
Event Modelling and Reasoning with Uncertain
Information for Distributed Sensor Networks

Jianbing Ma, Weiru Liu, and Paul Miller

School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, Belfast BT7 1NN, UK

{jma03,w.liu}@qub.ac.uk, p.miller@ecit.qub.ac.uk

Abstract. CCTV and sensor based surveillance systems are part of our daily
lives now in this modern society due to the advances in telecommunications tech-
nology and the demand for better security. The analysis of sensor data produces
semantic rich events describing activities and behaviours of objects being mon-
itored. Three issues usually are associated with events descriptions. First, data
could be collected from multiple sources (e.g., sensors, CCTVs, speedometers,
etc). Second, descriptions about these data can be poor, inaccurate or uncertain
when they are gathered from unreliable sensors or generated by analysis non-
perfect algorithms. Third, in such systems, there is a need to incorporate domain
specific knowledge, e.g., criminal statistics about certain areas or patterns, when
making inferences. However, in the literature, these three phenomena are sel-
dom considered in CCTV-based event composition models. To overcome these
weaknesses, in this paper, we propose a general event modelling and reasoning
model which can represent and reason with events from multiple sources includ-
ing domain knowledge, integrating the Dempster-Shafer theory for dealing with
uncertainty and incompleteness. We introduce a notion called event cluster to rep-
resent uncertain and incomplete events induced from an observation. Event clus-
ters are then used in the merging and inference process. Furthermore, we provide
a method to calculate the mass values of events which use evidential mapping
techniques.

Keywords: Bus Surveillance; Active System; Event Composition; Event Reason-
ing; Inference.

1 Introduction

CCTV-based1 surveillance is an inseparable part of our society now – everywhere we
go we see CCTV cameras (e.g. [2, 11, 5, 13], etc). The role of such systems has shifted
from purely passively recording information for forensics to proactively providing ana-
lytical information about potential threats/dangers in real-time fashion. This shift poses

1 This paper is an extended version of [9] in which we have included a set of running examples,
a method (summarized by an algorithm) to calculating mass values of events which uses ev-
idential mapping techniques, and the newly introduced notion rule clusters. Furthermore, we
also demonstrate in this paper how to interpret and use the background knowledge, or domain
knowledge, which was only preliminarily introduced in [9].



some dramatic challenges on how information collected in such a network shall be
exchanged, correlated, reasoned with and ultimately be used to provide significantly
valuable predictions for threats or actions that may lead to devastating consequences.

Central to this is the ability to deal with a large collection of meaningful events
derived from sensor/camera data analysis algorithms. An event can be understood as
something that happened somewhere at a certain time (or time interval). Typically, a life
cycle of event includes detection, storage, reasoning, mining, exploration and actions.

In this paper, we focus on a real-time event modelling and reasoning framework for
supporting the instant recognition of emergent events based on uncertain or imperfect
information from multiple sources. This framework has many potential uses in various
applications, e.g., active databases, smart home projects, bus/airport surveillance, and
stock trading systems, etc.

Various event reasoning systems have been proposed in the literature, e.g., an event
language based on event expressions for active database systems in [6], the Semantic
Web Rule Language (SWRL) for semantic web applications and the situation manager
rule language [1] for general purposes, etc. These systems provide both event represen-
tation and deterministic event inference in the form of rules. However, these systems do
not take into account uncertainties which are usually associated with real-world events.
To remedy this weakness, in [15–17], an event composition model was proposed with
uncertainties represented by probability measures.

However, this model cannot deal with the problem of incomplete information in
event reasoning. For example, in the case of monitoring a person entering an building,
the person may be classified as male with a certainty of 85% by an event detection
algorithm (an event here is to identify a person’s gender). However, the remainder does
not imply that the person is female with a 15% certainty, rather, it is unknown. That is,
we do not know how the remaining 15% shall be distributed on alternatives {male} or
{female}. Hence with probability theory, this information can only be represented as
p(male) ≥ 0.85 and p(female) ≤ 0.15 which is difficult for subsequent reasoning
(e.g., a Bayesian network).

