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Abstract. Belief merging operators combine multiple belief bases (a
profile) into a collective one. When the conjunction of belief bases is
consistent, all the operators agree on the result. However, if the conjunc-
tion of belief bases is inconsistent, the results vary between operators.
There is no formal manner to measure the results and decide on which
operator to select. So, in this paper we propose to evaluate the result
of merging operators by using three ordering relations (fairness, satisfac-
tion and strength) over operators for a given profile. Moreover, a relation
of conformity over operators is introduced in order to classify how well
the operator conforms to the definition of a merging operator. By using
the four proposed relations we provide a comparison of some classical
merging operators and evaluate the results for some specific profiles.

1 Introduction

Belief merging looks at strategies for combining belief bases from different sources,
which in conjunction may be inconsistent, in order to obtain a consistent belief
base representing the group. Logic-based belief merging has been studied ex-
tensively [1, 14, 10, 11, 8, 9]. A well known strategy is the use of an operator ∆
which takes as input the belief bases (profile) E and outputs a new consistent
merged belief base ∆(E). Often operators require additional information such as
a priority relationship between the bases or numbers representing base weights.
However, in many applications this information does not exist and we must ac-
cord equal importance to each of the beliefs and bases. Among existing operators
which are independent of additional information, we can mention: ∆

MCS
, ∆

Σ
,

∆
Gmax

and DA2 operators. In each case the belief bases are described using a
finite number of propositional symbols; there is no hierarchy, nor priority, nor
any difference in reliability of the sources. Prioritized belief bases or weighted
bases, such as in possibilistic logic [12], will be consider in future work.

Considering flat profiles, there are two main families of belief merging oper-
ators: the formula-based operators (also called syntax-based operators) and the
model-based operators (also called distance-based operators). The operators be-
longing to the former family select subsets of consistent formulae from the profile
E. While the variety depends on the selection criterion, there is no formal way
to compare different criteria. The operators belonging to the latter family define
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a distance between worlds, a distance from worlds to bases, and a distance from
worlds to profiles with the help of an aggregation function. Then, the operators
take as models of the merged result, those worlds which are closest to the be-
lief profile. While the distances allow us to define a notion of closeness in any
framework, we miss a general measure that indicates how close a profile E is to
the merged base ∆(E). A general measure will allow us to compare, in a formal
manner, the results from different operators.

In [2] the notion of a base satisfaction index (individual index) was intro-
duced, where such an index measures the closeness from a base K to a merged
base ∆(E). The index is a function that takes as input two belief bases: a be-
lief base K ∈ E and the merged base ∆(E). The output is a numeral value
i(K,∆(E)) which represents the degree of satisfaction of the base given the
merged base. While this notion allows us to measure the satisfaction of every
member of a profile, there is no measure for the satisfaction of the whole profile.
So, in this paper we propose to evaluate the result of merging operators by using
three ordering relations (fairness, satisfaction and strength) over the operators
for a given profile. Moreover, a relation of conformity over the operators is in-
troduced in order to classify the degree to which an operator conforms to the
definition of a merging operator. By using the four proposed relations we provide
a comparison for some classical merging operators and we evaluate the results
of these operators for some specific profiles.

The objective of this paper is to draw a comparative landscape through crite-
rion based on a degree of satisfaction and notions of conformity and strength for
many merging operators from the literature. We focus on operators for merging
bases represented as sets of propositional formulae, where no priorities or weights
are given. The rest of the paper is organized as follows. After some preliminaries,
in Section 3 we recall some of the main merging operators from the literature.
Then, we introduce the degree of satisfaction and three relations as well as in-
troducing a method for measuring the result of the operators. In Section 5 we
compare some results for operators through our proposal for specific profiles.
Finally, we conclude mentioning some future work.

2 Preliminaries

We consider a language L of propositional logic using a finite set of proposi-
tional variables P := {p1, p2, ..., pm}, the standard connectives, and the boolean
constants > and ⊥ representing always true and false, respectively. |A| denotes
the cardinality of a set A or the absolute value of a number A.

An interpretation or world w is a function from P to {0, 1}, the set of worlds
of the language is denoted byW, its elements will be denoted by boolean vectors
of the form (w(p1), ..., w(pm)), where w(pi) = 1 (representing true) or w(pi) = 0
(representing false) for i = 1, ...,m. A world w is a model of φ ∈ L if and only
if φ is true under w in the classical truth-functional manner. The set of models
of a formula φ is denoted by mod(φ). The formula φ is consistent if and only if
there exists a model of φ. The formula φ is a logical consequence of a formula ψ,
denoted ψ |= φ if and only if mod(ψ) ⊆ mod(φ). For any set of models M ⊆ W,



let form(M) denote a formula whose set of models are precisely M (up to logical
equivalence), i.e., mod(form(M)) = M .

