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Abstract. Belief revision is the process that incorporates, in a consistent way,
a new piece of information, called input, into a belief base. When both belief
bases and inputs are propositional formulas, a set of natural and rational proper-
ties, known as AGM postulates, have been proposed to define genuine revision
operations. This paper addresses the following important issue : How to revise
a partially pre-ordered information (representing initial beliefs) with a new par-
tially pre-ordered information (representing inputs) while preserving AGM pos-
tulates? We first provide a particular representation of partial pre-orders (called
units) using the concept of closed sets of units. Then we restate AGM postulates
in this framework by defining counterparts of the notions of logical entailment
and logical consistency. In the second part of the paper, we provide some exam-
ples of revision operations that respect our set of postulates. We also prove that
our revision methods extend well-known lexicographic revision and natural revi-
sion for both cases where the input is either a single propositional formula or a
total pre-order.

1 Introduction

The problem of belief revision is a major issue in several Artificial Intelligence ap-
plications to manage the dynamics of information systems. Roughly speaking, belief
revision results from the effect of inserting new piece of information while preserving
some consistency conditions. In the logical setting, a simple form of a belief revision
assumes that both initial beliefs, denoted by K, and input information, denoted by µ,
are represented by propositional formulas. In this framework, the revision of K by µ
consists in producing a new formula denoted by K ∗ µ, where ∗ represents a revi-
sion operation. Extensive works have studied and characterized the revision operation
∗ from semantics, syntactic, computational and axiomatics points of views. In partic-
ular, Alchourron, Gärdenfors and Makinson [1] proposed an elegant set of rationality
postulates [14], known as AGM postulates, that any revision operation ∗ should satisfy.
These postulates are mainly based on two important principles: success principle and
minimal change principle. The success principle states that the input µ is a sure piece
of information and hence should be entailed from K ∗µ. The minimal change principle
states that the revised base K ∗ µ should be as close as possible to initial beliefs K.



In particular if K and µ are consistent then K ∗ µ should be simply equivalent to the
propositional conjunction of K and µ.

Since AGM proposal, many extensions [10] have been proposed to take into account
complex belief and inputs. For instance, in the context of uncertain information, a so-
called Jeffrey’s rule [12, 7], has been proposed for revising probability distributions. In
evidence theory, revision of mass functions are proposed [26, 27]. Similarly, in possi-
bility theory and ordinal conditional functions framework, the so-called transmutation
[33] have been proposed. It modifies the ranking or possibility degrees of interpreta-
tions so as to give priority to the input information. Various forms of ranking revisions
have been suggested in (e.g., [6, 13, 8, 22, 9, 23, 24]).

In the logical setting, belief revision has also been extensively studied. In [8] four
postulates have been added to AGM postulates in order to characterize iterated belief
revision operators which transform a given ordering on interpretations, in presence of
new information, into a new ordering. In [29, 3] a lexicographic strategy, associated
with a set of three rationality postulates, have been defined to revise a total pre-order
by a new total pre-order. In [5, 4], different strategies have been proposed to revise an
epistemic state represented by a partial pre-order on the possible worlds.

This paper deals with a flexible representation of information where both initial
beliefs and input are represented by partial pre-orders. Despite its importance in many
applications, there are very few works that address revision methods of a partial pre-
order by a partial pre-order. In [32], revision of partial orders is studied in a standard
expansion and contraction way. But it does not provide concrete revision results because
of the use of certain kinds of selection functions. In a short paper [21], a framework that
studies revision on partial pre-orders is developed and two main revision operators are
proposed. However, there are no postulates addressed in that short paper, neither did
the paper discussed the relationship between the revision operators and various revision
strategies proposed in the literature.

A natural question addressed in this paper is whether it is possible to reuse AGM
postulates while both initial beliefs and inputs are partial pre-orders. The answer is
Yes. The idea is not to change rationality postulates, but to modify the representation
of beliefs and adapt main logical concepts such as logical entailment and consistency.
More precisely, we will follow the representation of partial pre-orders proposed in [21].
A partial pre-oder over a set of symbols is viewed as a closed set of units. Each unit
represents an individual constraint between symbols (a pair of symbols with an order-
ing connective). The revision of partial pre-order by another partial pre-order is then
viewed as revision of closed set of units by another closed set of units. In this paper, we
show that AGM postulates have natural counterparts when initial beliefs and input are
represented by sets of units. We also provide the counterpart of success postulates and
minimal change principle in our frameworks. The reformulation of AGM postulates is
possible once logical entailment is interpreted as set inclusion between sets of units,
and logical consistency is interpreted as the absence of cycles between sets of units as-
sociated with partial pre-orders of inputs and initial beliefs. Additional postulates are
also studied in this paper.

