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Abstract. Many graph datasets are labelled with discrete and numeric
attributes. Frequent substructure discovery algorithms usually ignore nu-
meric attributes; in this paper we show that they can be used to improve
discrimination and search performance. Our thesis is that the most de-
scriptive substructures are those which are normative both in terms of
their structure and in terms of their numeric values. We explore the rela-
tionship between graph structure and the distribution of attribute values
and propose an outlier-detection step, which is used as a constraint dur-
ing substructure discovery. By pruning anomalous vertices and edges,
more weight is given to the most descriptive substructures. Our experi-
ments on a real-world access control database returns similar substruc-
tures to unconstrained search with 30% fewer graph isomorphism tests.

Keywords: graph mining, frequent substructure discovery, numeric at-
tributes, outlier detection

1 Introduction

A common task in graph mining is to discover frequently-occurring substructures
for concept learning, clustering or anomaly detection. Frequent substructures are
defined as those which pass some minimum support threshold [10,13, 18] or in
information-theoretic terms, as the patterns which can be used to maximally
compress the input graph [5]. In this paper, we consider how numeric attributes
can be combined with structural data, to constrain the search for the most
descriptive substructures.

To count the frequency of each pattern, discovery algorithms must com-
pare subgraphs for identity, or Graph Isomorphism (GI). GI is computationally
complex to decide for the general case [8], but in practice the complexity is
highly dependent on the features of the graphs under consideration. Common
special cases can be solved in polynomial time, using techniques such as sorting
candidate substructures by their canonical labels [10, 13], organising discovered
subgraphs into spanning trees [2,18] or by performing a heuristic search [5].
However, it is always possible to come up with a set of input graphs where even
the best algorithms perform poorly.
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Fig. 1: Graph of Access Control Transactions on a University Campus

Substructure discovery algorithms typically operate on graphs where the labels
represent discrete attributes of vertices or edges. Many graph datasets also con-
tain numeric labels or weights, representing attributes such as size, distance,
time, frequency or amount. We propose that the best substructures are not only
frequent, but also have the most normative numeric attributes. In this paper,
we analyse how the dependencies between graph structure and attributes af-
fect the complexity of substructure discovery. Our contribution is to show how
numeric attributes can be used to constrain the search in a way that preserves
anti-monotonicity. By pruning unlikely candidates early, we focus computational
resources on the most descriptive patterns. In our experiments, we were able to
discover the most descriptive substructures with a 30% reduction in the number
of GI tests required, compared to an unconstrained search.

Applications of substructure discovery include: discovering molecular struc-
tures from chemical compounds, e.g. for predictive toxicology; learning commu-
nication patterns in an e-mail network; and video scene analysis. Our motivat-
ing application is to detect “suspicious” behaviour patterns in secure buildings,
such as airports, hospitals and power stations. Our experimental data is from
the building access control system for a university campus, represented by the
graph in Fig. la. Vertices represent door sensors and directed edges represent
movements between pairs of sensors. The density of transactions is higher in ar-
eas with greater security requirements, viz. laboratories for laser, radiation and
medical research. As we are interested in paths taken by individuals through
the network, we reorganised the graph as a transaction database, where each
subgraph represents the movement of an individual within a given day (Fig. 1b—
1c). We score each subgraph based on its structural elements and its numeric



timing values [6]. Our method shows greater discrimination than scoring based
on frequent substructures without numeric attributes.

This paper is organised as follows: Sect. 2 is a brief survey of substructure
discovery in graphs and constraint-based graph mining. In Sect. 3, we explore
how the distribution of labels and attributes affects the complexity of substruc-
ture discovery. In Sect. 4, we outline a method of using numeric outlier detection
to constrain the search for normative substructures. Sect. 5 presents our exper-
imental method and datasets (including a method for generating random graph
attributes), results and a discussion of complexity; and conclusions are in Sect. 6.

2 Related Work

Frequent Substructure Discovery Frequent substructure discovery algo-
rithms attempt to find the subgraphs which occur most frequently in a graph
database. Early approaches were based on Apriori-style itemset mining: AGM [10]
and FSG [13] generate candidate substructures by growing them one vertex or
one edge at a time, respectively. Frequent substructures are those which exceed
a specified minimum support threshold. The main weakness is that candidate
generation is expensive, as canonical labels must be calculated for a large number
of redundant candidates.

gSpan [18] avoids candidate generation. Canonical labels are determined by
the minimum representation of vertex orderings as discovered by a Depth-First
Search (DFS). These labels are organised into a hierarchical spanning tree. Fre-
quent structures are discovered by traversing this tree, checking for substruc-
tures which exceed minimum support. CloseGraph [19] and SPIN [9] improve on
gSpan by mining only “closed” or “maximal” frequent subgraphs, i.e. frequent
substructures which are not part of any larger frequent substructure. [2] gener-
alises the canonical form found in gSpan and demonstrates that canonical labels
based on Breadth-First Search (BFS) are equally valid.

