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Abstract. Knowledge is an important component in many intelligent systems.
Since items of knowledge in a knowledge base can be conflicting, especially if
there are multiple sources contributing to the knowledge in this base, signifi-
cant research efforts have been made on developing inconsistency measures for
knowledge bases and on developing merging approaches. Most of these efforts
start with flat knowledge bases. However, in many real-world applications, items
of knowledge are not perceived with equal importance, rather, weights (which
can be used to indicate the importance or priority) are associated with items of
knowledge. Therefore, measuring the inconsistency of a knowledge base with
weighted formulae as well as their merging is an important but difficult task. In
this paper, we derive a numerical characteristic function from each knowledge
base with weighted formulae, based on the Dempster-Shafer theory of evidence.
Using these functions, we are able to measure the inconsistency of the knowledge
base in a convenient and rational way, and are able to merge multiple knowl-
edge bases with weighted formulae, even if knowledge in these bases may be
inconsistent. Furthermore, by examining whether multiple knowledge bases are
dependent or independent, they can be combined in different ways using their
characteristic functions, which cannot be handled (or at least have never been
considered) in classic knowledge based merging approaches in the literature.

Keywords Knowledge Bases, Characteristic Function, Inconsistency Measure, Merg-
ing, Evidence Theory.

1 Introduction

Logic based knowledge representation is used in many cases, such as software require-
ments [18], expert systems [20], belief merging [9]. In most of the applications, logic
based knowledge bases (KB) are flat, that is all formulae in the base are equally im-
portant. However, in some applications, such as requirement engineering [19], some
formulae can be more important than others. So ranked or stratified knowledge bases
are commonly deployed. The importance of a formula can also be modelled by attach-
ing a numerical value to the formula, which in some case is explained as a weight.

When a numerical value is attached to a logical formula, this value can be explained
in many different ways according to the semantics of this value. Some typical explana-
tions are belief degrees, preference degrees, truth degrees, trust degrees. In this paper,



we consider a numerical value as a weight indicating the importance (or priority) of
this formulae w.r.t other formulae in the same knowledge base and we study both flat
KBs in which all the logical formulae are viewed as equally important and weighted
knowledge bases in which each formula is associated with a weight.

It should be noted that the meaning of a knowledge base having weights attached
to them is different from the weighted knowledge bases discussed in [10], in which a
weighted knowledge base means that a knowledge base as a whole is attached with a
weight representing the relative degree of importance (or reliability) of the source from
which the knowledge base is derived.

There are two frequently studied topics for knowledge bases. One is on measuring
the inconsistency of a knowledge base (e.g., [18, 8]) and the other is the merging of mul-
tiple knowledge bases e.g., [9, 12, 13]). Most of these approaches deploy logic-based
formalisms, even when priorities or degrees of certainty are involved. An interesting
phenomenon is that although these two issues are closely related (if we view the aim
of merging is to obtain a consistent knowledge base), their solutions usually follow dif-
ferent paths. Therefore, a natural question is: can we develop an underlying formalism
which can handle both of the issues simultaneously?

Another potential problem on merging multiple knowledge bases is that, so far in
the literature, merging of knowledge bases does not really consider any possible depen-
dency relationship among knowledge bases, which subsequently causes the difficulty
of justifying a merging result. For example, if two experts have provided their knowl-
edge in terms of weighted formulae, and one expert has been heavily influenced by
another, then their knowledge bases are not totally independent. That is if K1,K2 are
the two knowledge bases from these two experts, and they are represented as K1 =
K2 = {(α, 0.8), (β, 0.2)}, then the merging result K should be identical to either of
them, if K1 and K2 are dependent. On the other hand, if K1 and K2 are independent,
then we should expect that the weight on α being increased and the weight on β being
decreased. Formally, K should be {(α, x), (β, y)} such that x > 0.8 and y < 0.2. That
is, whether some knowledge bases have a dependent relationship should influence how
merging should be carried out. However, this issue has not been explicitly discussed in
classical logic based approaches for merging knowledge bases in the literature. Thus,
another question could be asked here is: can we reflect the information on dependency
relationship among knowledge bases when performing merging?