In the second part of the paper, we prove that the two revision operators proposed
in [21] satisfy the proposed postulates for partial pre-order revision as well as some



rational properties, such as the iteration property. Furthermore, we also prove that our
revision operators are extensions of the well-known lexicographic revision [30] and
natural belief revision [6].

To summarize, this paper makes the following main contributions:

– We propose a set of rationality postulates that the unit-based revision shall follow.
– We prove some important properties among these revision strategies. We also prove

that these revision strategies satisfy certain rationality postulates.
– When reducing to classical belief revision, we prove that our revision strategies ex-

tend some existing revision strategies, such as, lexicographic and natural revisions.

The remainder of the paper is organized as follows. We introduce some necessary
notations and definitions in Section 2. In Section 3, we discuss the principles a revision
rule on partial pre-orders shall satisfy and propose AGM-style postulates for partial
pre-orders revision. We then discuss, in Sections 4, two examples of belief revision
strategies, proposed in [21], that satisfy AGM-style postulates and analyse their prop-
erties. Section 5 shows that the well-known lexicographic and natural revision can be
recovered in our frameworks. We then review some related works in Section 6. Section
7 concludes the paper.

2 Notations and Definitions

We use W to denote a finite set of symbols. Let¹ be a pre-order over W where w ¹ w′

means that w is at least as preferred as w′. Two operators, ≺ and ≈, are defined from
¹ in a usual sense. Note that as ¹ implies ≺ or ≈ while ≺ (or ≈) is a simple relation,
in this paper, we only focus on simple relations ≺ and ≈. Each w ≺ w′ or w ≈ w′

is called a unit for w 6= w′. A partial pre-order is represented by a finite set of units
denoted by S, we use Sym(S) to denote the set of symbols from W appearing in S.

Definition 1 A set of units S is closed iff

– w ≈ w′ ∈ S implies w′ ≈ w ∈ S;
– for any different w1, w2, w3 in W , if w1 R1 w2 ∈ S and w2 R2 w3 ∈ S and

w1 R1 w2 ∧w2 R2 w3 implies w1 R3 w3, then w1 R3 w3 ∈ S, (where Ri is either
≈ or ≺).

We can see that a closed set of units corresponds to a partial pre-order in the usual
sense (i.e., a transitive, reflexive binary relation). A set S can be extended to a unique
minimal closed set based on transitivity and symmetry of ≈ and transitivity of ≺. We
use Cm(S) to denote this unique minimal closed set extended from S.

Example 1 Let S = {w1 ≈ w2, w2 ≺ w3}, then Cm(S) = {w1 ≈ w2, w2 ≈
w1, w2 ≺ w3, w1 ≺ w3}.

S is closed when it cannot be extended further. This is the counterpart of the deductive
closure of a belief base K in classical logics.



Definition 2 A subset C of S is a cycle if C = {w1 R1 w2, w2 R2 w3, · · · , wn Rn w1}
s.t. ∃Ri, Ri is ≺ for 1 ≤ i ≤ n. C is minimal if there does not exist a cycle C ′ s.t.
Cm(C ′) ⊂ Cm(C).

If S has a cycle, then S is said to be inconsistent. Otherwise it is said to be consistent
or free of cycles. If S is closed and contains cycles, then all minimal cycles are of the
form {a ≺ b, b ≺ a} or {a ≺ b, b ≈ a}, i.e., only two units.

Any unit w R w′ is called a free unit if w R w′ is not involved in any cycle in
S. The concept of free unit is the counterpart of free formula concept in logic-based
inconsistency handling [2, 11].