Subdue [5] represents another class of substructure discovery algorithm, based
on information theory. Rather than searching for substructures with minimum
support, Subdue looks for the substructures which can be used to best compress
the input graph based on the Minimum Description Length (MDL) principle.
Complexity is managed with a heuristic: candidate substructures are discovered
using a greedy beam search (a limited-length queue of the best few patterns
found so far). This allows Subdue to search in single large graphs, which is not
generally possible with AGM, FSG and gSpan. The disadvantage of the greedy
search strategy is that some interesting patterns could be missed.

Constraint-based Graph Mining One of the main problems with pattern-
mining algorithms is the large numbers of patterns produced. One possible so-
lution is to introduce constraints, which are used to prune away uninteresting
patterns and focus on the most meaningful subgraphs. [15] defines a “cohesive
pattern constraint” on a connected subgraph, where the vertex attributes are the
same within some subspace and some density constraint is met. The cohesive
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Fig. 2: Examples of the distribution of attributes on various kinds of graph

pattern constraint is defined for graphs with discrete attributes; in this paper,
we define a constraint on graphs with numeric attributes.

In [11], gSpan is extended by including edge weights into the support calcula-
tion and pruning low-weighted substructures from the search. Anti-monoticity is
an important property of pattern growth-based algorithms: if a substructure fails
to achieve minimum support, all of its supergraphs will also fail. Two of the pro-
posed weighting schemes preserve anti-monotonicity, by thresholding the weight
measure in addition to thresholding for minimum support. A third weighting
scheme uses a heuristic and does not rely on preserving anti-monotonicity. All
three weighting schemes assume that higher weights are more significant (which
may not necessarily be the case).

Constraints on weighted graphs are considered within a more general frame-
work in [7]. Attribute-based constraints (which are not guaranteed to be anti-
monotonic) are used to prune substructures by running a measure function on
the edge (or vertex) weights and comparing the output to a threshold. If the def-
inition of the measure function is extended to take multi-dimensional numeric
attributes as its input, then the outlier detection step that we propose in Sect. 4
could be considered a measure function within this theoretical framework.

3 Graph Mining with Attribute-based Constraints

Previous work on attribute-based constraints has assumed independence between
the structure of a graph and its attributes. If this is the case, then attribute-
based constraints are not anti-monotonic. However, in most real-world graphs,
the structure and attributes are not independent. In this section, we discuss a
graph/attribute model where the attributes of vertices and edges are condition-
ally dependent on the attributes of similar or neighbouring vertices and edges
in the graph. In Sect. 4, we will present a method to constrain substructure
discovery based on the values of numeric attributes.

Fig. 2 shows four examples to illustrate the dependence of graph structure
and attributes. The social graph in Fig. 2a is labelled with the favourite sport
of the actors: people tend to form friendship bonds with people of similar in-
terests. In molecules (Fig. 2b), the vertex label (atom name) is conditionally



dependent on the molecular structure; the degree of each vertex is dependent on
the number of free electrons of each atom; and the length of the edges (bonds)
is dependent on the atomic weights of the vertices. Fig. 2c¢ is from video scene
analysis, showing a green object moving across a red and blue background. Each
vertex represents a superpixel in the frame: the colour attribute is conditionally
dependent on the colour of adjacent vertices. The velocities of adjacent vertices
are also conditionally dependent, as the superpixels in the object will move to-
gether and those of the background will move together. Fig. 2d continues the
example shown in Fig. 1: the time taken to travel between a pair of sensors is
conditionally dependent on the name and GPS coordinates of the sensor.

All of the above examples are labelled graphs, which have an arbitrary num-
ber of discrete and numeric labels on their vertices and edges. Formally:

Definition 1. A labelled graph G is a tuple (V,E,L,Ly,Lg). V is a set of
vertices and E is a set of edges: E C {{v,w) : v,w € V x V}. If the tuple (v, w)
is ordered, the edge is directed, otherwise it is undirected. L is a set of graph
labels; Ly and L are label-to-value mapping functions.