A belief base K is a finite set of propositional formulae of L representing
the beliefs from a source. Some approaches identify K by the conjunction of its
elements so each knowledge base can be treated as a single formula. For this
reason we use L rather than 2L or L to denote the set of all belief bases. A belief
profile E is a multiset (bag) of n belief bases E = {K1, ...,Kn} (n ≥ 1). The
profile represents the set of information sources to be processed. We denote the
conjunction of bases in E by

∧
E and the disjunction of bases in E by

∨
E.

A profile E is consistent if and only if
∧
E is consistent. The multi-set union

between E1 and E2 is denoted by E1 t E2.
In [6] eight postulates have been proposed to characterize the process of

belief merging with integrity constraints in a propositional setting. This charac-
terization is rephrased, without reference to integrity constraints, producing the
following M1–M6 postulates.

Definition 1. Let E, E1, E2 be belief profiles, K1 and K2 be consistent belief
bases. Let ∆ be an operator which assigns to each belief profile E a belief base
∆(E). ∆ is a merging operator if and only if it satisfies the following postulates:

(M1) ∆(E) is consistent
(M2) if

∧
E is consistent then ∆(E) ≡

∧
E

(M3) if E1 ≡ E2, then ∆(E1) ≡ ∆(E2)
(M4) ∆({K1,K2})∧K1 is consistent if and only if ∆({K1,K2})∧K2 is consistent
(M5) ∆(E1) ∧∆(E2) |= ∆(E1 t E2)
(M6) if ∆(E1) ∧∆(E2) is consistent, then ∆(E1 t E2) |= ∆(E1) ∧∆(E2)

The postulates describe the principles that a belief merging operator should
satisfy. Among them, syntax irrelevance (M3), and fairness (M4) are key pos-
tulates. In the literature [6] we can find some operators which are considered
merging operators even though they do not satisfy the six postulates. Therefore
a relation, based on the number of postulates for which operators conform, may
be a first attempt at comparing operators. Formally:

Conformity relation. An operator ∆1 is more conforming than an operator
∆2, denoted ∆1 ≥ ∆2, if ∆1 satisfies more postulates than ∆2.

This relation is strictly numeric in that we do not consider the satisfaction of
any one postulate to be more desirable than the satisfaction of another.

3 Belief merging operators
As we stated before, there are two main families of merging operators: formula-
based and model-based operators. The former selects some formulae from the
union of the bases with the help of a selection criterion. The latter selects some
interpretation with the help of some distances and aggregation functions.

3.1 Formula-based operators

Formula-based operators are based on the selection of consistent subsets of for-
mulae in the union of the members of a profile E. In [1], the operators aim to



find all maximally consistent subsets (MCS) of the inconsistent union of belief
bases. When an integrity constraint is imposed the operator only selects the
MCS which are consistent w.r.t. the integrity constraint. The operators are de-
fined w.r.t. a function MCS, whose input is a belief base K and an integrity
constraint µ, and the output is the set of maximal (w.r.t. inclusion) consistent
subsets of K ∪{µ} that contains µ, formally, MCS(K,µ) is the set of all F s.t.:

1. F is consistent, 2. F ⊆ K ∪ {µ},
3. µ ∈ F and 4. if F ⊂ F ′ ⊆ K ∪ {µ}, then F ′ is inconsistent.

MCS is extended for a profile E as follows: MCS(E,µ) = MCS(
⋃
K∈E

K,µ).

Another function that helps to define some operators is |MCS|, which can
be defined by replacing inclusion with cardinality in 4: if |F | < |F ′|, s.t. F ′ ⊆
K∪{µ}, then F ′ is not consistent. |MCS| is extended for a profile E in a similar
manner. The following operators have been defined in [1, 5]:

1. ∆
MCS1

(E,µ) =
∨
MCS(E,µ).

2. ∆
MCS3

(E,µ) =
∨
{F : F ∈MCS(E,>) and F ∪ {µ} consistent}.

3. ∆
MCS4

(E,µ) =
∨
|MCS|(E,µ).

4. ∆
MCS5

(E,µ) =


∨
{F ∪{µ} : F ∈MCS(E,>)

and F ∪ {µ} consistent}
if ∃F ∈ MCS(E,>)
s.t. F ∪ {µ} 6= ∅,

µ otherwise.