Example 2 Let S = {w1 ≺ w2, w2 ≈ w3, w3 ≈ w4, w4 ≺ w1, w3 ≺ w1}, then
C1 = {w1 ≺ w2, w2 ≈ w3, w3 ≺ w1} is a minimal cycle whilst C2 = {w1 ≺
w2, w2 ≈ w3, w3 ≈ w4, w4 ≺ w1} is a cycle but not minimal, since the sub sequence
w3 ≈ w4, w4 ≺ w1 in C2 can be replaced by w3 ≺ w1 and hence forms C1.

For any set of units S, we use [S] to count the number of semantically distinct units in
S such that w ≈ w′ and w′ ≈ w are counted as one instead of two. So for S = {w1 ≈
w2, w2 ≈ w1, w3 ≺ w1, w3 ≺ w2}, we have [S] = 3.

Without loss of generality, subsequently, if without other specifications, we assume
that a set of units S and any new input SI are both closed and free of cycles. For
convenience, we use SCC to denote the set of all closed and consistent sets of units
(free of cycles) w.r.t. a given W and {≈,≺}.

3 Principles and Postulates of unit-based revision

3.1 Motivations

Let ¯ be a revision operator which associates a resultant set of units Ŝ = S ¯ SI

with two given sets, one represents the prior state (S) and the other new evidence (SI ).
This section provides natural properties, for the unit-based revision operation ¯, which
restate the AGM postulates [14] in our context. As in standard belief revision (an in-
put and initial are sets of propositional formulas), we also consider the two following
principles as fundamental:

Success postulate: It states that information conveyed by the input evidence should
be retained after revision. In our context, this also means that an input partial pre-order
(or its associated set of units) must be preserved, namely SI ⊆ S ¯ SI . In particular if
two possible worlds have the same possibility conveyed by the input, then they should
still be equally possible after revision, regardless their ordering in the prior state. This
clearly departs from the work reported in [3] (where a tie in the input could be broken
by the prior state) for instance. In the degenerate case, where the input is fully specified
by a total pre-oder then the result of revision should be simply equal to the input. This
situation is similar to the case where in standard AGM postulates where the input is
a propositional formula having exactly one model (and hence the result of revision is
that formula), or in frameworks of probabilistic revision where applying Jeffrey’s rule
of conditioning to the situation where the input if specified by a probability distribution
simply gives that probability distribution.



Minimal change principle: It states that the prior information should be altered as
little as possible while complying with the Success postulate. This means in our context
that as few of units (individual binary ordering relations) as possible to be removed
from the prior state after revision. Specifying minimal change principle needs to define
the concept of conflicts in our framework. Roughly speaking, two sets of units (here
associated with input and initial beliefs) are conflicting if the union of their underlying
partial pre-orders contains cycles. Some units (from the set of units representing initial
beliefs) should be removed to get rid of cycles, and minimal change requires that this
set of removed units should be as small as possible.

3.2 AGM-style postulates for unit-based revision

We now rephrase basic rationality postulates when initial epistemic state and input are
no longer propositional formulas but sets of units. More precisely, we adapt the well-
known AGM postulates (reformulated in [14] (KM)) to obtain a set of revised postulates
in which an agent’s original beliefs and an input are represented as sets of units. These
revised postulates, dubbed UR0-UR6, are as follows:

UR0 S ¯ SI is a closed set of units.
UR1 Cm(SI) ⊆ S ¯ SI .
UR2 If SI ∪ S is consistent,

then S ¯ SI = Cm(SI ∪ S).
UR3 If SI is consistent, then S ¯ SI is also consistent.
UR4 If Cm(S1) = Cm(S2) and Cm(SI1) = Cm(SI2),

then S1 ¯ SI1 = S2 ¯ SI2.
UR5 S ¯ (SI1 ∪ SI2) ⊆ Cm((S ¯ SI1) ∪ SI2) .
UR6 If (S ¯ SI1) ∪ SI2 is consistent,

then Cm((S ¯ SI1) ∪ SI2) ⊆ S ¯ (SI1 ∪ SI2) .

UR0 simply states that S¯SI is closed based on the five inference rules on units (Def.
1).