In this paper, we provide positive answers for both questions mentioned above. We
propose a characteristic function for a knowledge base with formulae having weights,
and a flat knowledge base is treated as a special case where all formulae having the
same weight. The characteristic function entails all the information of a knowledge
base provides and hence can be used to measure the inconsistency of the knowledge
base and to handle the merging of multiple knowledge bases. Characteristic functions
are defined in the form of basic probability assignments in the Dempster-Shafer (DS)
theory [3, 4, 21, ?,?].

Example 1 In [16, 17, 15], an intelligent surveillance system was designed and devel-
oped. In this project, interested events are recognized from analyzing data coming from
different sources (e.g., cameras) and these event descriptions usually contain uncertain
information, such as, an gender-profile event describes a passenger as a Male with 70%
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probability and the rest is unknown. Hence DS theory is introduced to model the uncer-
tainty implied in the events and combination approaches are applied to combine gender
recognition events descriptions from multiple sources. Furthermore, a knowledge base
is developed which contain inference rules for inferring high-level events from a set of
elementary recognized events.

Rules are elicited from domain experts. Each expert provides its knowledge contain-
ing multiple rules, each of which is attached with a weight indicating its importance.
Examples of simple rules are as follows:

Let a denote a passenger A is a male, b denote A is shouting, c denote A is dan-
gerous, and d denote A is an old lady. Then an expert’s knowledge could contain
K = {(a ∧ b → c, 0.8), (d ∧ b → ¬c, 0.2)} which is semantically explained as if
a passenger A is a Male and A is shouting, then passenger A is dangerous, if a passen-
ger A is an old lady and A is shouting, then passenger A is not dangerous.

Here, numerical values 0.8 and 0.2 are the weights of these two rules, which says
that a rule indicating a dangerous event is more important than otherwise1.

When different experts provide their knowledge in terms of such knowledge base
with weighted formulae, we need to merge them. This can be achieved by using their
corresponding characteristic functions.

This characteristic function approach also absorbs some nutrients from papers such
as [1, 13, 14], etc., in which methods of inducing probability measures from knowledge
bases are studied that demonstrates the demand and usefulness of quantitative methods
on managing knowledge bases.

The main contribution of this paper is as follows:

– From a knowledge base with weighted formulae, a unique basic belief assignment
(bba) can be recovered. To the best of our knowledge, there is no paper having
emphasized this point.

– We show that the associated bba could be used to measure the inconsistency of
the knowledge base and to merge multiple knowledge bases in a quantitative way
that is beyond the usual approaches in the knowledge base inconsistency measure /
merging fields.

– We show that merging of knowledge bases can take into account dependencies
between knowledge bases using this approach.

The rest of the paper is organized as follows. In Section 2, we recall some basic
concepts and notations of propositional language, knowledge bases and the evidence
theory. In Section 3, we define the characteristic function of a knowledge base. In Sec-
tion 4, we provide an inconsistency measure of a knowledge base and show some ratio-
nal properties of this inconsistency measure. In Section 5, we discuss various merging
methods of knowledge bases using their characteristic functions. Finally, in Section 6,
we conclude the paper.

1 It should be noted that this weight about the importance of the rule should not be confused
with a statistical value (such as 0.8) showing the likelihood of how dangerous a shouting male
passenger could be. The later is explained as that when a male passenger is shouting, there is
80% chance this will lead to a dangerous consequence.
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2 Preliminaries

2.1 Knowledge Bases

Here we consider a propositional language LP defined from a finite set P of propo-
sitional atoms, which are denoted by p, q, r etc (possibly with sub or superscripts). A
proposition φ is constructed by atoms with logical connectives ¬,∧,∨ in the usual way.
An interpretation w (or possible world) is a function that maps P onto the set {0, 1}.
The set of all possible interpretations on P is denoted as W . Function w ∈ W can be
extended to any propositional sentence in LP in the usual way, w : LP → {0, 1}. An
interpretation w is a model of (or satisfies) φ iff w(φ) = 1, denoted as w |= φ. We use
Mod(φ) to denote the set of models for φ.

For convenience, let form({w1, · · · , wn}) be the formula whose models are exactly
w1, · · · , wn, and also form(A) denote a formula µ such that Mod(µ) = A.

A flat knowledge base K is a finite set of propositional formulas. K is consistent iff
there is at least one interpretation that satisfies all the propositional formulas in K.

