 restaurants	

HGR	 over	 IC	 HGR	 over	 HAC	

Figure 6: Percentage of reduction of session length
of HGR over IC and HAC with different complexi-
ties of product spaces

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

40%	

45%	

50%	

500	 1000	 3000	 5000	 10000	

Pe
rc
en

ta
ge
s	 o

f	 r
ev
er
te
d	
to
	 IC

	

Case	 Base	 Size	

HGR	 Reverted	 to	 IC	

Figure 7: The percentages of sessions when reverted
back to IC

37% when the full case base are available. Note that the
benefits were calculated with 10,000 cases in the case base.
We also examined how often HGR cannot find a relevant
recommendation session from the case base and thus needs
to revert back to IC. As shown in Figure 7, HGR reverts
to IC in 46% of instances with a case base of 500 cases and
down to 0.8% at the largest case base size. Note that there
is clearly a correlation between the percentage of sessions in
which HGR reverts to IC and session length when there are
only 500 cases in the case base. It is useful to consider the
efficiency of HGR in terms of its ability to deliver shorter
sessions than IC, with reverting back to IC only in less than
1% of the sessions when there are 10,000 cases in the case
base.

These results show that History-Guided Recommendation
has significant benefits compared to conventional critiquing-
based recommendation. When dealing with a large set of
products the History-Guided Recommendation approach can
lead to sessions that are much shorter than those produced
by incremental critiquing and History-Aware Critiquing. This
means a significant time saving for users, bringing them to
the target recommendation in less than half the steps needed
by conventional critiquing. This is likely to lead to a signif-
icant improvement in successful sessions.

5. CONCLUSIONS
Critiquing-based recommendation techniques are useful

when it comes to helping users to navigate complex product
spaces. However, they can lead to protracted sessions and
a high session-failure rate for users. While conventional ap-
proaches have been extended to deliver more efficient recom-
mendation sessions (e.g. [11, 16, 18]), these extensions typ-
ically introduce an additional cost to the user, often in the
form of a more complex interface and/or feedback options.
Our goal in this work has been to improve the efficiency
of critiquing-based recommender systems, but without in-
troducing additional interface components and/or costs for
the user. To this end we have described the History-Guided
Recommendation approach, which reuses a case base of prior
critiquing experiences on the ground that these past experi-
ences encode important users preferences and feature trade-
offs that may help to improve recommendation efficiency.
We have described how these past experiences can be used
to influence recommendation generation and the results of a
comprehensive offline evaluation demonstrate the potential
benefits of this experience-based recommendation approach.

1003

6. REFERENCES

[1] J. Bennett and S. Lanning. The Netflix Prize . In
Proceedings of the KDD Cup and Workshop, 2007.

[2] D. Bridge. Product Recommendation Systems: A New
Direction. In D. Aha and I. Watson, editors,
Workshop on CBR in Electronic Commerce at The
International Conference on Case-Based Reasoning
(ICCBR-01), 2001.

[3] R. Burke, K. Hammond, and B. Young. The FindMe
Approach to Assisted Browsing. Journal of IEEE
Expert, 12(4):32–40, 1997.

[4] L. Chen and P. Pu. Critiquing-based recommenders:
survey and emerging trends. User Model. User-Adapt.
Interact, 22(1-2):125–150, 2012.

[5] C. Desrosiers and G. Karypis. A comprehensive survey
of neighborhood-based recommendation methods. In
Recommender Systems Handbook, pages 107–144.
2011.

[6] KDE-Group. Big-dataset contains a total of 9945
restaurants. available on
http://www.qub.ac.uk/research-centres/kde/. 2013.

[7] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker,
L. R. Gordon, and J. Riedl. GroupLens: Applying
Collaborative Filtering to Usenet News.
Communications of the ACM, 40(3):77–87, 1997.

[8] G. Linden, S. Hanks, and N. Lesh. Interactive
assessment of user preference models: The Automated
Travel Assistant. In C. P. A. Jameson and C. Tasso,
editors, User Modeling: Proceedings of the Sixth
International Conference, pages 67–78. Springer Wien,
1997.

[9] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76–80, Jan. 2003.