In distributed sensor networks, events are more often gathered from multiple het-
erogeneous sources, e.g., the same event can be obtained from video or audio data
analysis, or from speedometers. We assume that each source channels its information
via event descriptions, hence a practical event model should consider combining infor-
mation about the same event from multiple sources. As different sources may provide
possibly conflicting descriptions on the same event, the event composition model should
also be able to deal with such conflict between multiple sources. Unfortunately, to the
best of our knowledge, this issue is hardly mentioned in the literature on event com-
position models. In [1], although events can come from multiple sources, a particular
event can only be from one source, so this model cannot deal with multiple events from
different sources relating to the same situation (scenario).

Furthermore, when an event reasoning system receives events descriptions from
multiple sources, it also needs to consider the reliabilities of these information sources.
For instance, in surveillance applications, sensors/cameras, etc, are frequently used.
However, since sensors/cameras can be malfunctioning such as a camera may have been
tampered with, illumination could be poor, or the battery is low, etc, they may give

2



imprecise information which cannot be simply represented by probability measures,
either.

Dempster-Shafer (DS) Theory [4, 12] is a popular framework to deal with uncertain
or incomplete information from multiple sources. This theory is capable of modelling
incomplete information through ignorance as well as considering the reliabilities of
sources by using the discounting function. In this paper, we propose an event model
integrating DS theory that can represent and reason with possibly conflicting informa-
tion (recorded as events) from multiple sources which may be uncertain or incomplete.
We also deploy the discounting function [8] to resolve imprecise information due to
unreliable sources.

Furthermore, it is also a key requirement for an event model to have the ability to
represent and manage domain knowledge [14]. Because domain knowledge does not fit
into the usual definitions of events in the literature, it is not surprising that it is generally
ignored by the existing event models, e.g., [1, 15–17], etc. In our event model, however,
domain knowledge is treated as a special kind of event and is managed the same way as
other types of events.

To summarize, the main contributions of our event composition model are

1. a general model for representing uncertain and incomplete information (events),
2. a combination framework for dealing with events from multiple sources,
3. utilization of domain knowledge for assisting inferences,
4. using evidential mapping technique to calculate the event mass.

The framework has been implemented and tested with a set of events acquired from
the Intelligent Sensor Information System (ISIS) project which aims at developing a
state-of-the-art surveillance sensor network concept demonstrator for public transport.
A set of domain specific rules are constructed with the help of criminologist working
on the project.

The rest of the paper is organized as follows. In Section 2, we provide the prelim-
inaries on Dempster-Shafer theory. In Section 3, formal definitions of event model are
given including the definitions of events, multi-source events combination, event flow
and event inference. We then provide an algorithm for calculating mass values of events
in Section 4. Finally, we discuss related work and conclude the paper in Section 5 and
Section 6 respectively.

2 Dempster-Shafer Theory

For convenience, we recall some basic concepts of Dempster-Shafer’s theory of evi-
dence (DS theory). Let Ω be a finite, non-empty set called the frame of discernment,
denoted as, Ω = {w1, · · · , wn}.

Definition 1 A mass function is a mapping m : 2Ω → [0, 1] such that m(∅) = 0 and∑
A⊆Ω m(A) = 1.

If m(A) > 0, then A is called a focal element of m. Let Fm denote the set of focal
elements of m. From a mass function, m, belief function (Bel) and plausibility function

3



(Pl) can be defined to represent the lower and upper bounds of the beliefs implied by
m as follows.