Definition 2. The set of graph labels L is the union of the sets of vertex labels
Ly and edge labels Ly. L is partitioned into discrete labels LP and numeric
labels LN, L N LN = 0. Thus L = Ly ULy = LP? U LN . Let AP be the set of
discrete attribute values and AN C R be the set of numeric attribute values.

Definition 3. The label-to-value mapping function for vertices is denoted as:
Ly :V x(LynLP) = AP
V x (Ly nLY) - AN
For a vertex-weighted graph, the weight function W(v) is treated as a special case

of its numeric attributes: Yo € V. : W(v) = Ly (v, “weight”). (The label-to-value
mapping function for edges Lg can be denoted in a similar manner.)

During substructure discovery, one important method of reducing the complexity
of the GI test is vertex partitioning [8, 10, 13, 18]. Vertices can be partitioned into
similar disjoint sets or equivalence classes. We extend this notion to also define
edge partitions:

Definition 4. The vertex partition set and edge partition set are defined as:
V= U Vi E= U E;
i i
where all vertices in the same partition share the same discrete attribute values:

YweV, YweV; Vie(LynLP): Lyl =Ly(wl)

Similarly, all edges in the same partition share the same discrete attribute values,
with the additional constraint that their source and target vertices are from the
same partitions:

V{v,w) € E; V{(z,y)€E;: veVihzeVihweVyAyeV,

In the case of an undirected graph, (v,w) < (w,v)
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Fig. 3: Relationship between number of vertex partitions and complexity

There is an important relationship between the number of partitions and the
complexity of GI and substructure discovery. To illustrate this, consider the un-
labelled partial clique in Fig. 3a. This graph contains eight distinct subgraphs
with two or more vertices; 27 subgraph instances in all. As multiple subgraph
instances share the same vertex partition set, it requires 20 GI tests to deter-
mine which instances are isomorphic. Compare this to the graph in Fig. 3b,
which has the same structure, but each vertex is uniquely labelled. Once again
there are 27 substructure instances, but each has a distinct vertex and edge par-
tition set. Subgraphs with different partition sets cannot be isomorphic, so we
can determine that there are 27 distinct subgraphs without needing to do any
isomorphism tests.

In practice, real-world graphs will lie somewhere between these extremes.
Fig. 3¢ shows the relationship between the number of vertex partitions and the
complexity of substructure discovery: the number of distinct subgraphs rises with
the number of partitions, but the number of instances of each subgraph falls.
This leads to an exponential reduction in the number of GI tests and thus the
complexity of substructure discovery.

In addition to reducing the number of GI tests required, increasing the num-
ber of partitions constrains the search by reducing the support for each sub-
structure. Formally, we define a constraint as follows:

Definition 5. A constraint c is a Boolean predicate which any subgraph g € G
must fulfil. ¢ is said to be anti-monotone if it satisfies Vg' C g: c(g) = c(g’).

An example of an anti-monotone constraint is minimum support: a graph g can
reach minimum support only if all of its subgraphs ¢’ reach minimum support.

! Fig. 3c shows the results for R-MAT random graphs, with 0,1,...,9 binary labels,
i.e. 0-512 vertex partitions. The experiment was repeated 10 times (and across mul-
tiple sizes of graph) and the results averaged. The attribute values in Fig. 3c were
assigned independently from a uniform distribution. Our experiments on synthetic
and real datasets (Sect. 5) verify that the complexity of substructure discovery in-
creases with the homogeneity of vertices and edges, and that this holds when the
independence assumption is removed.



In previous work on constraint-based graph mining [7,11], it has been assumed
that the structure of the graph and its attributes are independent, and there-
fore attribute-based constraints are not anti-monotonic. However, in real-world
graphs, the independence assumption does not hold (Fig. 2).

Our approach is to consider the dependencies between attributes as a Ran-
dom Field [1]: the discrete attribute values on each vertex (or edge) are depen-
dent on its adjacent vertices, but are conditionally independent of the rest of the
graph. We use the conditional independence (CI) assumption as the basis of a
generator for graph attributes (see Sect. 5). In the next section, we use the CI as-
sumption to define a constraint on numeric attribute values: as attributes depend
on graph structure, the constraint is used to prune instances, or reduce support
for specific substructures, so the property of anti-monotonicity is preserved.