[10] M. Mandl and A. Felfernig. Improving the
performance of unit critiquing. In J. Masthoff,
B. Mobasher, M. C. Desmarais, and R. Nkambou,
editors, UMAP, volume 7379 of Lecture Notes in
Computer Science, pages 176–187. Springer, 2012.

[11] K. McCarthy, J. Reilly, and B. Smyth. On the
generation of diverse compound critiques. In
Proceedings of the 15th Artificial Intelligence and
Cognitive Science Conference (AICS-04), 2004.

[12] K. McCarthy, Y. Salem, and B. Smyth.
Experience-Based Critiquing: Reusing Critiquing
Experiences to Improve Conversational
Recommendation. In Proceedings of the 18th
International Conference on Case-Based Reasoning,
(ICCBR-2010), volume 6176 of Lecture Notes in
Computer Science, pages 480–494. Springer, 2010.
Alessandria, Italy.

[13] L. McGinty and B. Smyth. Comparison-Based
Recommendation. In S. Craw, editor, Proceedings of
the Sixth European Conference on Case-Based
Reasoning (ECCBR 2002), pages 575–589. Springer,
2002.

[14] D. McSherry. Incremental Relaxation of Unsuccessful
Queries. . In P. A. G. Calero and P. Funk, editors,
Proceedings of the European Conference on
Case-Based Reasoning (ECCBR-04), pages 331–345.
Springer, 2004.

[15] P. Pu and B. Faltings. Decision Tradeoff Using
Example-Critiquing and Constraint Programming.
Constraints, 9(4):289–310, 2004.

[16] J. Reilly, K. McCarthy, L. McGinty, and B. Smyth.
Dynamic critiquing. In P. Funk and
P. González-Calero, editors, Proceedings of the Seventh
European Conference on Case-Based Reasoning
(ECCBR-04), volume 3155 of Lecture Notes in
Computer Science, pages 763–777. Springer, 2004.

[17] J. Reilly, K. McCarthy, L. McGinty, and B. Smyth.
Incremental critiquing. Knowledge-Based Systems,
18(4-5):143–151, 2005.

[18] J. Reilly, J. Zhang, L. McGinty, P. Pu, and B. Smyth.
A comparison of two compound critiquing systems. In
IUI ’07: Proceedings of the 12th international
conference on Intelligent user interfaces, pages
317–320. ACM, 2007.

[19] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: An open architecture for
collaborative filtering of netnews. In Proceedings of
ACM Conference on Computer-Supported Cooperative
Work (CSCW 94), pages 175–186, North Carolina,
USA, August 1994. ACM Press.

[20] Y. Salem and J. Hong. History-Aware
Critiquing-Based Conversational Recommendation. In
Proceedings of the 22nd international conference
companion on World Wide Web WWW2013, pages
63–64. ACM, 2013. Rio de Janeiro, Brazil.

[21] U. Shardanand and P. Maes. Social Information
Filtering: Algorithms for Automating ”word of
mouth”. In Proceedings of the SIGCHI Conference on
Human factors in Computing Systems (CHI ’95),
pages 210–217, Denver, Colorado, United States, 1995.
ACM Press/Addison-Wesley Publishing Co.

[22] H. Shimazu. ExpertClerk : Navigating Shoppers’
Buying Process with the Combination of Asking and
Proposing. In B. Nebel, editor, Proceedings of the
Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI 2001), pages 1443–1448.
Morgan Kaufmann, 2001.

[23] A. W. M. Smeulders, M. Worring, S. Santini,
A. Gupta, and R. Jain. Content-based image retrieval
at the end of the early years. IEEE Trans. Pattern
Anal. Mach. Intell., 22(12):1349–1380, Dec. 2000.

[24] B. Smyth. The Adaptive Web, volume 4321 of Lecture
Notes in Computer Science, chapter Case-Based
Recommendation, pages 342–376. Springer, 2007.

[25] B. Smyth and L. McGinty. An Analysis of Feedback
Strategies in Conversational Recommender Systems.
In P. Cunningham, editor, Proceedings of the
Fourteenth National Conference on Artificial
Intelligence and Cognitive Science (AICS-2003), 2003.

[26] J. Zhang and P. Pu. A comparative study of
compound critique generation in conversational
recommender systems. In Proceedings of 4th
International Adaptive Hypermedia and Adaptive
Web-Based Systems Conference (AH-06), pages
234–243, 2006.

1004