Bel(A) =
∑

B⊆A m(B) and Pl(A) =
∑

C∩A 6=∅ m(C). (1)

One advantage of DS theory is that its has the ability to accumulate and combine evi-
dence from multiple sources by using Dempster’s rule of combination. Let m1 and m2

be two mass functions from two distinct sources over Ω. Combining m1 and m2 gives
a new mass function m as follows:

m(C) = (m1 ⊕m2)(C) =
∑

A∩B=C m1(A)m2(B)
1−∑

A∩B=∅m1(A)m2(B)
(2)

In practice, sources may not be completely reliable, to reflect this, in [12], a discount
rate was introduced by which the mass function may be discounted in order to reflect
the reliability of a source. Let r (0 ≤ r ≤ 1) be a discount rate, a discounted mass
function using r is represented as:

mr(A) =
{

(1− r)m(A) A ⊂ Ω
r + (1− r)m(Ω) A = Ω

(3)

When r = 0 the source is absolutely reliable and when r = 1 the source is com-
pletely unreliable. After discounting, the source is treated as totally reliable.

In our event composition and inference model, we use a set of rules (with degrees
of certainty) to describe which collection of events could imply what other events to
a particular degree. A simplified form of a rule of this kind2 is as if E then H1 with
degree of belief f1, ..., Hn with degree of belief fn. These rules are called heuristic in
[7], in which a modelling and propagation approach was proposed to represent a set of
heuristic rules and to propagate degrees of beliefs along these rules, through the notion
evidential mapping Γ ∗.

An evidential mapping is to establish relationships between two frames of discern-
ment ΩE , ΩH such that Γ ∗ : 2ΩE → 22ΩH×[0,1]

assigning a subset Ei ⊆ ΩE to a set of
subset-mass pairs in the following way:

Γ ∗(Ei) =
(
(Hij , f(Ei → Hij)), ..., (Hit, f(Ei → Hit))

)
(4)

where Hij ⊆ ΩH , i = 1, ..., n, j = 1, ..., t, and f : 2ΩE × 22ΩH → [0, 1] satisfying3

(a) Hij 6= ∅, j = 1, ..., t;
(b) f(ei → Hij) ≥ 0, j = 1, ..., t;
(c)

∑n
j=1 f(ei → Hij) = 1;

(d) Γ ∗(ΩE) =
(
(ΩH , 1)

)
;

A piece of evidence on ΩE can then be propagated to ΩH through evidential map-
ping Γ ∗ as follows:

mΩH
(Hj) =

∑

i

mΩE
(Ei)f(Ei → Hij). (5)

2 The definition of rules is given in Section 3.
3 For the sake of clear illustration, instead of writing f(Ei, Hij), we write f(Ei → Hij).

4



To calculate the mass values of inferred events based on the premise events of infer-
ence rules, we integrate evidential mapping Γ ∗ technique [7] into our event composition
and reasoning model, which is detailed in Section 4.

3 A general Framework for Event Modelling

3.1 Event Definition

For an event model, the first issue we should address is the definition of events. The
definition of an event should be expressive enough to deliver all the information of
interest for an application and also be as simple and clear as possible.

Definitions of an event from different research fields are very diverse and tend to
reflect the content of the designated application. For instance, in text topic detection
and track, an event is something that happened somewhere at a certain time; in pattern
recognition, an event is defined as a pattern that can be matched with a certain class of
pattern types, and in signal processing, an event is triggered by a status change in the
signal, etc.

In this paper, to make our framework more general, we define the events as follows:
an event is an occurrence that is instantaneous (event duration is 0, i.e., takes place at
a specific point of time)4 and atomic (it happens or not). The atomic requirement of an
event does not exclude uncertainty. For instance, when there is a person boarding a bus
and this person can be a male or a female (suppose we only focus on the gender), then
whether it is a male/female that boards the bus is an example of uncertainty. But a male
(resp. a female) is boarding the bus is an atomic event which either occurs completely
or does not occur at all. To represent uncertainty encountered during event detection,
in the following, we distinguish an observation (with uncertainty) from possible events
associated with the observation (because of the uncertainty). This can be illustrated by
the above example: an observation is that a person is boarding the bus and the possible
events are a male is boarding the bus and a female is boarding the bus. An observation
says that something happened, but the entity being observed is not completely certain
yet, so we have multiple events listing what that entity might be.