The first three operators correspond respectively to operators Comb1(E,µ),
Comb3(E,µ) and Comb4(E,µ) proposed in [1]. In order to assure consistency,
∆
MCS3

was modified in [5] as ∆
MCS5

. These operators are syntax sensitive.

Example 1. From [11]. Let E = {K1,K2,K3} where K1 = {a}, K2 = {a → b}
and K3 = {a,¬b}. Then, ∆MCS(E) = {a, a→ b} ∨ {a,¬b} ∨ {¬b, a→ b}.

3.2 Model-based operators

In most model-based frameworks an operator ∆ is defined by a function m :
Ln → 2W from the set of profiles to the power set ofW s.t.∆(E) = form(m(E)).
For simplicity we use the standard notation mod(∆(E)) rather than m(E). The
process is defined using three distances: a distance from one world to another
d(w,w′), a distance from a world to a belief base d(w,K) based on d(w,w′) and a
distance from a world to a profile d(w,E) based on d(w,K). The latter distance
is usually defined by aggregation functions and allows us to define a pre-order
≤E . The closest worlds to the profile are the models of the merging process.

We summarize the definitions as follows. A distance1 between worlds is a
function d :W×W → R+ from the Cartesian square of W to the set of positive
real numbers s.t. for all w,w′ ∈ W:

1. d(w,w′) = d(w′, w) and 2. d(w,w′) = 0 iff w = w′.

1 As in [9], the triangle inequality is not required.



The distance between a world and a belief base is a function d :W×L→ R+

from the Cartesian product ofW and the set of belief bases to the set of positive
real numbers. Some methods define this distance as the minimal distance be-
tween world w and any model of base K, i.e., d(w,K) = minw′∈mod(K)d(w,w′).
Finally, the distance between a world and a profile is a function da :W ×Ln →
R+ from the Cartesian product of W and the set of profiles to the set of pos-
itive real numbers, defined as the result of applying the aggregation function
a : R+n → R+ to the distances between w and every profile member, i.e.
da(w,E) = a(d(w,K1), ..., d(w,Kn)) s.t. E = {K1, ...,Kn}.

Definition 2. An aggregation function a is a total function associating a pos-
itive real number to every finite n-tuple of positive real numbers s.t. for all
x1, ..., xn, x, y ∈ R+:

1. if x ≤ y, then a(x1, ..., x, ..., xn) ≤ a(x1, ..., y, ..., xn),
2. a(x1, ..., xn) = 0 iff x1 = ... = xn = 0 and
3. a(x) = x.

Any aggregation function induces a total pre-order ≤E on the set W w.r.t. the
distances to a given profile E. Thus, the merging operator ∆d,a for a profile E
is defined as a belief base (up to logical equivalence) whose models are the set
of all worlds with the minimal distance da to the profile E, i.e.,

mod(∆d,a(E)) = min(W,≤E).

Every framework consists of a distance and an aggregation function. The dis-
tance between worlds most widely used in the literature is Hamming distance2,
which is the number of propositional variables on which two worlds differ, i.e.,

d(w,w′) =
∑
p∈P

|w(p)− w′(p)|.

Two outstanding aggregation functions are maximum and sum, their correspond-
ing distance are defined, respectively, as follows:

d
max

(w,E) = max
K∈E

d(w,K) and d
Σ

(w,E) =
∑
K∈E

d(w,K).

In both cases, the induced pre-order is defined with the help of ≤ over real
numbers as follows:

w ≤
E
w′ iff da(w,E) ≤ da(w′, E).

Another well known operator is ∆
Gmax

, introduced in [7], where the aggregation
function does not output a number but instead outputs a vector of numbers,
which is the result of sorting the input distances in descending order, i.e.,

d
Gmax

(w,E) = sort(d(w,K1), ...., d(w,Kn)).

2 From now, if a belief merging operator ∆d,a uses Hamming distance, in order to
avoid heavy notations, we identify it by ∆a.



The operator ∆
Gmax

uses the lexicographic ordering ≤
lex

for comparing vectors,
the pre-order induced is defined as follows.

w ≤
E
w′ iff d

Gmax
(w,E) ≤

lex
d
Gmax

(w′, E).

Example 2. Given profile E from Example 1, and variables a and b in that order,
then: mod(∆max(E)) = {(0, 0), (1, 0), (1, 1)}; mod(∆Σ(E)) = {(1, 0), (1, 1)}; and
mod(∆Gmax(E)) = {(1, 0), (1, 1)}.