A weighted knowledge base K is a finite set of propositional formulas, each of
which has a numerical value, called weight, attached to it i.e., {(µ1, x1), · · · , (µn, xn)}
where ∀i, 0 < xi ≤ 1. In fact, the requirement xi ∈ [0, 1] can be relaxed to allow xi

taking any positive numerical value. In that case, a normalization step will reduce each
xi to a value within [0, 1]. Obviously, if all xis are equivalent, then a weighted knowl-
edge base is reduced to a flat knowledge base. Conversely, a flat knowledge base can
be seen as a weighted knowledge base, e.g., K = {(µ1,

1
n ), · · · , (µn, 1

n )}. Therefore,
for convenience, in the rest of the paper, we refer to all knowledge bases as weighted
knowledge bases.

For a weighted knowledge base K = {(µ1, x1), · · · , (µn, xn)}, we let K̂ = {µ1, · · · , µn}
be its corresponding flat knowledge base in which the weights of all the formulae of K
are removed. For a formula µ, we write µ ∈ K if and only if µ ∈ K̂. In addition, K is
consistent if and if K̂ is consistent.

If a classical knowledge base K̂ is inconsistent, then we can define its minimal
inconsistent subsets as follows [2, 7]:

MI(K̂) = {K̂ ′ ⊆ K̂|K̂ ′ ` ⊥ and ∀K̂ ′′ ⊂ K̂ ′, K̂ ′′ 6` ⊥}.

A free formula of a knowledge base K̂ is a formula of K̂ that does not belong to
any minimal inconsistent subset of the knowledge base K̂ [2, 7]. A free formula in a
weighted knowledge base K is defined as a free formula of K̂.

2.2 Evidence Theory

We also recall some basic concepts of Dempster-Shafer’s theory of evidence.
Let Ω be a finite set called the frame of discernment (or simply frame). In this paper,

we denote Ω = {w1, . . . , wn}.

Definition 1 A basic belief assignment (bba for short) is a mapping m : 2Ω → [0, 1]
such that

∑
A⊆Ω m(A) = 1.
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A bba m is also called a mass function when m(∅) = 0 is required. A vacuous bba
m is such that m(Ω) = 1.

If m(A) > 0, then A is called a focal element of m. Let F (m) denote the set of the
focal elements of m. That is, if A is a focal elements of m, then A ∈ F (m).

Let ⊕ be the conjunctive combination operator (or Smets’ operator [22]) for any
two bbas m, m′ over Ω such that

(m⊕m′)(C) =
∑

A⊆Ω,B⊆Ω,A∩B=C

m(A)m′(B),∀ C ⊆ Ω.

Particularly, we have:

(m⊕m′)(∅) =
∑

A⊆Ω,B⊆Ω,A∩B=∅
m(A)m′(B). (1)

A simple bba m such that m(A) = x,m(Ω) = 1 − x for some A 6= Ω is denoted
as Ax. The vacuous bba can thus be denoted as A0 for any A ⊂ Ω. By abuse of
notations, we also use µx to denote the simple bba Ax where A = Mod(µ). Note that
this notation, i.e., Ax, is a different from the one defined in [5] such that Ax in our paper
should be denoted as A1−x based on explanations in [5].

3 Characteristic Functions

In this section, we define characteristic functions for knowledge bases.
A first and direct thought for characteristic function of a knowledge base K =

{(µ1, x1), · · · , (µn, xi)} is to define it as follows.

m′
K(Mod(µi)) = xi, 1 ≤ i ≤ n.

But this characteristic function definition brings many problems. For example, it is
difficult to use this characteristic function to measure inconsistency of a single knowl-
edge base. Since the usual way of defining inconsistency of a mass function is its empty
mass. Hence, a simple definition of the inconsistency of K could be:

Inc′(K) = (m′
K ⊕m′

K)(∅).
That is, the internal inconsistency of K is the empty mass when K interacts with itself,
i.e., m′

K ⊕m′
K .

But it does not give reasonable results. For instance, if m′
K is such that m′

K({w1, w2}) =
m′

K({w1, w3}) = m′
K({w2, w3}) = 1

3 , then we have (m′
K ⊕ m′

K)(∅) = 0. But the
corresponding knowledge base K̂ = {(form({w1, w2}), 1

3 ), (form({w1, w3}), 1
3 ),

(form({w2, w3}), 1
3 )} is not consistent since form({w1, w2}) ∧ form({w1, w3}) ∧

form({w2, w3}) ` ⊥.
Therefore, we define our characteristic function for a weighted knowledge base as

follows.