This definition of events is particularly suitable for surveillance problems, where
the objects being monitored are not complete clear to the observer.

In the literature, there are two types of events, one type contains external events [1]
or explicit events [15, 16] and the other consists of inferred events. External events are
events directly gathered from external sources (within the application) while inferred
events are the results of the inference rules of an event model. In addition, to make
use of domain knowledge, we introduce the third type of events, domain events, which
are usually extracted from experts’s opinions or background knowledge about this ap-
plication the domain. Intuitively, domain knowledge is not from observed facts while
external events are. Examples of these events can be seen in the next subsection.

4 Domain events introduced later in this subsection may have a nonzero duration. A domain
event can be seen as a series of instantaneous events.

5



3.2 Event Representation

Intuitively, a concrete event definition is determined by the application domain which
contains all the information of interest for the application (including data relevant to the
application and some auxiliary data). But there are some common attributes that every
event shall possess, such as

1. EType: describing the type of an event, such as, Person Boarding Vehicle
abbreviated as PBV.

2. occT : the point in time that an event occurred.
3. ID: the ID of a source from which an event is detected.
4. rb: the degree of reliability of a source.
5. sig: the degree of significance of an event.

Formally, we define an event e as follows.

e = (EType, occT, ID, rb, sig, v1, · · · , vn)

where vis are any additional attributes required to define event e based on the appli-
cation. Attribute vi can either have a single or a set of elements as its value, e.g., for
attribute gender, its value can be male, or female, or {male, female} (however, it is not
possible to tell the gender of a person when their face is obscured, so we introduce a
value obscured as an unknown5 value for gender). Any two events with the same event
type, source ID and time of occurrence (Typically the occurrence time is like 21 : 05 :
31pm12/2/09, for simplicity we only use the hours) are from the set of possible events
related to a single observation. For example, e1 = (PBV, 20pm, 1, 0.8, 0.7, male, · · ·) and
e2 = (PBV, 20pm, 1, 0.8, 0.7, {male, female}, · · ·) are two events with v1 for gender (we
have omitted other attributes for simplicity).

Events of the same type have the same set of attributes.

Example 1 Suppose we are monitoring passengers boarding a bus through the front
door. Then we have an event type PBV (Person Boarding Vehicle) which may include re-
lated attributes such as source ID, occurrence time, reliability, significance, person gen-
der, person ID, person age, front/back door, vehicle type, vehicle ID, bus route (we omit
the bus position for simplicity). An instance of PBV is (PBV, 21pm, 1, 0.9, 0.7, male, 3283,

young, fDoor, double decker bus, Bus1248, 45).

An event is always attached with a mass value. Semantically, for a particular event
type with each of its event represented as (EType, occT, ID, rb, sig, v1, · · · , vn), we use
Domi to denote the domain of vi, and V =

∏n
i=1 Domi to denote the frame of dis-

cernment (domain of tuple (v1, · · · , vn)), and m to denote a mass function over 2V .
To represent an observed fact with uncertainty, we introduce concept event cluster.

An event cluster EC is a set of events which have the same event type (EType), occur-
rence time (occT ) and source ID (ID) , but with different v1, · · · , vn values. Events e1

5 Note that obscured is not the same as {male, female} since it may indicate some malicious
event. In fact, here the attribute gender can be seen as an output from a face recognition pro-
gram in which obscured means that information about face recognition is not available. In this
sense, gender is an abbreviation of gender recognition result.

6



and e2 above form an event cluster for the observed fact someone is boarding the bus.
Note that as the reliability is based on the source, events in a specified event cluster EC
will have the same reliability.

