
Evidential Fusion for Gender Profiling

Jianbing Ma and Weiru Liu and Paul Miller

School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, Belfast BT7 1NN, UK

{jma03,w.liu}@qub.ac.uk, p.miller@ecit.qub.ac.uk

Abstract. Gender profiling is a fundamental task that helps CCTV systems to
provide better service for intelligent surveillance. Since subjects being detected
by CCTVs are not always cooperative, a few profiling algorithms are proposed
to deal with situations when faces of subjects are not available, among which
the most common approach is to analyze subjects’ body shape information. In
addition, there are some drawbacks for normal profiling algorithms considered
in real applications. First, the profiling result is always uncertain. Second, for a
time-lasting gender profiling algorithm, the result is not stable. The degree of
certainty usually varies, sometimes even to the extent that a male is classified
as a female, and vice versa. These facets are studied in a recent paper [16] us-
ing Dempster-Shafer theory. In particular, Denoeux’s cautious rule is applied for
fusion mass functions through time lines. However, this paper points out that if
severe mis-classification is happened at the beginning of the time line, the re-
sult of applying Denoeux’s rule could be disastrous. To remedy this weakness,
in this paper, we propose two generalizations to the DS approach proposed in
[16] that incorporates time-window and time-attenuation, respectively, in apply-
ing Denoeux’s rule along with time lines, for which the DS approach is a special
case. Experiments show that these two generalizations do provide better results
than their predecessor when mis-classifications happen.
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1 Introduction

Nowadays, CCTV systems are broadly deployed in the present world, e.g., Florida
School Bus Surveillance project [1], the First Glasgow Bus Surveillance [21], Federal
Intelligent Transportation System Program in the US [20], Airport Corridor Surveil-
lance in the UK [19, 17, 18, 13], etc. However, despite the wide-range use of CCTVs,
the impact on anti-social and criminal behaviour has been minimal. For example, as-
saults on bus and train passengers are still a major problem for transport operators. That
is, surveillance systems are not capable of reacting events of interest instantly.

A key requirement for active CCTV systems is to automatically determine the threat
posed by each individual to others in the scene. Most of the focus of the computer vi-
sion community has been on behaviour/action recognition. However, experienced se-
curity analysts profile individuals in the scene to determine their threat. Often they can
identify individuals who look as though they may cause trouble before any anti-social



behaviour has occurred. From criminology studies, the vast majority of offenders are
young adolescent males. Therefore, key to automatic threat assessment is to be able to
automatically profile people in the scene based on their gender and age. In this paper,
we focus on the former.

Although it is a fundamental task for surveillance applications to determine the gen-
der of people of interest, however, normal video algorithms for gender profiling (usually
face profiling) have three drawbacks. First, the profiling result is always uncertain. Sec-
ond, for a time-lasting gender profiling algorithm, the result is not stable. The degree of
certainty usually varies, sometimes even to the extent that a male is classified as a fe-
male, and vice versa. Third, for a robust profiling result in cases were a person’s face is
not visible, other features, such as body shape, are required. These algorithms may pro-
vide different recognition results - at the very least, they will provide different degrees
of certainties. To overcome these problems, in [16], an evidential (Dempster-Shafer’s
(DS) theory of evidence) approach is proposed that makes use of profiling results from
multiple profiling algorithms using different human features (e.g., face, full body) over
a period of time, in order to provide robust gender profiling of subjects in video. Exper-
iments show that this approach provides better results than a probabilistic approach.

DS theory [2, 22, 8, 9] is a popular framework to deal with uncertain or incomplete
information from multiple sources. This theory is capable of modelling incomplete
information through ignorance. For combining difference pieces of information, DS
theory distinguishes two cases, i.e., whether pieces of information are from distinct,
or non-distinct, sources. Many combination rules are proposed for information from
distinct sources, among which are the well-known Dempster’s rule [22], Smets’ rule
[23], Yager’s rule [24], and Dubois & Prade’s hybrid rule [4], etc. In [3], two combi-
nation rules, i.e., the cautious rule and the bold disjunctive rule, for information from
non-distinct sources are proposed. Therefore, gender profiling results from the same
classifier, e.g. face-based, at different times are considered as from non-distinct sources
while profiling results from different classifiers are naturally considered as from distinct
sources.

In [16], for gender profiling results from the same classifier at different time points,
Denoeux’s cautious rule [3] is used to combine them. For profiling results from dif-
ferent classifiers (i.e., face profiling and full body profiling), Dempster’s rule [2, 22] is
introduced to combine them. And finally, the pignistic transformation is applied to get
the probabilities of the subject being male or female.