4 On the measure of merging operators

Comparing the number of postulates (from Definition 1) for which merging op-
erators conform, provides a means to generally evaluate and compare operators.
Only ∆Σ and ∆Gmax satisfy all six postulates. ∆max satisfies the first five pos-
tulates. However, given a naive operator ∆> (typical of Yager’s rule for merging
belief functions [15]) s.t. ∆> =

∧
E if

∧
E is consistent and ∆> = > otherwise.

This operator satisfies the first five postulates and satisfies the last postulate
when both profiles E1 and E2 are either consistent or inconsistent. Under this
characterization we can consider ∆> to be more conforming than operators such
as ∆max which satisfy fewer postulates. However ∆> does not help to make
decisions since the result is a tautology when the sources of information are in-
consistent and the information of a tautology is neither useful nor informative.
For this reason, we also need to classify operators based on their merging result
in order to select the best operator for a given profile.

We propose to classify operators based on: (1) conformity; (2) the degree of
satisfaction of their merging result w.r.t the given profile and two relations over
operators; and (3) a relation of strength over operators. The degree of satisfaction
of a belief base is formally defined as follows:

Definition 3 (Degree of satisfaction of belief bases). Function SAT :
L×L→ [0, 1] is called a the degree of satisfaction of belief bases iff for any belief
base K and K ′, it satisfies the following postulates:

Reflexivity: SAT (K,K ′) = 1 iff mod(K ′) ∩mod(K) 6= ∅.
Monotonicity: SAT (K,K ′) ≥ SAT (K,K∗) iff mod(K ′) ⊆ mod(K∗).

Semantically, a degree of satisfaction for a belief base K in a given profile E,
is a measure of how satisfied the belief base K is by the merged base K ′ = ∆(E)
resulting from the application of a merging operator ∆ on the profile E. Notice
that the definition considers a general case where K ′ may be a belief base which
is not necessarily the result of a merging operator. Two stronger variants are:

Definition 4. A rational degree of satisfaction is a degree of satisfaction which
satisfies the Rationality postulate: SAT (K,K ′) = 0 if mod(K ′) ∩mod(K) = ∅.

Definition 5. A symmetric degree of satisfaction is a degree of satisfaction
which satisfies the Symmetry postulate: SAT (K,K ′) = SAT (K ′,K).

Based on this degree of satisfaction we can define the degree of satisfaction
of a profile as follows:



Definition 6 (Degree of satisfaction of belief profiles). Let E be a profile,
SAT be a degree of satisfaction of belief bases and a be an aggregation function.
The degree of satisfaction of E by K ′ based on SAT and a, denoted SATa(E,K ′),
is defined as follows: SATa(E,K ′) = aK∈ESAT (K,K ′).

Then we can define a maximum and minimum degree of satisfaction for a
profile E as follows:

Definition 7. Let E be a profile and K ′ be a belief base. Then SATmax(E,K ′)
is the maximum degree of satisfaction of E by K ′ iff SATmax(E,K ′) = maxK∈E
SAT (K,K ′). Also, SATmin(E,K ′) is the minimum degree of satisfaction of E
by K ′ iff SATmin(E,K ′) = minK∈ESAT (K,K ′).

4.1 Instantiation of the degree of satisfaction (base satisfaction
index)

Notice that Definition 3 is about properties of a measure, no specific measures
are actually given. This section and the next provide these measures. In the
literature we can find a way to define the satisfaction of a base given the merged
base: in [2] the notion of a base satisfaction index is the degree of satisfaction of
K ∈ E, given ∆(E), as a total function i from L× L to [0, 1]. Then i(K,∆(E))
indicates how close a base K is to the merged base ∆(E). In [2] four indexes
are proposed when no additional information about the sources is available: iw,
is, ip and id. These base satisfaction indexes satisfy Definition 3, so they can be
considered as degrees of satisfaction of a belief base3. Formally:

Definition 8 (weak drastic index). This boolean index takes value 1 if the
merging result is consistent with the base and 0 otherwise, formally:

iw(K,∆(E)) =

{
1 if K ∧∆(E) is consistent,

0 otherwise.

Definition 9 (strong drastic index). This boolean index takes value 1 if the
belief base is a logical consequence of the merging result and 0 otherwise, formally:

is(K,∆(E)) =

{
1 if ∆(E) |= K,

0 otherwise.

Definition 10 (probabilistic index). This index takes the value of the prob-
ability of getting a model of K among the models of ∆(E), formally:

ip(K,∆(E)) =

{
0 if |mod(∆(E))| = 0
|mod(K)∩mod(∆(E))|

|mod(∆(E))| otherwise.

3 For the sake of readability, we use ‘base satisfaction index’ and ‘degree of satisfaction
of a belief base’ as synonyms, however, notice that a belief satisfaction index was
defined without imposing properties.