UR1 formalizes the success postulate. Note that the counterpart of logical entail-
ment here is represented by set inclusion. However it departs from the standard propo-
sitional logic definition of entailment where φ |= µ means that the set of models of φ
is included in the set of models of µ. In our context, a set of units S is said to entail
another set of units S1 if Cm(S1) ⊆ Cm(S).

UR2 indicates that if the prior state and the input are consistent, then the revision
result is simply the minimal closure of the disjunction of the prior state and the input.
Here we need to point out that consistency here is represented by the absence of cy-
cles. Our definition of consistency (between two sets of units) is stronger than that in
logic-based revision (generally defined between two propositional formulae represent-
ing the initial beliefs and an input). That is, in belief revision, consistency is required
between two formulas (initial state vs. input). In this paper, consistency is required for
pre-orders (initial state vs. input) which contain more information than formulas. This
is similar to asking for the consistency between two epistemic states not the consis-
tency between their belief sets. Therefore, UR2 is stronger than its counterpart R2 in
logic-based revision [8]



R2: if Φ ∧ µ is consistent, then Bel(Φ ◦ µ) ≡ Bel(Φ) ∧ µ,
or its weaker version defined when initial epistemic state is represented by a partial pre-
order [4, 5]: if Bel(Φ) |= µ, then Bel(Φ◦µ) ≡ Bel(Φ)∧µ. This is not surprising, since
in our framework, all units play an equal role in the belief change, while in logic-based
revision, only units that determine belief sets play crucial roles1.

Also, here we should point out that we do not define Bel in our framework be-
cause in general, elements (w1, w2) can be more than possible worlds. However, when
reducing to belief revision scenarios, Bel cab be defined in the standard way.

UR3 ensures consistency of the revision result given the consistency of the input.
UR4 is a kind of syntactic irrelevance postulate, in which we use minimal closure

equivalence to replace logical equivalence used in usual syntactic irrelevance postulates.
UR5 and UR6 depict the conditions that the order of revision and disjunction oper-

ations is exchangeable.
In summary, this set of postulates are natural counterparts of KM postulates in our

framework.
Remarks: Most of existing approaches modify AGM postulates to cope with new

revision procedures (e.g. revising total pre-orders). Our approach brings a fresh per-
spective to the problem of representing/revising pre-orders in which AGM can be used.
Our results may retrospectively appear to be obvious but note that it has not been con-
sidered before. Actually, it was not obvious that in order to revise a partial pre-order
by another (where a new representation of partial pre-order is needed), one can still use
AGM postulates.

3.3 Additional postulates

In [25], a postulate proposed for iterated belief revision on epistemic states is defined
as follows.

ER4* Φ ◦E ΨF ◦E ΘF ′
= Φ ◦E ΘF ′

where partition F ′ of W is a refinement of
partition F .

In which ◦E is an epistemic state revision operator, and Φ, ΨF , and ΘF ′
are all epis-

temic states which generalize formula-based belief representations.
In our framework ER4* is rewritten as follows:

UER4* For any S, SI , S
′
I ∈ SCC such that SI ⊆ S′I , then S ¯ SI ¯ S′I = S ¯ S′I .

UER4* states that given a prior set and two new inputs, if the latter input has a finer
structure than the former input, then the latter totally shadows the former in iterated
revision. This is clearly the counterpart of ER4* and represents an important result for
iterated revision.

We also propose additional properties inspired from Darwiche and Pearl’s iterated
belief revision postulates :

1 This is an essential difference between our framework with the framework in [4]. As an in-
stance of this difference, R2 is questioned in [4] and hence is not valid in the framework of [4]
whilst it is valid (after translation) in our framework.



UCR1 If w1 ≺ w2 ∈ Cm(SI), then w1 ≺ w2 ∈ Cm(S ¯ SI).
UCR2 If w1 ≈ w2 ∈ Cm(SI), then w1 ≈ w2 ∈ Cm(S ¯ SI).
UCR3 If w1 and w2 are incomparable in Cm(SI), then w1 R w2 ∈ Cm(S) iff

w1 R w2 ∈ Cm(S ¯ SI) (R is ≺ or ≈).