However, if severe mis-classification happens at the beginning of the time line, the
result of applying Denoeux’s rule could be disastrous. For instance, if a subject is clas-
sified as a female with a certainty degree 0.98, and later on it is classified as a male
with certainty degrees from 0.85 to 0.95, then by Denoeux’s cautious rule, it will be
always classified as a female. In order to remedy this weakness, in this paper, we pro-
pose two generalizations on applying Denoeux’s rule through time lines, in which one
uses time-window and the other uses time-attenuation, respectively. In the time-window
generalization, Denoeux’s rule is applied only for the most recent n frames where n is
a pre-given threshold depending on the time length. In the time-attenuation general-
ization, the certainty degree is reduced gradually by time at a pre-defined attenuation
factor. Experiments show that these two generalizations do provide better results when
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mis-classifications happen, but they have to pay the price of performing less accurate in
other situations than the fusion method proposed in [16]. In summary, we can say these
two generalizations are more robust than their predecessor.

The rest of the paper is organized as follows. Section 2 provides the preliminaries on
Dempster-Shafer theory. Subsequently, Section 3 introduces the two generalizations of
the DS approach. In Section 4, we discuss the difficulties in gender profiling in terms of
scenarios. Section 5 provides experimental results which shows our generalizations per-
form better than its predecessor and a classic fusion approach as well as single profiling
approaches. Finally, we conclude the paper in Section 6.

2 Dempster-Shafer Theory

For convenience, we recall some basic concepts of Dempster-Shafer’s theory of evi-
dence. Let Ω be a finite, non-empty set called the frame of discernment, denoted as,
Ω = {w1, · · · , wn}.

Definition 1 A basic belief assignment(bba) is a mapping m : 2Ω → [0, 1] such that∑
A⊆Ω m(A) = 1.

If m(∅) = 0, then m is called a mass function. If m(A) > 0, then A is called a focal
element of m. Let Fm denote the set of focal elements of m. A mass function with
only a focal element Ω is called a vacuous mass function.

From a bba m, belief function (Bel) and plausibility function (Pl) can be defined
to represent the lower and upper bounds of the beliefs implied by m as follows.

Bel(A) =
∑

B⊆A m(B) and Pl(A) =
∑

C∩A 6=∅ m(C). (1)

One advantage of DS theory is that it has the ability to accumulate and combine
evidence from multiple sources by using Dempster’s rule of combination. Let m1 and
m2 be two mass functions from two distinct sources over Ω. Combining m1 and m2

gives a new mass function m as follows:

m(C) = (m1 ⊕m2)(C) =
∑

A∩B=C m1(A)m2(B)
1−∑

A∩B=∅m1(A)m2(B)
(2)

In practice, sources may not be completely reliable, to reflect this, in [22], a discount
rate was introduced by which the mass function may be discounted in order to reflect
the reliability of a source. Let r (0 ≤ r ≤ 1) be a discount rate, a discounted mass
function using r is represented as:

mr(A) =
{

(1− r)m(A) A ⊂ Ω
r + (1− r)m(Ω) A = Ω

(3)

When r = 0 the source is absolutely reliable and when r = 1 the source is com-
pletely unreliable. After discounting, the source is treated as totally reliable.

Definition 2 Let m be a bba on Ω. A pignistic transformation of m is a probability
distribution Pm over Ω such that ∀w ∈ Ω,Pm(w) =

∑
w∈A

1
|A|

m(A)
1−m(∅) where |A| is

the cardinality of A.
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Let ⊕ be the conjunctive combination operator (or Smets’ operator [23]) for any
two bbas m, m′ over Ω such that

(m⊕m′)(C) =
∑

A⊆Ω,B⊆Ω,A∩B=C

m(A)m′(B),∀ C ⊆ Ω. (4)

A simple bba m such that m(A) = x,m(Ω) = 1 − x for some A 6= Ω will be
denoted as Ax. The vacuous bba can thus be noted as A0 for any A ⊂ Ω. Note that this
notation, i.e., Ax, is a bit different from the one defined in [3] in which Ax in our paper
should be denoted as A1−x in [3].

Similarly, for two sets A, B ⊂ Ω, A 6= B, let AxBy denote a bba m such that
m = Ax ⊕ By where ⊕ is the conjunctive combination operator defined in Equation
(4). For these kinds of bbas, we call them bipolar bbas. A simple bba Ax could be seen
as a special bipolar bba AxB0 for any set B ⊆ Ω, B 6= A.