So, ip takes its minimal value 0 when no model of K is in the models of the
merged base ∆(E) and its maximal value when each model of the merged based is
a model ofK. The fact that ip is based on model counting allows some granularity
in the notion of satisfaction. Notice, is can be obtained by truncating or dropping
the decimal numbers of the ip result. In fact, ip can be seen as the probability
of getting the belief base as a logical consequence of the merged result.

Definition 11 (Dalal index). This index grows antimonotonically with the
Hamming distance between the two bases under consideration, i.e., the minimal
distance between a model of the base K and a model of base ∆(E), formally:

id(K,∆(E)) = 1−
min

w∈mod(K),w′∈mod(∆(E))
d(w,w′)

|P |
.

This index takes its minimal value when every variable must be flipped to
obtain a model of ∆(E) from a model of K, while takes its maximal value
whenever K is consistent with ∆(E) and no flip is required.

Examples for these indexes are shown in Tables 2 and 3. We can propose

other indexes such as i′p = |mod(K)∩mod(∆(E))|
|mod(∆(K))| : the probability of getting the

merged result as a logical consequence of the belief base. However, there is no
background theory to support this proposal. Next we introduce a new base sat-
isfaction index based on inconsistency measures for propositional belief bases
[3, 4]. Considering the level in which the inconsistency is measured, there are
two classes of measures: Base-level measures and Formula-level measures. Those
in the former class measure the inconsistency of the belief base as a whole.
While those in the latter class measure the degree to which each formula in the
belief base is responsible for the inconsistency of the base. The output of the
former is a number while the output of the latter is a numerical vector with
elements representing each formula in the belief base. This work considers solely
the former class. Another classification found in the literature considers how
inconsistency is measured. In this case there are two main types of measures:
Formula-centric measures that count the number of formulae required for creat-
ing the inconsistency: the more formulae required to produce an inconsistency,
the less inconsistent the base; and atom-centric measures, that take into account
the proportion of the language affected by inconsistency: the more propositional
variables affected, the more inconsistent the base.

Definition 12 (Base-level measure of inconsistency). An inconsistency
measure on a belief base is a function I : L→ R.

Diverse measures are defined in [3, 4], however, we will choose the measures which
satisfy two properties: syntax-insensitivity, i.e. the measures of two equivalent
belief bases are equal; and normalization, i.e. the measure is a real number
between 0 and 1. The former is required in order to assure fairness of evaluation
w.r.t. the way of writing formulae. The latter is required to assure uniformity in
the evaluation. Moreover, we consider degrees of satisfaction between 0 and 1,



representing 0 and 100% satisfaction, respectively. As far as we know the only
measure that satisfies both properties is ILPm [4].

The inconsistency measure ILPm is defined as the normalized minimum num-
ber of inconsistent truth values in the LPm models of the belief base. Formally:

ILPm(K) =
minw∈modLP (K)(|w!|)

|P |

where K is a belief base and LPm extends the notion of worlds considering three
truth values {0, 1, 1

2}, representing true, false and the additional truth value
both meaning both “true and false”. Then a world is a function from P to {0,
1, 1

2}. 3P is the set of all worlds for LPm. Truth values are ordered as 0<t
1
2<t1

and w(>) = 1, w(⊥) = 0, w(¬φ) = 1
2 iff w(φ) = 1

2 , w(¬φ) = 1 iff w(φ) =
0, w(φ ∧ ψ) = min≤t(w(φ), w(ψ)) and w(φ ∨ ψ) = max≤t(w(φ), w(ψ)). The
LPm models of the belief base are defined as: modLP (K) = {w ∈ 3P | w(K) ∈
{1, 12}} and w! = {x ∈ P | w(x) = 1

2}. The minimum models of a formula are:
min(modLP (φ)) = {w ∈ modLP (φ) | @w′ ∈ modLP (K) s.t. w′! ⊂ w!}.

Definition 13 (Base-level inconsistency index). The base-level inconsis-
tency index is defined as: ii(K,∆(E)) = 1− I(K ∪∆(E)).

This index grows antimonotonically with the base-level measure of inconsistency
I between the union of the two bases under consideration. This index takes its
minimal value when the degree of inconsistency of the union of the bases is the
maximum, while it takes its maximal value whenever the union of the bases is
consistent. We consider only the instance: iL(K,∆(E)) = 1− ILPm(K ∪∆(E)).

Proposition 1. The five satisfaction indexes are degrees of satisfaction. More
specifically is, iw and ip are rational degrees of satisfaction. Also id and iL are
symmetric degrees of satisfaction.