Definition 2 For any weighted knowledge base K = {(µ1, x1), · · · , (µn, xi)}, its cor-
responding characteristic function is mK such that mK = ⊕n

i=1µ
xi
i .
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This characteristic function makes use of both the formulae (µi) in K and their weights
(xi), which produces a bba that is a kind of characterization of K. More precisely,
the defined characteristic function mK is unique for K. That is, if K1 and K2 are
logically different2, then mK1 should also be different from mK2 . This is ensured by
the following result [5]:

A bba m such that m(Ω) > 0 can be uniquely decomposed into the following form:

m = ⊕φ:Mod(φ)⊂Ωφxφ , xφ ∈ [0, 1]. (2)

That is, if mK1 = mK2 , then based on Equation 2, they have the same decom-
position and hence the same knowledge base (in a sense that vacuous information is
ignored). Equation 2 also demonstrates that the bba mK encodes all the information
contained in K. In fact, we can easily recover K from mK with a few steps. Since
recovering K is not the main focus of this paper, and due to the space limitation, the
details of how to recover µi and xi from mK is omitted here. Interested readers could
be refer to [5].

A simple result about this characteristic function is shown as follows.

Proposition 1 For any weighted knowledge base K and any x such that 0 < x ≤ 1,
we have mK = mK

⋃
{>,x}.

That is, vacuous information does not change the characteristic function. This is an intu-
itive result and it does not contradict the former statement that mK induces a unique K,
since vacuous information in K could somehow be ignored. For example, if someone
tells you: tomorrow will be either sunny or not sunny. Obviously this piece of vacuous
information could be ignored.

4 Inconsistency Measure

In this section, we use the characteristic function of a knowledge base to measure its
inconsistency. In addition, we prove that this inconsistency measure satisfies a set of
rational properties proposed in [7].

Definition 3 For any weighted knowledge base K, the inconsistency measure of K is
defined as:

Inc(K) = mK(∅).
Taking mK(∅) as the inconsistency measure for K is very natural since in DS theory,
mK(∅) is a largely used to measure the degree of conflict between beliefs of agents3.

Now we show that this definition of inconsistency satisfies some intuitive properties.
In [7], a set of properties that an inconsistency measure I for a knowledge base shall
have is proposed as follows.

2 That is, two different but logically equivalent formulas are considered equivalent here.
3 While in several papers, most notably in [11], it is argued that mK(∅) is not enough for an

inconsistency measure for bbas. However, in most applications, mK(∅) is still being used to
measure the inconsistency between bbas.
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Definition 4 ([7]) An inconsistency measure I is called a basic inconsistent measure if
it satisfies the following properties:

for any flat knowledge bases K, K ′ and any two formulae α, β:

Consistency I(K) = 0 iff K is consistent
Normalization 0 ≤ I(K) ≤ 1
Monotony I(K

⋃
K ′) ≥ I(K)

Free Formula Independence If α is a free formula of K
⋃{α}, then I(K

⋃{α}) =
I(K)

Dominance If α ` β and α 6` ⊥, then I(K
⋃{α}) ≥ I(K

⋃{β})
For weighted knowledge bases, the above definition should be adapted to:

Definition 5 An inconsistency measure I is called a basic inconsistent measure for
weighted knowledge bases if it satisfies the following properties:

for any weighted knowledge bases K, K ′, any two formulae α, β and any real x,
0 < x ≤ 1:

Consistency Inc(K) = 0 iff K is consistent.
Normalization 0 ≤ Inc(K) ≤ 1.
Monotony Inc(K

⋃
K ′) ≥ Inc(K).

Free Formula Independence If α is a free formula of K
⋃{(α, x)}, then Inc(K

⋃{(α, x)}) =
Inc(K).

Dominance If α ` β and α 6` ⊥, then Inc(K
⋃{(α, x)}) ≥ Inc(K

⋃{(β, x)}).
We prove that our inconsistency measure satisfies all the above properties. In addi-

tion, we show that our inconsistency measure satisfies a Strong Free Formula Indepen-
dence property as follows.

Strong Free Formula Independence Inc(K
⋃{(α, x)}) = Inc(K) if and only if α

is a free formula of K
⋃{(α, x)}.