Here UCR1-3 are inspired from the semantic expression of DP postulates CR1-
CR4. UCR3 is its counterpart of CR1-CR2 in our framework, and it can be seen as a
counterpart of the relevance criterion [19]. It says that in case two elements are incom-
parable in the input, then the ordering between these two elements should be the same
in both initial state and revised state. This is inspired from CR1 and CR2 where the
ordering of models (resp. countermodels) of input is the same in both initial and revised
states.

UCR1-2 are inspired from CR3 and CR2, respectively. Also note that UCR1-2 are
implied by UR1.

Note that here any ties (e.g., w1 ≈ w2) in the input are preserved while in the
original work of [8], they are broken based on the information given by initial beliefs.

4 Examples of Revision Operators for Partial-Preorders

In this section, we give two examples of revision operators, introduced in [21], that
satisfy all postulates.

Match Revision The key idea of match revision is to remove any units in S which
join at least one minimal cycle in S ∪SI . Therefore, these units are potentially conflict-
ing with SI .

Definition 3 (Match Revision Operator, [21]) For any S, SI ∈ SCC , let S′ = Cm(S∪
SI) and let C be the set of all minimal cycles of S′, then the match revision operator
¯match is defined as:
S ¯match SI = Cm(S′ \ (

⋃
C∈C C \ SI)).

Example 3 Let S = {w3 ≺ w2, w2 ≺ w4, w4 ≺ w1, w3 ≺ w4, w3 ≺ w1, w2 ≺ w1}
and SI = {w1 ≺ w2, w4 ≺ w3}, then we have six minimal cycles in Cm(S∪SI). That
is

C1 : w1 ≺ w2, w2 ≺ w1, C2 : w1 ≺ w4, w4 ≺ w1,
C3 : w2 ≺ w4, w4 ≺ w2, C4 : w3 ≺ w2, w2 ≺ w3,
C5 : w3 ≺ w4, w4 ≺ w3, C6 : w1 ≺ w3, w3 ≺ w1.

Hence we have: S ¯match SI = Cm({w1 ≺ w2, w4 ≺ w3}) = {w1 ≺ w2, w4 ≺ w3}.

However, the match revision operator removes too many units from the prior state
S, as we can see from Example 3. In fact, if certain units are removed from S, then
there will be no cycles in S ∪SI , hence some other units subsequently could have been
retained. That is, there is no need to remove all the conflicting units at once, but one
after the other. This idea leads to the following inner and outer revision operators.



Inner Revision The basic idea of inner revision is to insert each unit of SI one by
one into S, and in the meantime, remove any unit in S that are inconsistent with the
inserted unit. Of course, the revision result depends on the order in which these units
from SI are inserted to S. Hence, only the units that exist in all revision results for any
insertion order should be considered credible for the final, consistent revision result.

For a set of units S, let PMT(S) denote the set of all permutations of the units in
S. For example, if S = {w1 ≺ w3, w2 ≺ w3}, then PMT(S) = {(w1 ≺ w3, w2 ≺
w3), (w2 ≺ w3, w1 ≺ w3)}.

Definition 4 For any S, SI ∈ SCC , let−→t = (t1, · · · , tn) be a permutation in PMT(SI),
then the result of sequentially inserting−→t into S one by one2, denoted as S−→

t
, is defined

as follows:

– Let Si be the resulted set by sequentially inserting t1, · · · , ti one by one. Let S′ =
Cm(Si ∪ {ti+1}) and C be the set of all minimal cycles of S′, then Si+1 = S′ \
(
⋃

C∈C C \ SI).
– S−→

t
= Sn.

The inner revision operator is defined as follows.

Definition 5 (Inner Revision Operator, [21]) For any S, SI ∈ SCC , the inner revision
operator is defined as:

S ¯in SI = Cm(
⋂

−→
t ∈PMT(SI)

S−→
t

). (1)

Example 4 Let S = {w3 ≺ w2, w2 ≺ w4, w4 ≺ w1, w3 ≺ w4, w3 ≺ w1, w2 ≺ w1}
and SI = {w1 ≺ w2, w4 ≺ w3}, then we have S(w4≺w3,w1≺w2) = {w1 ≺ w2,
w4 ≺ w3, w3 ≺ w1, w4 ≺ w1, w4 ≺ w2, w3 ≺ w2} and S(w1≺w2,w4≺w3) = {w1 ≺
w2, w4 ≺ w3, w3 ≺ w1, w3 ≺ w2, w4 ≺ w2, w4 ≺ w1}. Hence S ¯in SI = {w1 ≺
w2, w4 ≺ w3, w3 ≺ w1, w3 ≺ w2, w4 ≺ w2, w4 ≺ w1}.