4 Frequent Substructure Discovery with Numeric
Attribute Constraints

In the previous section, we discussed the relationship between the number of
discrete partitions and the complexity of substructure discovery. In this section,
we discuss how to use numeric attributes as a constraint during substructure
discovery. We have argued that graph attributes are dependent on graph struc-
ture. Therefore, we can define the most descriptive substructures as those which
are normative both in terms of their structure and in terms of their numeric
attributes. The corollary is that vertices or edges containing numeric outliers
are abnormal and can therefore be pruned early in the discovery process. We
determine whether numeric attributes are “normal” or anomalous by means of
a numeric outlier detection function:

Definition 6. We define a numeric outlier function O on a dataset D as:

O:D >R VdeD:O(d) = Q0 zfdzs.normal w.r.t. D

q otherwise
where qo is some constant value and q # qo is a value measuring the degree of
outlierness.

The value of gy and the range of O will depend on the specific choice of outlier
detection function. For our experiments in Sect. 5, we chose Local Outlier Factors
(LOF) [3]. LOF is a density-based measure: the LOF score of a sample p is a
measure of its outlierness with respect to its local neighbourhood, computed as:

Z lrdarinpis(0)
0ENMinPts(P) Irdpinpts (D)

| Narinpes(p)|

LOFinpis(p) =

where N is the number of samples in the dataset, MinPts is the minimum
number of points to consider as the local neighbourhood and Ird is a function



which computes the local reachability density of the neighbourhood (the inverse
of the average reachability distance in the neighbourhood). Intuitively, the LOF
score is based on the distance of a sample from its local neighbourhood and
the relative density of the neighbourhood. A sample d belonging to a dense
cluster or deep within a sparse cluster has LOF(d) = 1. Outliers have LOF
values several times larger. Thus LOF satisfies the property given in Def. 6:
LOF(d) = 1 for normal values of d and LOF(d) > 1 for anomalous values.
LOF is well-suited to unsupervised learning, as it makes no assumptions about
the underlying distribution of the data and can cope with clusters of different
sizes and densities. For more discussion on the choice of outlier function, see the
comments in Sects. 5 and 6 and our previous work [6].

To calculate O(d,) for a vertex v, we define d,, as a multi-dimensional feature
vector across all the numeric attributes of v: d, = Ly (v, L’V). The outlier factor
for each d, is calculated relative to the dataset defined by its vertex partition,
Vd, € D; :v eV,

To use O as a constraint on substructure discovery, structural elements are
classified as normal or anomalous by Def. 7:

Definition 7. A vertex v € V; is normal if O(Ly (v,LY)) = qo, anomalous
otherwise. An edge e € E; is normal if O(Lg(e, L)) = qo, anomalous otherwise.

During substructure discovery, anomalous vertices and edges are pruned from
the graph. This can be done as a pre-processing step before generating all fre-
quent 1- and 2-vertex subgraphs. As we only consider elements with “normal”
numeric values to be part of normative substructures, this pruning dramatically
reduces the number of GI tests required, without significantly affecting which
substructures are discovered. We validate this experimentally in the next section.

5 Experiments

The purpose of our experiments is to analyse the effect of pruning anomalous
vertices and edges from graphs on the performance and accuracy of substructure
discovery. Specifically, we analysed the number of graph isomorphism tests re-
quired; the computation time for substructure discovery; and the accuracy and
meaningfulness of the discovered substructures. We show that our constraint-
based approach can more efficiently find frequent subgraphs than an uncon-
strained approach. In many cases where the input graph is intractable with an
unconstrained approach due to the computational or memory overheads, our
approach allows the graph to be processed.

Synthetic Datasets Our experimental setup included Erdds-Rényi random
graphs and R-MAT random graphs with up to 10,000 vertices. For the R-MAT
graphs, we added edges with mean degree 2, 4, 6 and 8 and probabilities that an
edge is placed in one of the four quadrants of the graph as (0.57,0.19,0.19,0.05),
to ensure that the random graphs exhibited clustering/community properties.
Attributes were added in three ways: random selection from a uniform distribu-
tion (“white noise”); according to pre-defined prior probabilities; and according



to the generative algorithm described below. The purpose of the experiments on
synthetic data was to compare the effect of increasing size, structure, density and
dependencies between graph structure and attributes on the complexity of sub-
structure discovery, and to evaluate the effect of our constraint-based approach
on the performance of substructure discovery.

Random Generation of Graph Attributes The R-MAT graph generator [4]
creates random graphs with properties similar to many real-world graphs (small-
world, power-law degree distribution, etc.). As R-MAT creates unlabelled graphs,
we had to devise a way to assign labels and attribute values. A naive approach is
to randomly allocate attribute values according to some prior distribution, but
this assumes that the graph structure and attributes are independent. Here we
present AttributeGen, an algorithm to generate random attribute values on an
unlabelled graph. Alg. 1 shows the version for discrete attributes.