Proposition 2 For any weighted knowledge base K, Inc(K) is a basic inconsistency
measure. In addition, Inc(K) satisfies the Free Formula Independence property.

Proof of Proposition 2:

Consistency Inc(K) = 0 iff K is consistent.
Inc(K) = 0 iff ∀µi ∈ K,

⋂n
i=1 µi 6` ⊥ iff K is consistent.

Normalization 0 ≤ Inc(K) ≤ 1.
Obvious.

Monotony Inc(K
⋃

K ′) ≥ Inc(K).
We show that for any formula α and 0 < x ≤ 1, Inc(K

⋃{(α, x)}) ≥ Inc(K). In
fact, we have

Inc(K
⋃
{(α, x)}) = m(K

⋃
{(α,x)})(∅)

= mK(∅) +
∑

A∈F(mK),A 6=∅,A∩Mod(α)=∅
mK(A)× x

≥ mK(∅)
= Inc(K),
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hence without loss of generality, assume K ′ = {(α1, x1), · · · , (αn, xn)}, we then
have

Inc(K) ≤ Inc(K
⋃
{(α1, x1)})

≤ · · ·
≤ Inc(K

⋃
K ′)

Free Formula Independence If α is a free formula of K
⋃{(α, x)}, then Inc(K

⋃{(α, x)}) =
Inc(K).
If α is a free formula of K

⋃{(α, x)}, then there does not exist A ∈ F (mK) and
A 6= ∅, s.t., A ∩Mod(α) = ∅, hence we have

Inc(K
⋃
{(α, x)}) = mK(∅) +

∑

A∈F(mK),A 6=∅,A∩Mod(α)=∅
mK(A)× x

= mK(∅)
= Inc(K).

Dominance If α ` β and α 6` ⊥, then Inc(K
⋃{(α, x)}) ≥ Inc(K

⋃{(β, x)}).
It is straightforward from a simple fact that for any A ∈ F (mK) and A 6= ∅, if
A ∩Mod(β) = ∅, then A ∩Mod(α) = ∅, hence

Inc(K
⋃
{(β, x)}) = mK(∅) +

∑

A∈F(mK),A6=∅,A∩Mod(β)=∅
mK(A)× x

≤ mK(∅) +
∑

A∈F(mK),A6=∅,A∩Mod(α)=∅
mK(A)× x

= Inc(K
⋃
{(α, x)})

Strong Free Formula Independence Inc(K
⋃{(α, x)}) = Inc(K) if and only if α

is a free formula of K
⋃{(α, x)}.

It is obvious from the prove of Free Formula Independence property. 2

It is worth pointing out that our inconsistency measure can be naturally used to deal
with weighted knowledge bases in addition to flat knowledge bases, while the existing
inconsistency measures based on minimal inconsistency subsets or from a classic logic-
based approach are incapable of tackling with weighted knowledge bases.

Example 2 Let K1 = {(α, 0.8), (α ∨ β, 0.2)} and K2 = {(α, 0.6), (β, 0.3), (α ∨
β, 0.1)}. Then the characteristic function of K1, i.e., mK1 , is such that

mK1(α) = 0.8,mK1(α ∨ β) = 0.2.

Hence it is easy to see that Inc(K1) = 0.
Then the characteristic function of K2, i.e., mK2 , is such that

mK2(∅) = 0.18,mK2(α) = 0.42, mK2(β) = 0.12, mK2(α ∨ β) = 0.28.

Hence we easily get Inc(K2) = 0.18.
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5 Merging

In this section, we discuss the merging of weighted knowledge bases using their char-
acteristic functions. Since characteristic functions are in the form of bbas, the merging
methods are hence based on combination rules of bbas in DS theory. There are many
different combination rules for bbas, which are similar to the many different merging
strategies for knowledge bases. For simplicity, here we only mention Dempster’s rule
and Didier & Prade’s hybrid rule.

For convenience and convention, if there is no confusion, in the following we may
use both sets and formulae, e.g., m(∅) = 0.4, m(φ) = 0.6, etc., just be noted that any
propositional formulae used in these situations, like φ, are in fact standing for Mod(φ).
Conversely, when we write K = {(A, 0.5), (B, 0.3)}, it simply means
K = {(form(A), 0.5), (form(B), 0.3)}. This short-hand notation is simply for mak-
ing the mathematical formulas shorter and does not suggest any technical changes.