For an event e in event cluster EC, we use e.EType (resp. e.occT , etc) to denote
the event type (resp. time of occurrence, etc) of e, e.v to denote (v1, · · · , vn), and e.m
to denote the value m(e.v). By abuse of notations, we also write EC.EType (resp.
EC.ID, EC.occT , EC.rb) to denote the event type (resp. source ID, time of occur-
rence, reliability) of any event in EC since all the events in EC have the same values
for these attributes.

It should be noted that within a particular application, the degree of significance of
an event is self-evident (i.e., a function over e.v). For example, in bus surveillance, the
event a young man boards a bus around 10pm in an area with high crime statistics is
more significant than the event a middle-aged woman boards a bus around 6pm in an
area of low-crime. However, due to space limitation, we will not discuss it further.

A mass function m over V for event cluster EC should satisfy the normalization
condition:

∑
e∈EC e.m = 1. That is, EC does contain an event that really occurred.

For example, for the two events, e1 and e2, introduced above, a mass function m can be
defined as m(male, · · ·) = 0.85 and m({male, female}, · · ·) = 0.15.

An event cluster hence gives a full description of an observed fact with uncertainty
from the perspective of one source.

Example 2 (Example 1 continued) Consider a camera overlooking the front entrance
to a bus. There are several possible events relating to a camera recording: a male
boards the bus, a female boards the bus, a person that we cannot distinguish it is a man
or woman boards the bus, a person boards the bus but its face is obscured. Among these
the last is the most significant as someone who boards the bus with its face obscured is
likely to be up to no good. Most vandals and criminals will take steps to ensure their
faces are not caught by the cameras. Therefore, we have the following event cluster with
a set of events as (we omitted other details for simplicity)
{(PBV, 21 : 05 : 31, 1, 0.9, 0.7, male, 3283), (PBV, 21 : 05 : 31, 1, 0.9, 0.4, female, 3283),
(PBV, 21 : 05 : 31, 1, 0.9, 0.7, {male, female}, 3283),
(PBV, 21 : 05 : 31, 1, 0.9, 1, obscured, 3283)}.

A sample mass function assigning mass values to focal elements from frame Ω =
{male, female, obscurred} can be m(male, 3283) = 0.4 m(female, 3283) = 0.3,
m({male, female}, 3283) = 0.2, and m(obscured, 3283) = 0.1.

Observe that if some E∗ in ET s.t., E∗.m = 1, then the event cluster ET simply
reduces to a single event, i.e., E∗ (other events with mass values 0 are ignored).

Domain knowledge6 can be represented as a special event cluster in which an event
(called a domain event) is in the same form of the external/inferred events except that
the time of occurrence can be an interval.

Example 3 (Example 2 con’t) After a survey, we obtained a distribution (with relia-
bility 0.8) on person boarding bus 1248 at route 45 between 20 : 00 and 22 : 00 as
male : female : obscured = 5 : 4 : 1. Then this piece of domain knowledge produces

6 In our event model, we reserve source 0 for domain knowledge.

7



the following event cluster with events
(PBV, [20 : 00 : 00, 22 : 00 : 00], 0, 0.8, 0.7, male,double decker bus, Bus 1248, 45),
(PBV, [20 : 00 : 00, 22 : 00 : 00], 0, 0.8, 0.4, female, double decker bus, Bus 1248, 45), and
(PBV, [20 : 00 : 00, 22 : 00 : 00], 0, 0.8, 1, obscured,double decker bus, Bus 1248, 45).

The mass values given by the domain knowledge are (we omitted other details here)
m(male, · · ·) = 0.5, m(female, · · ·) = 0.4, and m(obscured, · · ·) = 0.1.

A domain event has a series interpretation such that it contains a series of external
events, the occurrence time of each such external event is one time point in the time
interval of the domain event while other attributes are unchanged. For instance, event
(bus details omitted) (PBV, [20 : 00 : 00, 22 : 00 : 00], 0, 0.8, 0.7, male, · · ·) can be seen as
a series of events
(PBV, 20 : 00 : 00, 0, 0.8, 0.7, male, · · ·), (PBV, 20 : 00 : 01, 0, 0.8, 0.7, male, · · ·), · · ·,
(PBV, 22 : 00 : 00, 0, 0.8, 0.7, male, · · ·).