The Random Field model assumes that the attribute values on each vertex
depend on its neighbours. For AttributeGen, we used a simpler assumption, that
the values on each vertex depend only on its higher-degree neighbour; i.e., the
dependencies between attributes will be propagated from hubs to leaves. Vertices
with no higher-degree neighbour are assigned values from a prior distribution
over A (line 6: we define one distribution per vertex label). Edges and the other
vertices are assigned values from a posterior distribution over A. Edge attributes
are conditional on the vertex partition of the source vertex (line 8). Vertex
attributes on a target vertex are conditional on the vertex partition of the source
vertex and the edge partition of the connecting edge (line 10).

Random numeric values are generated by an analagous method. From our
analysis of numeric attributes on real-world datasets (see below), we see that
numeric attributes are generated by multiple processes; the specific mixture of
processes depends on the vertex (or edge) partition. We use this observation
to extend Alg. 1 to generate numeric as well as discrete attribute values. Each
numeric attribute Ly (v,1) on a given vertex partition V; : v € V; is modelled as

Algorithm 1 Discrete AttributeGen

Require: Unlabelled Random Graph G = (V| E), Labels Ly, Lg, Attribute Values A,
Prior distributions Py, Posterior distribuitions Qv, Qg
1: Define vertex labels in G from Ly and edge labels from Lg
2: Sort vertices V' by degree in descending order
3: for all v € V in order do

4: for alll € Ly do

5: if Lv (v,l) is unassigned then

6: Assign Ly (v,1) < a € A : a is randomly selected from p; € Py

7: for all e € E : e is adjacent tov, [ € Lg do

8: Assign Lg(e,l) < a € A : a is randomly selected from ¢.,,; € QE
9: Let w be the adjacent vertex: Jw € V : e = (v, w)

10: Assign Ly (w,l) < a € A: a is randomly selected from gy, € Qv




a mixture of Gaussian processes:

Pyoi=Y wj -5y, 05)
i

similar to those illustrated in Fig. 5. w; is the weight of each component in
the mixture; > ;w; = 1 forms a probability distribution {2 over all the compo-
nents. Numeric attributes are assigned by randomly selecting component j of
the mixture from (2, then choosing a random numeric value from the Gaussian
distribution 7;(u;j,0;). Thus the distributions of numeric values are dependent
on the vertex partition and conditionally independent of the rest of the graph.
Ideally, we should learn the prior and posterior distributions of the attribute
values from data, to create attribute generators for specific types of graph (social
graphs, molecular structures, etc.). As that was outside the scope of this work,
the distributions for the synthetic data in the experiments were created manually.

Access Control System Dataset Our real-world dataset is from the access
control system logs of a large university campus. The ~ 1 million log entries
are graphically represented in Fig. 1a, showing the movements of approximately
6,500 students and staff. The ~ 800 vertices represent door sensors; directed
edges represent movements between pairs of sensors. We are interested in find-
ing patterns representing “suspicious” behaviour, particularly in high-security
areas such as laboratories for laser, radiation and medical research [6]. For the
purpose of our experiments, we reorganised the graph as a transaction database,
where each graph transaction represents the movement of an individual within
a given 24-hour period (Fig. 1b). If a user fails to swipe in at a particular sensor
(e.g. if someone holds open a door for them), this creates missing edges in the
graph. We compensated for this effect by including
forward edges from each sensor to all subsequent
sensors visited by the user (Fig. 1c).

Numeric attributes were calculated from the log
entries and added to the edges in the graph as
shown in Fig. 4. Absolute time is the time of day
(seconds since midnight) when the user presented
their ID card to a door sensor at the end of the
path segment. Elapsed time is the difference in sec-
onds between the absolute time at the current sen-
sor and the absolute time at the previous sensor.
Day of Week (DoW) is strictly an ordinal attribute,
but it was convenient to represent it numerically:
LOF combined it with the other attributes in multi-
dimensional space, effectively clustering different
patterns of behaviour on different days. Weekend
patterns are quite different from weekday patterns,
perhaps representing the movements of security staff or cleaners as well as week-
end workers.