It is easy to prove that any m = AxBy is:

m(∅) = xy,m(A) = x(1− y), m(B) = y(1− x),m(Ω) = (1− x)(1− y) (5)

In addition, when normalized, m in Equation 5 is changed to m′ as follows.

m′(A) =
x(1− y)
1− xy

, m′(B) =
y(1− x)
1− xy

,m′(Ω) =
(1− x)(1− y)

1− xy
(6)

For two bipolar bbas Ax1By1 and Ax2By2 , the cautious combination rule proposed
in [3] is as follows.

Lemma 1 (Denœux’s Cautious Combination Rule) Let Ax1By1 and Ax2By2 be two
bipolar bbas, then the combined bba by Denœux’s cautious combination rule is also a
bipolar bba AxBy such that: x = max(x1, x2), y = max(y1, y2).

Also, according to [3], for m1 = Ax1By1 and m2 = Ax2By2 , the combined result
by Equation (2) is1

m12 = Ax1+x2−x1x2By1+y2−y1y2 (7)

3 Two Generalizations

In this section, we discuss two generalizations for the Cautious rule, i.e., the time-
window approach and the time-attenuation approach. Let ⊕C be the operator defined
by the Cautious rule.

Definition 3 (Time-Window Cautious Combination Rule) Let Ax1By1 , · · · , AxnByn be
n successive bipolar bbas, then the combined bba by Time-Window cautious combina-
tion rule of window size t is mt = Axn−t+1Byn−t+1 ⊕C · · · ⊕C AxnByn .

That is, a time-window cautious rule of window size t only combines the recent t bbas.

1 In [3], the combined result is m12 = Ax1x2By1y2 , but recall that we use a slightly different
notation from [3].
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Definition 4 (Time-Attenuation Cautious Combination Rule) Let Ax1By1 , · · · , AxnByn

be n successive bipolar bbas, then the combined bba by Time-Attenuation cautious com-
bination rule of attenuation factor t, 0 < t < 1, is mt = Ax1tn−1

By1tn−1 ⊕C · · · ⊕C

AxnByn .

That is, in a time-attenuation cautious rule of attenuation factor t, the coefficient is
reduced by t each time. Hence if a male is mis-classified as a female with a certainty
degree 0.98, and hence is represented as M0F 0.98, will be attenuated gradually that it
will not affect the cautious combination result for long since 0.98tn will grow smaller
when 0 < t < 1 and n increases.

4 Gender Recognition Scenario

In this section, we provide a detailed description of a gender profiling scenario, which
lends itself naturally to a DS approach.

Figure 1 shows three images taken from a video sequence that has been passed
through a video analytic algorithm for gender profiling. In this sequence, a female wear-
ing an overcoat with a hood enters the scene with her back to the camera. She walks
around the chair, turning, so that her face becomes visible, and then sits down.

Fig. 1. Three images taken from a video sequence

(a) (b) (c)

Fig. 1(a) shows that the subject is recognised by the full body shape profiling as a
male. Note that her face is not visible. In Fig. 1(b), the subject is classified as female by
the full body shape profiling algorithm. In Fig. 1(c), as she sits down, with her face vis-
ible, the face profiling algorithm classifies her as female, whilst the full body profiling
classifies her as male. Note that the full body profiling algorithm is not as reliable as the
face profiling algorithm. Conversely, full body profiling is always possible whilst the
face information can be missing. That is why these two profiling algorithms should be
considered together. In addition, as full body profiling is not as robust, discount opera-
tions should be performed on the algorithm output (cf. Equation (3)). The discount rate
is dependent on the video samples and the training efficiency. For every video frame
in which a body (face) is detected, gender recognition results are provided. The full
body profiling algorithm and the face profiling algorithm, provided a person’s face is
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detected, report their recognition results for every frame of the video, e.g., male with
95% certainty.

For a frame with only a body profiling result, for instance Fig. 1(a), the correspond-
ing mass function m for body profiling will be Mx where M denotes that the person
is classified as a male and x is the mass value of m({M}). The corresponding mass
function for face profiling is M0F 0 where F denotes that the person is classified as a
female, or the vacuous mass function. Alternatively, we can refer to this as the vacuous
mass function.