With the series interpretation of domain events, intuitively we do not allow two do-
main events having the same event attribute values except that their time intervals are
overlapped. To illustrate, if one domain event gives e3 = (PBV, [20 : 00 : 00, 22 : 00 : 00], 0,

0.8, 0.7, male, · · ·) with e3.m = 0.5 (i.e., m(male, · · ·) = 0.5) and another domain event
provides e4 = (PBV, [21 : 00 : 00, 23 : 00 : 00], 0, 0.8, 0.7, male, · · ·) with e4.m

′ = 0.9
(i.e., m(male, · · ·) = 0.9), then they contradict each other during the time interval
[21 : 00 : 00, 22 : 00 : 00]. If the second domain event gives the same mass value
(i.e., m′(male, · · ·) = 0.5), then in fact these two event clusters can be merged with a
time interval [20 : 00 : 00, 23 : 00 : 00]. Similarly, two domain event clusters with
their events pairwise having the same attributes values except overlapping time inter-
vals either contradict each other or can be merged into one domain event cluster. Hence
hereafter we assume that there does not exist two domain event clusters having the same
event type and with overlapping time intervals.

3.3 Event Combination

When a set of event clusters have the same event type and time of occurrence but differ-
ent source IDs, we call them concurrent event clusters7. This means that multi-model
sensors may have been used to monitor the situation. Therefore, we need to combine
these event clusters since they refer to the same observed fact from different perspec-
tives. The combined result is a new event cluster with the same event type and time of
occurrence, but the source ID of the combined event will be the union of the original
sources. The combination of event clusters is realized by applying Dempster’s combi-
nation rule on discounted mass functions. That is, the mass function of an event cluster
is discounted with the discount rate defined as the reliability of a source.

Definition 2 Let EC1, · · · , ECk be a set of concurrent event clusters, and mr
1, · · · ,mr

k

be the corresponding discounted mass functions over 2V , m be the mass function ob-
tained by combining mr

1, · · · ,mr
k using the Dempster’s combination rule, then we get

7 Due to the series interpretation of domain event clusters, a domain event cluster and an external
event cluster are called concurrent iff the time of occurrence of the latter is within the time
interval of the former.

8



the combined event cluster EC = ⊕k
j=1ECj such that ∀e ∈ EC, we have e.v ∈ Fm,

e.EType = EC1.EType, e.occT = EC1.occT , e.ID = {EC1.ID, · · · , ECk.ID},
e.rb = 1, and e.m = m(e.v). Conversely, for each focal element A in Fm, there exists
a unique e ∈ EC, s.t., e.v = A.

As stated earlier, e.sig (event significance) is a function on e.v.

Example 4 (Example 3 continued) Let EC0 be the event cluster given in Example 2,
and EC1 be the event cluster given in Example 3, then the combined event cluster
EC = EC0 ⊕ EC1 is { (PBV, 21 : 05 : 31, {0, 1}, 1, 0.7, male, 3283), (PBV, 21 : 05 : 31,

{0, 1}, 1, 0.4, female, 3283), (PBV, 21 : 05 : 31, {0, 1}, 1, 0.7, {male, female}, 3283), (PBV,

21 : 05 : 31, {0, 1}, 1, 1, obscured, 3283), (PBV, 21 : 05 : 31, {0, 1}, 1, 1, {male, female,

obscured}, 3283) }, and the corresponding mass values are m(male, 3283) = 0.478,
m(female, 3283) = 0.376, m({male, female}, 3283) = 0.059, m(obscured, 3283) =
0.054, and m({male, female, obscured}, 3283) = 0.033.