Absolute time  seconds, int 0..86400
Elapsed time  seconds, int 0..86400
Day of week int 0..6

Fig. 4: Numeric edge labels
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We cannot assume that the numeric attributes within real-world graphs are
a simple Gaussian; nor can we assume that the probability distribution is the
same across all partitions. The left-hand side of Fig. 5 shows four examples of the
distribution of the Time of Day numeric attribute across the edges of four of the
edge partitions. For each partition, there is a mixture of underlying processes: in
a lab, some people work there and stay for many hours; others go in simply to
speak to a colleague for a few minutes; security staff may show up periodically
for short intervals in the middle of the night. The mixture of processes between
partitions is also different: the behaviours in a lab are very different from the
behaviours in a lift.

This analysis supports our decision to use a density-based approach to cal-
culate numeric outliers. The distribution of LOF scores for each of the empirical
distributions is shown to the right of Fig. 5. Although the data distributions are
very different, the distributions of LOF scores are very similar, with normal val-
ues clustered around 1 and anomalous values stretching out in a long tail to the
right. This verifies that by using LOF, we do not have to make any assumptions
about the underlying distribution of the data.

The experimental results in the next section verify that LOF is an effective
measure for pruning anomalous vertices and edges.
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5.1 Results

Synthetic Datasets The experiments on random single large graphs were re-
peated 10 times for each combination of no. of vertices, no. of vertex partitions
and no. of numeric attributes, and the results averaged. In all cases, run time
was directly proportional to the number of GI tests. The time taken to calcu-
late numeric outliers was trivial compared to the time to discover substructures:
~ 0.2 seconds for a graph with 10,000 vertices and 100 numeric attributes. LOF’s
O(n?m) complexity is acceptable on graphs where each partition has up to a few
thousand vertices or edges. For graphs with larger partitions, some alternative
measures are suggested in Sect. 6.

Fig. 6a shows the results for graphs where the attributes were assigned inde-
pendently from a uniform distribution. On the 1,000 vertex graphs, we measured
an average 66% reduction in the number of GI tests required when using numeric
outliers to prune the graph, compared to an unconstrained search. (As the at-
tributes are independent, we cannot make any claims about the meaningfulness
of the discovered substructures in this case; c¢f. our comparison with random
substructure removal, Fig. 8).

Fig. 6b shows the results for graphs where the attributes are conditionally
dependent on the graph structure (Alg. 1), so the anti-monotone condition holds.
These experiments show an average 80% reduction in the number of GI tests,
demonstrating that our constraint-based approach is most effective when the
graph exhibits conditional independence between structure and attributes.

We found that graphs with 10,000 vertices and a small number of partitions
were not tractable without using numeric attributes, as there were millions of
instances of each pattern, requiring more memory to process than was available
in our experimental setup. However, we were able to process the 10,000 vertex
graphs with the numeric constraint, as there were an order of magnitude fewer
instances to compare for isomorphism. This suggests that our method could be
useful when processing Very Large Graphs.
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Access Control System Dataset The results on the real-world graph trans-
action database are shown in Fig. 7. Fig. 7a shows the number of GI tests
for datasets of 2,000-10,000 vertices. In the real-world data, numeric attributes
vary in their ability to discriminate between normal and anomalous patterns, but
combining attributes gives the best performance overall. Absolute and elapsed
time are both good discriminators, but day of week is very poor. However, if
we combine day of week with elapsed time, we get a slightly better result than
using elapsed time on its own; and the best results were achieved by combining
all three attributes. The benefit of our approach increased with increasing size
of database, as we were able to prune more anomalous substructures. In the
dataset with 10,000 vertices, we reduced the number of GI tests by around 30%,
which equated to a speed-up of 1.45.

Next, we wanted to validate that the discovered substructures are meaningful.
Fig. 7b compares the ten best substructures discovered by Subdue (with no
numeric attributes) to the substructures discovered when we added attributes.
Our approach discovered the same substructures as Subdue, but fewer instances
of each. The relative order of the top ten substructures was changed slightly.
Where there is a large difference in relative frequency (e.g. 15-3'4 substructures),
the ordering was unchanged: these substructures are robust against the removal
of anomalous edges. In cases where the relative frequencies were very similar,
the order was sometimes transposed (e.g. 4" and 5'" substructures exchanged
places). This is because greater weight is given to substructures with normal
numeric values.

To investigate this effect further, we compared our method of pruning anoma-
lous edges to random removal of edges from the graph. We conducted experi-
ments where we randomly deleted 10%-90% of the edges in the graph before
searching for frequent substructures. The results are shown in Fig. 8.