Similarly, for a frame with both body profiling and face profiling, for instance Fig.
1(c), the corresponding mass function for body profiling will be Mx (or in a bipolar
form MxF 0) and the mass function for face profiling is F y (or in a bipolar form M0F y)
where x, y are the corresponding mass values. As time elapses, fusion of bipolar bbas
by the cautious rule or its two generalizations are introduced, as shown by Lemma 1 and
Definition 3 and Definition 4. And when it comes to present the final profiling result,
we use Dempster’s rule to combine the two fused bipolar mass functions from the two
recognition algorithms, respectively. Namely, for the two bipolar bbas m1 = Mx1F y1

and m2 = Mx2F y2 , it is easy to get that the combined result m12 by Dempster’s rule
is (normalized from the result of Equation 7):

m12({M}) =
(x1 + x2 − x1x2)(1− y1)(1− y2)

1− (x1 + x2 − x1x2)(y1 + y2 − y1y2)
,

m12({F}) =
(1− x1)(1− x2)(y1 + y2 − y1y2)

1− (x1 + x2 − x1x2)(y1 + y2 − y1y2)
,

m12(Ω) =
(1− x1)(1− x2)(1− y1)(1− y2)

1− (x1 + x2 − x1x2)(y1 + y2 − y1y2)
.

Finally, we use the pignistic transformation (Def. 2) for the final probabilities. That
is, p({M}) = m12({M}) + m12(Ω)/2 and p({F}) = m12({F}) + m12(Ω)/2.
Obviously, we will say the subject is a male if p({M}) > p({F}), and a female
if p({M}) < p({F}). In very rare cases that p({M}) = p({F}), we cannot know
whether it is male or female.

The following example illustrates the computation steps.

Example 1 Let us illustrate the approach by a simple scenario with four frames, and
there is a mis-classification in the first frame. In the first frame, the corresponding both
body profiling (m1

b) and face profiling (m1
f ) results as m1

b = M0.6 and m1
f = F 0.9

(mis-classification). In the second frame, there is only a body profiling (m2
b) result which

is m2
b = M0.7. Frame three is associated with body profiling (m3

b) and face profiling
(m3

f ) results as m3
b = F 0.4 and m3

f = M0.6, and frame four is associated with body
profiling (m4

b) and face profiling (m4
f ) results as m4

b = M0.6 and m4
f = M0.6.

By Lemma 1, the fusion results by the cautious rule are mb = M0.7F 0.4 and mf =
M0.6F 0.9.

By Definition 3 with window size 2, the fusion results by the time-window cautious
rule are mW

b = M0.6F 0.4 and mW
f = M0.6.

By Definition 4 with attenuation factor 0.95, the fusion results by the time-attenuation
cautious rule are mA

b = M0.6F 0.38 and mA
f = M0.6F 0.77.
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Then by Equation 7, we get mbf = M0.88F 0.94, which, when normalized, is equiv-
alent to mbf ({M}) = 0.88(1−0.94)

1−0.88∗0.94 = 0.31, mbf ({F}) = 0.94(1−0.88)
1−0.88∗0.94 = 0.65,

mbf (Ω) = (1−0.88)(1−0.94)
1−0.88∗0.94 = 0.04. And finally we get p({M}) = 0.33 and p({F}) =

0.67 which indicates that the subject is a female.
Similarly, we have mW

bf = M0.84F 0.4, and hence mW
bf ({M}) = 0.84(1−0.4)

1−0.84∗0.4 =

0.76, mW
bf ({F}) = 0.4(1−0.84)

1−0.84∗0.4 = 0.10, mW
bf (Ω) = (1−0.84)(1−0.4)

1−0.84∗0.4 = 0.14 and
pW ({M}) = 0.83 and pW ({F}) = 0.17, which indicates that the subject is a male.

Also, we have mA
bf = M0.88F 0.857, and hence mA

bf ({M}) = 0.88(1−0.857)
1−0.88∗0.857 =

0.51, mA
bf ({F}) = 0.857(1−0.88)

1−0.88∗0.857 = 0.42, mA
bf (Ω) = (1−0.88)(1−0.857)

1−0.88∗0.857 = 0.07 and
pA({M}) = 0.55 and pA({F}) = 0.45 which also supports that the subject is a male.

5 Experimental Results

In this section we compare fusion results obtained by a classic approach, a Dempster-
Shafer theory approach proposed in [16] and two of its generalization approaches. As
there are no benchmark datasets for both body and face profiling, we simulate the out-
put of both body and face classifiers on a sequence containing a male subject. For the
body classifier, the probability of any frame being correctly classified as male/female is
roughly 60-90%. For the face classifier, only 75% of the available frames are randomly
allocated as containing a face. For each of these frames the probability of the frame
being correctly classified as being male/female is 85-100%. In both cases the values for
m({M}) and m({F}) are uniformly sampled from the ranges 0.6-0.9 and 0.85-1.0 for
the body and face classifiers outputs respectively.