Examining unit-based postulates For operators ¯in and ¯match, we have the fol-
lowing results.

Proposition 1 The revision operators ¯in and ¯match satisfy UR0-UR6.

This proposition shows that our revision operators satisfy all the counterparts of AGM-
style postulates proposed in Section 3.

Next we show that our revision operations satisfy UER4* and iteration properties:

Proposition 2 – For any S, SI , S
′
I ∈ SCC such that SI ⊆ S′I , then S ¯in SI ¯in

S′I = S ¯in S′I . We also have S ¯match SI ¯match S′I = S ¯match S′I .
– The revision operators ¯in and ¯match satisfy UCR1-UCR3.

To summarize, from the Proposition 2, we can conclude that match and inner revi-
sion operator satisfies many of the well-known postulates for belief revision and iterated
belief revision, which demonstrates that these strategies are rational and sound.

2 As two units like w ≈ w′ and w′ ≈ w are in fact the same, in this and the next section, this
type of units are considered as one unit and be inserted together.



5 Recovering lexicographic and natural belief revision

Now we come to show that the two well-known belief revision strategies (lexicographic
and natural revision) can be encoded as stated in our framework.

5.1 Recovering lexicographic revision

We first assume that an input, representing a propositional formula µ (a typical input in
the belief revision situation), is described by a modular order where:

– each model of µ is preferred to each model of ¬µ,
– models (resp. counter-models) of µ are incomparable.

That is, given µ, the corresponding input representing µ is denoted as Sµ
I = {w ≺

w′ : ∀w |= µ,w′ |= ¬µ}. Clearly for any consistent µ, Sµ
I ∈ SCC .

Then we have the following result.

Proposition 3 For any S ∈ SCC and any consistent µ, we have S ¯in Sµ
I = Sµ

I ∪
{wRw′ : w, w′ |= µ and wRw′ ∈ S} ∪ {wRw′ : w,w′ |= ¬µ and wRw′ ∈ S}.

Proof of Proposition 3: A sketch of the proof can be shown as follows. Let Ŝ =
S ¯in Sµ

I , then it is easy to show the following steps:

– Sµ
I ⊆ Ŝ.

The input is reserved in the revision result.
– {wRw′ : w, w′ |= µ and wRw′ ∈ S} ∈ Ŝ, {wRw′ : w, w′ |= ¬µ and wRw′ ∈

S} ∈ Ŝ.
It is easy to see that any unit wRw′ ∈ S such that w, w′ are both models of µ or
both counter-models of µ is consistent with Sµ

I . So any such unit is in Ŝ.
– Ŝ only contains units which can be induced from the above two steps. In fact, we

can find that Sµ
I ∪ {wRw′ : w, w′ |= µ ∧ wRw′ ∈ S} ∪ {wRw′ : w, w′ |=

¬µ ∧ wRw′ ∈ S} already forms a total pre-order over W (and hence is complete)
and obviously it is consistent. 2

That is, given the input Sµ
I representing µ, inner revision operator reduces to a

lexicographic revision [30] in the belief revision case. Hence obviously it follows the
spirit of AGM postulates [1], Darwiche and Pearl’s iterated belief revision postulates
[8], and the Recalcitrance postulate [30].

In [3] an extension of lexicographic revision of an epistemic state ¤initial (viewed
as a total pre-order), by an input in the form of another total pre-order, denoted here by
¤input, is defined. The obtained result is a new epistemic state, denoted by ¤lex (lex
for lexicographic ordering), and defined as follows:

– ∀w1, w2 ∈ W , if w1 ¤input w2 then w1 ¤lex w2.
– ∀w1, w2 ∈ W , if w1 =input w2 then w1 ¤lex w2 if and only if w1 ¤initial w2.