4.2 Instantiation of the general degree of satisfaction (profile
satisfaction index)

Using the base satisfaction indexes, one can define a satisfaction index for the
whole profile. The profile satisfaction indexes are instantiations of degrees of
satisfaction of belief profiles, in this work we will use both notions indistinctly.
The notion of a profile satisfaction index is the degree of satisfaction of E,
given ∆(E). The index is defined as a total function i from Ln × L to R. Thus,
i(E,∆(E)) indicates how close a profile is to the merged base ∆(E), formally:

Definition 14 (Profile satisfaction index). Let E be a profile, i be a base
satisfaction index and a be an aggregation function, the profile satisfaction index
based on i and a is defined as follows: ia(E,∆(E)) = aK∈Ei(K,∆(E)).

There are many ways to measure the satisfaction of the profile given the
merged base. The following measure says that a profile is as satisfied as the



satisfaction of its least satisfied element, it is an instantiation of the minimum
degree of satisfaction of a profile.

imin(E,∆(E)) = minK∈Ei(K,∆(E))

Alternatively, another measure says that a profile is satisfied holistically, as the
sum of the satisfaction of its elements.

iΣ(E,∆(E)) = ΣK∈Ei(K,∆(E)).

4.3 Evaluating merging operators

Postulate M4 only says that no preference should be given to either belief base
if they are inconsistent, however this is questioned in the literature. It is possible
for us to define a more refined postulate (relation) of fairness using the degree
of satisfaction, s.t. we can assign a relative degree of fairness to an operator.

Fairness relation. An operator ∆1 is fairer than an operator ∆2, denoted
∆1 � ∆2 iff for all E, SATmax(E,∆1(E))−SATmin(E,∆1(E)) ≤ SATmax(
E,∆2(E))− SATmin(E,∆2(E)).

This means that a fairer operator minimizes the difference between degrees of
satisfaction among bases. We can also define a satisfaction relation between
operators based on the degree of satisfaction SAT as follows:

Satisfaction relation. An operator ∆1 is more satisfactory than an operator
∆2, denoted ∆1 w ∆2 if for all E, SATa(E,∆2(E)) ≤ SATa(E,∆1(E)).

This means that a more satisfactory operator maximizes the degree of satisfac-
tion of belief profiles. Both types of ordering relations (fairness and satisfaction)
can be used to select the best operators in terms of these criterion. See Table 1.

However, operators such as ∆> will have the highest degree of fairness and
satisfaction, in comparison to the remaining operators. Moreover, in relation to
M1–M6 postulates, the operator ∆> is considered more (or at least equally)
conforming than ∆MCS and ∆max. We can conclude that ∆> is a good choice.
However, ∆> does not produce useful and informative results since they will
be a tautology when the profile is inconsistent, so, the conformity, fairness and
satisfaction relations are insufficient. For this reason we need some way to classify
the degree of “useful and informative” merging results and so we propose to use
the notion of strength introduced in [13]. With this notion we can say that ∆>
is weaker than the other operators since its merging results are weaker.

Strength relation. An operator ∆1 is stronger than an operator ∆2, denoted
∆1 ⊇ ∆2, if for all E, mod(∆1(E)) ⊆ mod(∆2(E)).

Using this notion, we can conclude that the merging operator ∆Gmax is
stronger that ∆max and the operator ∆> is the weakest (see Table 1).

In short, the postulates M1–M6 allow us to define a conformity relation be-
tween operators s.t. an operator which satisfies more postulates is considered



more conforming. Additionally, a degree of satisfaction allows us to define an-
other relation between operators s.t. an operator with a higher degree of satis-
faction is ‘better’ than an operator with a lower degree of satisfaction, i.e., the
operator is closer to the original information in comparison to other possible
merging results (assuming different merging operators are available). Based on
this degree of satisfaction we define another relation of fairness over operators.
Finally, we define a strength relation over operators. Unfortunately, these 4 rela-
tions over operators cannot identified the best operator in a general case, i.e. for
every profile (see Table 1). However, we can combine the strength relation with
the fairness and satisfaction relations to define a method to classify the opera-
tors results for a given profile. Notice the relations of fairness, satisfaction and
strength can be used for particular cases of E, where we can say, for example, that
the operator ∆1 is stronger than ∆2 for a given E if mod(∆1(E)) ⊆ mod(∆2(E)).