The subsequent definitions use combination rules of bbas, but as our aim is to merge
knowledge bases, we will call them merging methods. Therefore, in the following, each
definition defines a merging method for merging weighted knowledge bases using their
characteristic functions. Also note that the merging methods only give the characteristic
function for the merged knowledge base since from this function, its corresponding
knowledge base can be easily induced (Equation (2), cf. [5] for details).

Definition 6 (Dempster’s Merging, [3, 4, 21]) Let K1, K2 be two knowledge bases and
mK1 ,mK2 be their characteristic functions, respectively, then the characteristic func-
tion mK12 of the merged knowledge base by Dempster’s combination rule is such that:

mDem
K12

(A) =

∑
B,C⊆Ω,B∩C=A m1(B)m2(C)

1−∑
B,C⊆Ω,B∩C=∅m1(B)m2(C)

, ∀A ⊆ Ω,A 6= ∅,

mDem
K12

(∅) = 0.

Definition 7 (Dubois and Prade’s Merging, [6]) Let K1,K2 be two knowledge bases
and mK1 ,mK2 be their characteristic functions, respectively, then the characteristic
function mK12 of the merged knowledge base by DP’s combination rule is such that:

mDP (∅) = 0

mDP (A) =
∑

B,C⊆Ω,B∩C=A m1(B)m2(C)

+
∑

B,C⊆Ω,B∪C=A,B∩C=∅m1(B)m2(C), ∀A ⊆ Ω,A 6= ∅
In Dempster’s merging, weights of conflicting formulae are proportionally distributed
to formulae resulted from intersection of non-conflicting formulae. Instead, in Dubois
& Prade’s Merging, weights of conflicting formulae are added to the disjunction of the
conflicting formulae.

Example 3 (Example 2 Continued) In Example 2, we have that the characteristic func-
tion of K1, i.e., mK1 , is such that mK1(α) = 0.8,mK1(α ∨ β) = 0.2, and the
characteristic function of K2, i.e., mK2 , is such that mK2(∅) = 0.18,mK2(α) =
0.42, mK2(β) = 0.12,mK2(α ∨ β) = 0.28, then we can get the following merging
results using the above merging methods.
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Dempster’s Merging mDem
K12

is such that

mDem
K12

(α) = 0.89,mDem
K12

(β) = 0.03,mDem
K12

(α ∨ β) = 0.08

DP’s Merging mDP
K12

is such that

mDP
K12

(α) = 0.788,mDP
K12

(β) = 0.024,mDP
K12

(α ∨ β) = 0.188

Note that the above merging methods are not idempotent but have a reinforcement
effect. That is, in general, we do not have ∆(K, K) = K when ∆ is a merging operator
defined by one of the above merging methods. Reinforcement merging is rational when
the knowledge bases to be merged are from distinct sources. However, for knowledge
bases from nondistinct sources (i.e., sources providing possibly overlapping knowledge
[5]), we intuitively require the merging to be idempotent. To the best of our knowledge,
we do not see any idempotent merging methods for knowledge bases in the literature,
here we provide an idempotent merging method based on the cautious rule of combina-
tion introduced in [5].

Definition 8 (Denœux’s Cautious Merging) Let K1,K2 be two knowledge bases and
mK1 ,mK2 be their characteristic functions, s.t., mK1 = ⊕A⊂ΩAx1

A and mK2 =
⊕A⊂ΩAx2

A , respectively, then the characteristic function mK12 of the merged knowl-
edge base by Denœux’s cautious combination rule is such that (again notice that our
AxA setting is different from Denœux’s):

mDen
K12

= ⊕A⊂ΩAmax(x1
A,x2

A),∀A ⊂ Ω.

Example 4 (Example 2 Continued) In Example 2, the characteristic function of K1,
i.e., mK1 , is such that mK1(α) = 0.8, mK1(α ∨ β) = 0.2, and the characteristic
function of K2, i.e., mK2 , is such that mK2(∅) = 0.18,mK2(α) = 0.42, mK2(β) =
0.12, mK2(α ∨ β) = 0.28, then the characteristic function of the merging result using
Denœux’s merging method, i.e., mDen

K12
, is as follows.

mDen
K12

(∅) = 0.24, mDen
K12

(α) = 0.56, mDen
K12

(β) = 0.06, mDen
K12

(α ∨ β) = 0.14.