Fig. 8a shows the effect on performance. It is necessary to remove around
45% of the graph in order to reduce the number of GI tests by a similar amount
as our approach.
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Fig. 8: Effect of randomly removing graph edges on substructure discovery

Fig. 8b shows the frequency counts of the top 10 substructures. Substructures
with edges randomly removed are shown in grey; substructures discovered by
our approach are superimposed in black. Randomly removing edges increases
the entropy of the graph: the shape of the curve becomes flatter as more of the
graph is removed. Substructure 1 is quite distinct; even with 90% edge removal,
it remains the most descriptive pattern. Substructures 2-3 are also quite robust;
discrimination is lost at around 70% edge removal. However, discrimination be-
tween substructures 4-10 diminishes after 20% edge removal and by 50% edge
removal, the order is random. These results show that randomly deleting graph
edges does not preserve the meaningfulness of the output.

5.2 Analysis of Complexity

Here we briefly discuss the benefits (and costs) of using our approach with respect
to the complexity of substructure discovery. Substructure discovery algorithms
have essentially two parts: finding instances in a graph (or graph database); and
grouping instances together into common substructures for evaluation.

Finding Instances The graph space is searched starting from each vertex in-
stance. If n = |V] and m = |E|, an exhaustive search of all possible substructure
instances in a single graph has complexity O(n? 4+ nm). For a graph database
with K transactions, D = {Gy,...,Gg}, the complexity of instance discovery is
O(n? +nymy + ... +n2% + ngmg). In practice, algorithms do not perform an
exhaustive search, as the cost is prohibitive in all but the most trivial graphs.
Subdue constrains the search with its parameters; gSpan uses minimum support.
gSpan’s approach does not scale to single large graphs; graph transactions with
more than a few hundred vertices and edges are intractable [11].

The benefit of our approach is to prune away the parts of the search space
which contain numeric anomalies. If 0 < p < 1 is the proportion of “normal”
vertices and 0 < ¢ < 1 is the proportion of “normal” edges, the complexity of
an exhaustive search for substructure instances reduces to O((pn)? + pgnm).



Grouping Instances into Substructures Instances are grouped together
using isomorphism tests (or canonical labels, which involves finding a set of au-
tomorphisms and determining which is “least”). The complexity of GI is one
of the most famous unsolved problems in complexity theory, so a formal anal-
ysis is well outside the scope of this paper. The interested reader is referred
to [8] for an introduction and to [14] for the state-of-the-art. The best proven
worst-case complexity for the general case is e€©(V71°87) though most real-world
graphs exhibit polynomial complexity. Suffice to say that the GI test is the most
computationally expensive part of the discovery process: any reduction to the
number of GI tests will have a dramatic effect on the computational cost.

The upper bound on the number of GI tests required is O(|I] x |S]), where I
is the set of instances and S is the set of discovered substructures. In practice,
we only approach this upper bound where the input graph exhibits low entropy:
see the discussion following Def. 4. Our approach reduces |I| as discussed above.
There is little effect on the frequent substructures in S (see Fig. 7b, 8b), but
infrequent substructures will lose support and will be pruned earlier, so we expect
some reduction in |S|.

Cost of Calculating Numeric Anomalies LOF has complexity O(n?d),
where d is the number of numeric attributes. For a graph with IV vertex partitions
(Def. 4), the complexity of calculating LOF for all vertices is O(nd+...+n%d).
Thus, the cost of calculating LOF is typically orders of magnitude smaller than
the cost of substructure discovery, but rises significantly when the input graph
exhibits low entropy (as there are fewer partitions with more vertices in each).

Where each n; is small (not more than a few thousand), LOF’s O(n?d) com-
plexity is acceptable. For very large or very regular graphs, the complexity can be
reduced by replacing LOF with an approximation algorithm such as aLOCI [16]
or PINN [17], which has sub-quadratic complexity, O(dnlogn).

In summary, our approach reduces the complexity of substructure discovery
at both the instance mining and substructure grouping phases, and the cost
of calculating the numeric anomaly scores is typically orders of magnitude less
than the cost savings. The resulting performance improvement means that sub-
structure discovery remains tractable for larger graphs than is possible with the
standard algorithms.

6 Conclusions

In this paper, we presented a method of using numeric outliers as a constraint
on the search for frequent substructures in graphs. Our thesis is that the “best”
substructures are those which are not only the most frequent, but which are also
normative in terms of their numeric attributes.

Previous work on attribute-based constraints has assumed independence be-
tween graph structure and attributes, but this assumption does not hold for
real-world graphs. Our outlier-based constraint and algorithm for generating
random attributes on graphs assume conditional independence between graph
structure and attributes.