Namely, ¤lex is obtained by refining ¤input by means of the initial ordering ¤initial

for breaking ties in ¤input.
To recover this type of revision, it is enough to interpret ties in ¤input as incompa-

rable relations, namely:



Proposition 4 Let ¤initial and ¤input be two total pre-orders and ¤lex be the result
of refining ¤input by ¤initial as defined above. Let Sinitial be the set of all units in
¤initial, and Sinput be the set of strict relations in ¤input, namely, Sinput = {ω1 ≺ ω2

such that ω1 ¤input ω2} (i.e., ties in ¤input are not included in Sinput). Then we have
: Sinitial ¯in Sinput = Cm({ω1 ≺ ω2 such that ω1 ¤lex ω2}).

The above proposition shows that the lexicographic inference can be recovered when
both initial beliefs and input are total pre-ordered. Of course, our approach goes beyond
lexicographic belief revision since inputs can be partially pre-ordered.

5.2 Recovering natural belief revision

This section shows that inner revision allows to recover the well-known natural belief
revision proposed in [6] and hinted by Spohn [31]

Let ¤initial be a total pre-order on the set of interpretations representing initial
epistemic state. Let µ be a new piece of information. We denote by ¤N he result of
applying natural belief revision of ¤initial by φ. ω =N ω′ denotes that ω and ω′ are
equally plausible in the result of revision. Natural belief revision of ¤initial by µ con-
sists in considering the most plausible models of µ in ¤initial as the most plausible
interpretations in ¤N . Namely, ¤N is defined as follows:

– ∀ω ∈ min(φ, ¤initial), ∀ω′ ∈ min(φ, ¤initial), ω =N ω′

– ∀ω ∈ min(φ, ¤initial), ∀ω′ 6∈ min(φ, ¤initial), ω ¤N ω′

– ∀ω 6∈ min(φ, ¤initial), ∀ω′ 6∈ min(φ, ¤initial), ω ¤N ω′ iff ω ¤initial ω′.

In order to recover natural belief revision we will again apply inner revision. Let
us describe the input. We will denote by φ as a propositional formula whose models
are those of µ which are minimal in ¤initial. The input is described by the following
modular order ¤input where :

– each model of φ is preferred to each model of ¬φ, namely : ∀ω, ω′, if ω |= φ and
ω′ |= ¬φ then ω ¤input ω′

– models of φ are equally plausible, namely : ∀ω, ω′, if ω |= φ and ω′ |= φ then
ω =input ω′

– models of ¬φ are incomparable.

Then we have :

Proposition 5 Let ¤initial be a total pre-order associated with initial beliefs. Let µ be
a proposition formula and ¤N be the result of revising ¤initial by µ as defined above.
Let ¤input be a partial pre-order defined above. Let Sinitial (resp. Sinitial, SN ) be the
set of all units in ¤initial (resp. ¤input, ¤N ). Then we have : Sinitial¯inSinput = SN .

The above proposition shows that the natural belief revision can be recovered using
inner revision. And again, our framework goes beyond natural belief revision since
initial beliefs can be partially pre-ordered (while it is defined as totally pre-ordered in
[6]).



6 Discussions and Related works

In this section, first we briefly review some related works and then we present some
discussions on the difference between our approach and other revision approaches.

[15] and [17] in fact focus on revising with conditionals. Our unit w ≺ w′ can be
translated into (w|w ∨ w′) in the framework proposed in [17]. However, in [17], they
only consider initial and input epistemic states as ordinal conditional functions which
cannot encode a partial pre-order in general.

In [32], revision of partial orders is studied in a standard expansion and contraction
way, in which contraction uses a cut function which can be seen as a selection function,
and hence the result is not deterministic, whilst all revision operators proposed in this
paper provide deterministic results.

[28] only considers merging of partial pre-orders (which follows a different defini-
tion from this paper) instead of revision, so it departs from the work we investigated in
this paper.

Furthermore, we already showed that our approach can recover, as a particular case,
the lexicographic inference ([29], etc) when both the initial state and the input are either
a propositional formula or a total pre-order.

Lastly, note that our revision operations are totally different from Lang’s works on
preference (e.g. [20]) and Kern-Isberner’s revision with conditionals (e.g., [16]).

Remarks: A key question should be answered is: what is the difference between
revision in this paper and in other papers?