3.4 Event Flow

Event models usually use the concept Event History (EH) to describe the set of all events
whose occurrences fall between a certain period of time. However, in our framework,
given a set of event clusters, we first carry out events combination, and then retain only
the combined event clusters. So what we have is not a history, because of this, we call
it an event flow and denote it as EF . We use EF t2

t1 to represent a set of combined
event clusters whose occurrences fall between t1 and t2. Since an event flow contains
the combined events, to some extent, we have already considered the opinions (of the
original events) from different sources.

Example 5 (Example 4 continued) Let EC0 and EC1 be the event clusters given in
Example 2 and Example 3, respectively, EC be the combined event cluster of EC0

and EC1 in Example 4. Let EC2 be the event cluster for describing a person loi-
tering in a bus (for simplicity we also omitted other details) given by source 2 as
(PL, 21 : 05 : 37, 2, 1, 1,

3283, DriveCabin), (PL, 21 : 05 : 37, 2, 1, 0.7, 3283, StairWay), and (PL, 21 : 05 : 37, 2, 1, 0.3,

3283, Seated) and the mass values given by source 2 are m2(3283, DriveCabin) = 0.2,
m2(3283, Stairway) = 0.1, and m2(3283, Seated) = 0.7. Then the event flow is
[EC, EC2].

3.5 Event Inference

Event inferences are expressed as a set of inference rules which are used to represent the
relationships between events. In the literature of event models, most rules were defined
in a deterministic manner without uncertainty except [15], where rules are defined in a
probabilistic way. Simply speaking, rules in [15] are defined as follows: if some condi-
tions of a rule are satisfied, then a certain event E occurs with a probability p, and does
not occur with a probability 1− p. This type of inference rules is an uncertainty-based
extension to the Event-Condition-Action (ECA) paradigm proposed in active databases.

9



However, this approach ignores situations where a set of events can be inferred due to
uncertainty or incompleteness8.

In this paper, we define our event inference rules which can resolve uncertainty and
incompleteness. An inference rule R is defined as a tuple (LS, EType, Premise,
Condition,mIEC) where:

LS, abbreviated for Life Span, is used to determine the temporal aspect of a rule
R [3, 1, 16]. LS is an interval determined by a starting point and an end point, or an
initiator and a terminator, respectively. The starting point and the end point are two
points in time which can be determined by the event flow that is known at the time a
rule is executed. For instance, a starting time point may refer to the occurrence time of
a specific event, a prior given time, etc, and an end time point can be the occurrence
time of another event, a prior given time, or a time period plus the starting point, etc.

EType is the event type of the inferred event cluster. For example, SAD standing
for Shout At Driver is an inferred event type.

Premise is a set of ETypes that a set of events of such types are used by the rule
as prerequisites. For example, to induce an SAD event, we need to have the corre-
sponding PBV , PL (Person Loiter), PS (Person Shout) events9, hence Premise =
{PBV, PL, PS}. Premise is used to select the premise events for a rule.

Condition is a conjunction of a set of conditions used to select appropriate events
from the event flow to infer other events. The conditions in Condition can be any type
of assertions w.r.t the attributes of events. For example, let e1 and e2 both denote a male
loitering event and e3 denote a person shouting event, then
“e1.pID = e2.pID ∧ e1.gender = male ∧ e1.location = e2.location = DriverCabin

∧e2.occT − e1.occT ≥ 10s ∧ e1.occT ≤ e3.occT ≤ e2.occT ∧ e3.volume = shouting”
is a valid Condition. Note that for each inference rule, we only select events in the
event flow within the lifespan LS (denoted by LS(EF t

t′)). In addition, the types of
events used in the Condition belong to Premise. Let the events used in Condition be
denoted as Evn(Condition), then Evn(Condition) is an instantiation of Premise.

mIEC is the mass function for the inferred event cluster and it is in the form of
(< v1

1 , · · · , v1
n, mv1 >, < v2

1 , · · · , v2
n, mv2 >, · · ·, < vk

1 , · · · , vk
n, mvk >) where each mvi

is a mass value and
∑k

i=1 mvi = 1. We will explain this in detail when discussing rule
semantics next.