Our experiments on random graphs demonstrate that in many cases where the
input graph is intractable with an unconstrained approach, our approach allows
the graph to be processed. In experiments on real-world data, we find similar
substructures to an unconstrained search, with around 30% fewer graph isomor-
phism tests. Where discovered substructures are of similar frequency, we are
better able to discriminate between them, because we give greater weight to
substructures with normal numeric attributes.

Future Work The algorithm for generating random attributes (Sect. 5) must
be provided with prior and posterior distributions of attribute values. We plan to
analyse real-world datasets representing different kinds of graph to learn these
distributions. This will allow us to generate different types of random graph
which share the characteristics of real-world graphs.

Instead of hard-pruning anomalies, the measure O could be used in the calcu-
lation of how much support each subgraph instance contributes. Instances with
normal numeric values would contribute a support of 1, whereas instances with
anomalous numeric values would contribute a support of less than 1. We plan to
conduct further experiments to compare this alternative support measure with
the pruning approach.

We used LOF as the measure function O. As discussed in Sect. 5.2, where the
vertex or edge partitions are very large, LOF’s complexity may be unacceptable.
This could be addressed by replacing LOF with aLLOCT [16] or PINN [17].

We tested our approach on graphs with a moderate number of numeric at-
tributes (up to 10). If there are very many attributes, the numeric feature vectors
become very sparsely distributed in high-dimensional space. In this case, LOF’s
ability to discriminate between normal and anomalous values is diminished.
However, not all attributes are of equal importance to all clusters. For high-
dimensional data, we could amend our approach to detect numeric anomalies in
subspaces rather than in full space by choosing only locally-relevant attributes
on which to calculate the outlier score [12].

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

2. Borgelt, C.: Canonical forms for frequent graph mining. In: 30th Annual Conf.
German Classification Society (GfKI 2006). pp. 337-349. Springer (2006)

3. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: Identifying density-based
local outliers. SIGMOD Rec. 29(2), 93-104 (2000)

4. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A recursive model for graph
mining. In: SDM 2004. SIAM (2004)

5. Cook, D.J., Holder, L.B.: Graph-based data mining. IEEE Intelligent Systems 15,
32-41 (March 2000)

6. Davis, M., Liu, W., Miller, P., Redpath, G.: Detecting anomalies in graphs with
numeric labels. In: CIKM 2011. pp. 1197-1202. ACM (2011)

7. Eichinger, F., Huber, M., Bohm, K.: On the usefulness of weight-based constraints
in frequent subgraph mining. In: ICAI 2010. pp. 65-78. BCS SGAI (Dec 2010)

8. Fortin, S.: The graph isomorphism problem. Tech. rep., Univ. of Alberta (1996)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Huan, J., Wang, W., Prins, J., Yang, J.: SPIN: Mining maximal frequent subgraphs
from graph databases. In: KDD 2004. pp. 581-586. ACM (2004)

Inokuchi, A., Washio, T., Motoda, H.: An Apriori-based algorithm for mining fre-
quent substructures from graph data. In: PKDD 2000. pp. 13-23. Springer (2000)
Jiang, C., Coenen, F., Zito, M.: Frequent sub-graph mining on edge weighted
graphs. In: DaWaC 2010. Springer (2010)

Kriegel, H.P., Kroger, P., Zimek, A.: Clustering high-dimensional data: A survey
on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Transactions on Knowledge Discovery in Data 3(1), 1:1-1:58 (March 2009)
Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: ICDM 2001. pp.
313-320. IEEE (2001)

McKay, B.D., Piperno, A.: Practical graph isomorphism, II (Jan 2013), http:
//arxiv.org/abs/1301.1493v1

Moser, F., Colak, R., Rafiey, A., Ester, M.: Mining cohesive patterns from graphs
with feature vectors. In: SDM. pp. 593-604 (2009)

Papadimitriou, S., Kitagawa, H., Gibbons, P., Faloutsos, C.: Loci: fast outlier detec-
tion using the local correlation integral. In: Data Engineering, 2003. Proceedings.
19th International Conference on. pp. 315 — 326 (March 2003)

de Vries, T., Chawla, S., Houle, M.: Finding local anomalies in very high dimen-
sional space. In: ICDM 2010. pp. 128-137. IEEE (2010)

Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: ICDM
2002. pp. 721-724. IEEE (2002)

Yan, X., Han, J.: CloseGraph: Mining closed frequent graph patterns. In: KDD
2003. pp. 286—295. ACM (2003)