H
HHHH∆1

∆2
∆MCS ∆max ∆Σ ∆Gmax ∆>

∆MCS ≥, �,w,⊇ n/a 6≥ 6≥ 6�
∆max ≥ ≥, �,w,⊇ 6≥ 6≥, w ≥
∆Σ ≥ ≥ ≥, �,w,⊇ ≥ ≥
∆Gmax ≥ ≥,⊇ ≥ ≥, �,w,⊇ ≥
∆> ≥ , �, w , 6⊇ ≥, �, w, 6⊇ 6≥, �, w , 6⊇ 6≥, �, w, 6⊇ ≥, �,w,⊇
Table 1. Comparison of operators in terms of operators being more conforming (∆1 ≥
∆2), fairer (∆1 � ∆2), more satisfactory (∆1 w ∆2) or stronger (∆1 ⊇ ∆2), where n/a
means not comparable or not found.

Example 3. From [14, 7]. Let E = {K1,K2,K3} where K1 = {(S ∨ O) ∧ ¬D},
K2 = {(¬S ∧D ∧ ¬O) ∨ (¬S ∧ ¬D ∧O)} and K3 = {S ∧D ∧O}.

Using ip for Example 3, we have ip,max(E,∆max(E)) = 0.33, ip,max(E,
∆Gmax(E)) = 1, and ip,min(E,∆max(E)) = ip,min(E,∆Gmax(E)) = 0 (see Ta-
ble 3). So, for this E, ∆max is fairer than ∆Gmax but using ip,Σ , ∆Gmax is more
satisfactory than ∆max. Moreover, as stated previously, ∆Gmax is stronger than
∆max and ∆Gmax is more conforming than ∆max since ∆Gmax conforms to all
six postulates while ∆max only conforms to five.

Even for a particular E the selection of a “best result” is not always evident.
In order to classify operators for any profile we must generalize two relations.
For this reason we extend the fairness and satisfaction relations for belief bases
rather than for the result of operators , as follows:

Fairness relation over belief bases. A belief base K1 is fairer than a base
K2, denoted K1 � K2, for every profile E if SATmax(E, K1) − SATmin(
E,K2) ≤ SATmax(E,K1)− SATmin(E,K2).

Satisfaction relation over belief bases. A belief base K1 is more satisfac-
tory than a base K2, denoted K1 w K2, for every profile E if SATa(E,
K2) ≤ SATa(E,K1).

Now, notice that if ∆1 is stronger than ∆2 for a given E then there exists a
set of worlds Ω s.t. mod(∆1(E))∪Ω = mod(∆2(E)), i.e. some worlds appearing



in ∆2(E) may be ‘erased’ in the process of merging with ∆1. If ∆1(E) is fairer
than form(Ω) and ∆1(E) is more satisfactory than form(Ω), we can conclude
that the worlds which have been ‘eliminated’ by ∆1 do not affect the properties
of fairness and satisfaction of ∆1 w.r.t. the extra worlds in mod(∆2(E)); and
given that ∆1 is stronger than ∆2 we can conclude that the result of ∆1 is better
that the result of ∆2. In selecting a result, we can say that ∆1 offers less choice
than ∆2 and so it is more useful for making decisions.

5 Comparing operators results

In this section we demonstrate instantiations of the degrees of satisfaction (iw,
is, ip, id and iL) and their corresponding satisfaction profile indexes as applied
to two profiles selected from the literature. Satisfaction indexes for Example 1
(resp. Example 3) are shown in Table 2 (resp. Table 3).

∆MCS(E) ∆max(E) ∆Σ(E) ∆Gmax(E)

iw(K1,∆a(E)) 1 1 1 1
iw(K2,∆a(E)) 1 1 1 1
iw(K3,∆a(E)) 1 1 1 1

iw,min(E,∆a(E)) 1 1 1 1
iw,Σ(E,∆a(E)) 3 3 3 3

is(K1,∆a(E)) 0 0 1 1
is(K2,∆a(E)) 0 0 0 0
is(K3,∆a(E)) 0 0 0 0

is,min(E,∆a(E)) 0 0 0 0
is,Σ(E,∆a(E)) 0 0 1 1

ip(K1,∆a(E)) 0.66 0.66 1 1
ip(K2,∆a(E)) 0.66 0.66 0.5 0.5
ip(K3,∆a(E)) 0.33 0.33 0.5 0.5

ip,min(E,∆a(E)) 0.33 0.33 0.5 0.5
ip,Σ(E,∆a(E)) 1.66 1.66 2 2

id(. . . ,∆a(E)) same as iw
iL(. . . ,∆a(E)) same as iw

Table 2. Satisfaction indexes for Example 1.