In existing approaches, when a revision strategy is extended to deal with some com-
plex task, two steps are commonly followed:

– generalizing the concept of “theory” (initial state) and input. For instance, in [25],
when the task is to revise an epistemic state, the representation of initial epistemic
state and the input was generalized that can recover almost all common uncertainty
representations. However, in most works, these representations extend the concept
of “propositional formulas” directly.

– extending or modifying AGM postulates, and several of them “get rid” of some
postulates. For instance, in [4], postulate R2 is removed and replaced by other pos-
tulates. [18] has suggested new postulates to deal with the idea improvements and
drop some of the AGM postulates.

In our approach, however, we propose revision operators from a different perspective.

– First, we keep all the AGM postulates even if our aim is to generalize the revision
process to deal with a very flexible structure which is a partial pre-order.

– Second, we consider very different components of the revision operation. Initial
epistemic state is no longer a propositional formula but a set of units. Similarly
for the input. With this change, some standard concepts need to be adapted, in
particular the concepts of consistency and entailment. We can illustrate this by the
following example taken from [4].

Example 5 Let W = {w1, w2, w3, w4}. Consider the following partial pre-order
representing the agent’s initial epistemic state Φ: w3 ≺B w2 ≺B w1 which means



w3 is the most preferred, w1 is the least preferred, and w4 is incomparable to
others.
Assume that the input is propositional formula µ with models w2 and w4, denoted
as [µ] = {w2, w4} (where [φ] represents the set of models of any propositional
formula φ). The aim is to revise the partial pre-order with µ.

Let us see how the two approaches behave (from representational point of view and
from axiomatic point of view).
In [4], from a representational point of view,
Epistemic state = Partial pre-order Φ
Input = Propositional formula µ
Output = Φ ◦ µ which is a propositional formula
From an axiomatic point of view, the example shows that R2 postulate (see R2 in
Section 3) maybe questionable. That is, in the example, the former approach only
keeps the possible world w4 that is incomparable to others while the latter also
keeps the minimal possible world w2 in the set of comparable possible worlds,
which is more reasonable.
Indeed, in this example:

[Bel(Φ)] = {w : w ∈ W ∧ @w′, w′ ≺B w} = {w3, w4},
[µ] = {w2, w4}.

So Bel(Φ) and µ are consistent and hence according to R2, Bel(Φ ◦ µ) = {w4}.
This is questionable as a result.
Therefore, in [4], they consider R2 is no longer valid when epistemic states are
partial pre-orders and they propose different alternatives for this postulate.
In our approach, from a representational point of view,
Epistemic state = Partial pre-orders represented by a set of units, i.e., S = Cm({w3 ≺
w2, w2 ≺ w1})
Input = Partial pre-orders represented by a set of units, i.e., SI = {w2 ≺
w1, w2 ≺ w3, w4 ≺ w1, w4 ≺ w3})

From an axiomatic point of view, we keep all AGM (or KM) postulates but co-
herence and entailment do not have the same meaning. In our approach, S and SI

are not consistent since in S we have w3 ≺ w2 while in SI we have w2 ≺ w3.
Therefore, the result of revision is not S ∪ SI .
What can we obtain with our approach in this example? We get Ŝ = Cm{w3 ≺
w1, w2 ≺ w3, w4 ≺ w3} in which the expected result is obtained with minimal
models: {w2, w4}.
In fact, in the definition of our revision operation, we do not focus on Bel(Φ),
instead, we focus on small components that compose the partial pre-orders.

7 Conclusion

Although logic-based belief revision is fully studied, revision strategies for ordering
information have seldom been addressed. In this paper, we investigated the issue of



revising a partial pre-order by another partial pre-order. We proposed a set of rationality
postulates to regulate this kind of revision. We also proved several revision operators
satisfy these postulates as well as some rational properties.

The fact that our revision operators satisfy the counterparts of the AGM style postu-
lates and the iterated revision postulate shows that our revision strategies provide ratio-
nal and sound approaches to handling revision of partial pre-orders. In addition, when
reducing to classical belief revision situation, our revision strategies become the lexi-
cographic revision. This is another indication that our revision strategies have a solid
foundation rooted from the classic belief revision field.

For future work, we will study the relationship between our revision framework and
revision strategies proposed for preferences.
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