From the characteristic functions, the corresponding knowledge base for mDen
K12

is:

KDen = {(α, 0.8), (β, 0.3)}.
For Denœux’s merging method, we have the following result.

Proposition 3 Let two knowledge bases K1,K2 be K1 = {(µ1, x1), · · · , (µn, xn)}
and K2 = {(φ1, y1), · · · , (φm, ym)}, then the merging result of K1 and K2 using
Denœux’s merging method is K12 = {(ψ1, z1), · · · , (ψt, zt)} such that K12 is a subset
of K1

⋃
K2 satisfying the following conditions:

– if µi ≡ >, 1 ≤ i ≤ n, then (µi, xi) 6∈ K12; if φj ≡ >, 1 ≤ j ≤ m, then
(φj , yj) 6∈ K12,
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– if µi ≡ φj , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and xi > yj (resp. yj > xi), then (φj , yj) 6∈
K12 (resp. (µi, xj) 6∈ K12),

– all other elements of K1 or K2 are in K12.

Proof of Proposition 3: From K1 = {(µ1, x1), · · · , (µn, xn)} and
K2 = {(φ1, y1), · · · , (φm, ym)}, we get mDen

K1
= ⊕n

i=1µ
xi
i and mDen

K2
= ⊕m

j=1φ
yj

j .
Let {φj1 , · · · , φja} be the set of all formulae each of which is in K2 but not in K1,

then we have mDen
K1

= ⊕n
i=1µ

xi
i ⊕ φ0

j1
⊕ · · · ⊕ φ0

ja
.

Similarly, let {µi1 , · · · , µib
} be the set of all formulae each of which is in K1 but

not in K2, we have mDen
K2

= ⊕m
j=1φ

yj

j ⊕ µ0
i1
⊕ · · · ⊕ µ0

ib
.

Hence from Definition 8, it is straightforward to see that the merged characteristic
function corresponds to the knowledge base K12 which is exactly the same as stated in
Proposition 3. 2

Proposition 3 makes it convenient to solve the merging of nondistinct knowledge
bases. For instance, from Proposition 3, it is easy to obtain KDen = {(α, 0.8), (β, 0.3)}
from K1 = {(α, 0.8), (α ∨ β, 0.2)} and K2 = {(α, 0.6), (β, 0.3), (α ∨ β, 0.1)}.

In the literature, a basic assumption for knowledge base merging is that the knowl-
edge bases to be merged should be consistent. This assumption is often not applicable
in practice, as argued in many research work discussing the inconsistency of a knowl-
edge base (e.g., [18, 7, 8]). An obvious advantage of our merging methods is that they
do not require this assumption. That is, even for inconsistent knowledge bases, it is
still possible to merge them and obtain rational fusion results. The second advantage is
that we can deal with knowledge bases from nondistinct sources. Usually logic-based
merging methods do not consider whether the knowledge bases to be combined are
from distinct sources. In this paper, however, if the information sources are known to
be distinct, then Dempster’s merging method, Smets’s, Yager’s, or Dubois and Prade’s
merging method can be chosen, whilst if the sources are known to be nondistinct, then
Denœux’s merging method can be selected. This differentiation of merging methods
based on dependency relationship among knowledge bases is obviously more suitable.
Of course, proper methods should be developed to judge whether two knowledge bases
are dependent or not, but this topic is beyond the scope of this paper.

6 Conclusion

In this paper, we introduced a bba based characteristic function for any weighted knowl-
edge base which take flat knowledge bases as a special case. We then used the character-
istic function to measure the inconsistency of the knowledge base and proved that this
inconsistency measure follows a set of rational properties. We also deployed the charac-
teristic functions to merge multiple knowledge bases. Different merging methods were
provided corresponding to different combination rules of bbas. These merging methods
could provide some advantages than the existing merging methods, e.g., the ability to
merge inconsistent knowledge bases, the use of distinctness information of knowledge
sources, etc.

An obvious future work is to apply these methods in intelligent surveillance appli-
cations. In addition, extending this approach to stratified/prioritized/ranked knowledge
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bases is also an interesting topic with the help of the non-Archimedean infinitesimals
[13]. Furthermore, providing comparisons with related works, e.g., our inconsistency
measure vs. inconsistency measures in [7]; our merging methods vs. the existing merg-
ing methods and merging postulates [9], etc., is a promising issue.
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