As mentioned before, for gender profiling results from the same classifier at differ-
ent time points, we use the cautious rule to combine them. For profiling results from
different classifiers (i.e., face profiling and full body profiling), we use Dempster’s rule
to combine them. And finally, we apply the pignistic transformation (Def. 2) to get the
probabilities of the subject being male or female.

Classic fusion in the computer vision community [25] takes the degrees of certainty
as probabilities, i.e., they consider the face profiling and the full body profiling output
pt

f and pt
b indicating the probabilities of faces and full bodies being recognized as males

at time t. Then it uses pt
b,f = ct

fpt
f +ct

bp
t
b to calculate the final probability pt

b,f at time t,
where ct

f and ct
b are the weights of the face and full body profiling at time t, proportional

to the feasibility of the two algorithms in the last twenty frames. As full body profiling is
always feasible, suppose face profiling can be applied n times in the last twenty frames,
then we have:

cb =
20

20 + n
, cf =

n

20 + n
.

For this experiment, the performance of the DS and classic fusion schemes were
characterised by the true positive rate:

TPR =
NPR

N
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where NPR is the number of frames in which the gender has been correctly classified
and N is the total number of frames in which the body/face is present. According to
the training on the sample videos, the discount rate r for the full body profiling is set to
0.3. For comparison, we calculate the TPR value for the body classifier alone, the face
classifier, the DS fusion scheme and the classic fusion scheme.

Here, we first apply the approaches to 58 simulations each with 50 frames (so there
are 2900 total frames), where a mis-classification happens at the beginning. The com-
parison results are presented as follows.

Methods N NPR TPR (%)
Full Body 2900 1606 55.4

Face 2159 2002 92.7
Classic Method 2900 2078 71.7
DS Approach 2900 2380 82.1

Time-Attenuation (0.95) 2900 2194 75.7
Time-Attenuation (0.99) 2900 2431 83.8

Time-Window (5) 2900 2586 89.2

Table 1: Comparison of TPR for body classification, face classification, classic fusion,
DS fusion and its two adaptions - Mis-Classification Cases.

From Table 1, we can see that the two generalizations provide better results than
the DS fusion scheme, except when the attenuation factor is 0.95. This may be because
setting the attenuation factor to 0.95 reduces the certainty degrees too quickly.

An example simulation result comparing the classic, DS, Time-Attenuation (0.99)
and Time-Window (5) approaches is shown in Fig. 2.

Now we apply the approaches to 20 simulations each with 150 frames (so there
are 3000 total frames), where we do not assume mis-classification happened at the
beginning. The comparison results are presented as follows.

Methods N NPR TPR (%)
Full Body 3000 1792 59.7

Face 2229 2125 95.3
Classic Method 3000 2490 83.0
DS Approach 3000 2899 96.6

Time-Attenuation (0.95) 3000 2126 70.9
Time-Attenuation (0.99) 3000 2401 80.0

Time-Window (5) 3000 2395 79.8
Time-Window (20) 3000 2552 85.1

Table 2: Comparison of TPR for body classification, face classification, classic fusion,
DS fusion and its two adaptions - General Cases.

From Table 2, we can see that the two generalizations perform worse than the DS fusion
scheme. This is not surprising since the former do not always hold the highest certainty
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Fig. 2. An Example Simulation

degree as in the DS fusion scheme. Table 2 also shows that when the attenuation factor
or the window size increases, the results improve. Actually, if the attenuation factor is
one or the window size equals to the number of frames, then these two generalizations
will provide the same results as the DS fusion one, or we can see the DS fusion scheme
is a special case of these two generalizations.

6 Conclusion

In this paper, we have proposed two generalized fusion methods to combine gender pro-
filing classifier results by modifying the application of the Cautious rule, i.e., the time-
window fusion method and the time-attenuation fusion method. Experimental results
show that these two generalizations provide more robust results than other approaches,
especially to their predecessor DS fusion scheme.

From the experimental results, it suggests that the time-window fusion scheme per-
forms slightly better than the time-attenuation fusion scheme. But we think this conclu-
sion still depends on the choice of attenuation factor, window size and frame size.

For future work, we plan to apply the fusion schemes to profiling classifier results
generated from real video sequences. Also, for the time-attenuation generalization, we
are trying to use the well-known attenuation approach used in machine learning as:

x′n = x′n−1(1− α) + xnα,

where α is an attenuation factor, and see whether this will be a better choice. In addition,
we are also exploiting ideas from knowledge base merging [5, 11, 6, 7], statistical fusion
[10, 12] and calculi on sequential observations [14, 15].
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