Using the strong drastic index is for Example 1, the results are (in almost all
cases) 0, meaning the bases are inconsistent with the merged base. ip produces
a greater degree of granularity in the results which means it is a more discrim-
inative index. In both examples, the new base satisfaction index iL shows that
the ∆MCS merging operator will be maximally satisfied for each belief base Ki

as long as Ki is consistent. Likewise, the profile satisfaction indexes iL,min and
iL,Σ will be maximally satisfied, as long as ∀Ki ∈ E, Ki is consistent. In both
examples, the iL and id indexes produce the same results. The reason is: firstly,
they are both normalized with the number of variables in the merged base; and
secondly, in these examples, the number of inconsistent variables is equal to the
minimum distance between models in Ki and the merged base.

In [7] the authors claim for Example 3 that ∆Gmax selects the interpretations
chosen by both ∆max and ∆Σ , showing its good behavior, however they do not



∆MCS(E) ∆max(E) ∆Σ(E) ∆Gmax(E)

iw(K1,∆a(E)) 1 1 1 1
iw(K2,∆a(E)) 1 0 1 0
iw(K3,∆a(E)) 1 0 0 0

iw,min(E,∆a(E)) 1 0 0 0
iw,Σ(E,∆a(E)) 3 1 2 1

is(K1,∆a(E)) 0 0 1 0
is(K2,∆a(E)) 0 0 1 0
is(K3,∆a(E)) 0 0 0 0

is,min(E,∆a(E)) 0 0 0 0
is,Σ(E,∆a(E)) 0 0 2 0

ip(K1,∆a(E)) 0.5 0.33 1 1
ip(K2,∆a(E)) 0.5 0 0.5 0
ip(K3,∆a(E)) 0.5 0 0 0

ip,min(E,∆a(E)) 0.5 0 0 0
ip,Σ(E,∆a(E)) 1.5 0.33 1.5 1

id(K1,∆a(E)) 1 1 1 1
id(K2,∆a(E)) 1 0.66 1 0.66
id(K3,∆a(E)) 1 0.66 0.66 0.66

id,min(E,∆a(E)) 1 0.66 0.66 0.66
id,Σ(E,∆a(E)) 3 2.33 2.66 2.33

iL(. . . ,∆a(E)) same as id
Table 3. Satisfaction indexes for Example 3.

provide a formal definition of ‘good behavior’. Our proposal, on the other hand,
allows us to provide this definition: using id and id,Σ , we can conclude that
∆Gmax is stronger than ∆max and ∆Σ , moreover, ∆Gmax(E) is fairer and more
satisfactory than form(Ωmax) and form(ΩΣ) (the ‘extra’ worlds of ∆max(E)
and ∆Σ(E), respectively). So, we can conclude that the result given by ∆Gmax

is better than the results given by ∆max and ∆Σ .

6 Conclusion

We proposed a method for measuring the result of different merging operators.
Firstly, we defined a relation of conformity over operators in order to classify the
degree to which an operator conforms to six postulates describing the principles
that a belief merging operator should satisfy. Next, we introduced the notion of
a degree of satisfaction of belief bases. We discovered that some base satisfaction
indexes found in the literature satisfy the definition of a degree of satisfaction
of belief bases, so we use them to define a profile satisfaction index. Based on
the notion of a degree of satisfaction and a profile satisfaction index, we defined
two more ordering relations over merging operators: fairness and satisfaction.
However, by using these relations the measure of operators does not give intuitive
classifications, for example operators such as ∆> are well placed, even though
the result is neither informative nor useful. So, a fourth relation over operators
was introduced, called strength, in order to address this issue. Even while using
the four proposed relations, some operators are not fully comparable. This means
that we cannot find a best operator for every profile. However the relations do
allow us to find the best operators for a given profile.



The proposed method is as follows: first, determine the conformity of an
operator, next, if an operator ∆1 is stronger than an operator ∆2 for a profile E
we can continue, otherwise stop since comparison is not possible. Choose degree
of satisfactions SAT and SATa in order to compare the operators. Find Ω: the
worlds that are included in ∆2(E) but not in ∆1(E). If ∆1(E) is fairer and more
satisfactory than Ω in terms of SAT and SATa then ∆1 provides a better result
than ∆2 for the fixed profile E given SAT and SATa. While the method is in a
preliminary phase, the application on some examples from the literature allows
us to formally demonstrate claims such as the ‘good behavior’ of ∆Gmax.

Our proposed method does not work with integrity constraints however these
will be considered in future work. Also, currently we only consider flat belief
bases, but we intend to extend this for prioritized bases. In terms of aggregation
functions, we analyzed min and Σ for generating the satisfaction index of a
profile, however there are other functions available, such as Gmin, which could
be analyzed. We also intend to propose a profile satisfaction index based on
formula-level inconsistency measures.
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