To differentiate inferred events from other events, we use −1 to denote the source
ID of an inferred event cluster and the occurrence time is set as the point in time an
inference rule is executed. Moreover, the reliability is set to 1 as we assume that the
inference rules are correct.

The semantics of using an inference rule R is interpreted as follows. Given an event
flow EF t

t′ , if Condition of any rule R is true at some time point t∗ > t′, then an
event cluster is inferred from rule R with mass function mIEC . Otherwise, no events
are inferred.

8 In fact, the event model in [15] could be extended so that more than one target event can be
inferred, see [17]. However, rules like this still cannot infer events with incomplete information
due to the different expressive power between probability theory and DS theory.

9 Simply speaking, to get a SAD event, we need to check that a person X entered the bus, went
to the driver’s cabin and then a shout at the cabin was detected.

10



Formally, for any vector < vi
1, · · · , vi

n, mvi >, if Condition(LS(EF t
t′)) = true, we

in fact generate an event Ei whose event type is EType, source ID is −1, occurrence
time is the time of rule execution, reliability is 1, Ei.v = (vi

1, · · · , vi
n) (and E.sig is a

function over Ei.v), and

mIEC(Ei.v) = mvi, 1 ≤ i ≤ k

For any two rules having the same Premise, we consider them from a single rule
cluster. Intuitively, rules in a rule cluster describe inferences based on the same obser-
vations, hence these rules have the same lifespan and the same inferred event type but
with different Condition and mIEC values due to the different premise events induced
from the observations. In addition, in this framework, if two rules do not have the same
Premise, then they will not infer the same type of events.

Example 6 An inference rule R1 which reports an obscured person loiters at the driver’s
cabin can be defined as (LS, EType, Premise, Condition,mIEC) where

LS = [0, E.occT ] where E is an event of PL,
EType is PD abbreviated for Passenger-Driver,
Premise is {PBV, PL, PL},
Condition is “e1.gender = obscured ∧ e1.pID = e2.pID = e3.pID ∧

e2.location = e3.location = DriverCabin ∧ e3.occT ≥ e2.occT + 10s”,
and mIEC is < {Stand, Talk}, 0.7 >, < Leaving, 0.2 >, < hasThreat, 0.1 >.

A similar inference rule R2 can be used to report a male loiters at the driver’s cabin
with R2 = (LS′, EType′, P remise′, Condition′,m′

IEC) where
LS′ = LS, EType′ = EType, Premise′ = Premise,
Condition′ is “e1.gender = male ∧ e1.pID = e2.pID = e3.pID ∧

e2.location = e3.location = DriverCabin ∧ e3.occT ≥ e2.occT + 10s”,
and m′

IEC is < {Stand, Talk}, 0.7 >, < Leaving, 0.22 >, < hasThreat, 0.08 >.
Hence R1, R2 are in a rule cluster.

4 Calculation of Event Mass Values

Since events in Evn(Condition) are themselves uncertain, to get the mass value of
an inferred event, we need to consider both mIEC and the mass values of events in
Evn(Condtion). Here the mass value can be seen as a joint degree of certainty of all
events involved (similar to the joint probability in Bayesian networks).

To proceed, first, it is necessary to ensure that the execution of the event model in
an application is guaranteed to terminate. That is, in a finite time period, there would
be only finite external events, finite domain events, finite inference rules to be triggered
(hence finite inferred events). Second, it is also necessary that the execution of the event
model is guaranteed to be deterministic. That is, with the same time period, same input
events and same set of rules, the resultant event flow (after applying all rules) should
be unique. These two issues are discussed in [10] where they can be solved by avoiding
cycles in rule definitions and by ranking the rules, respectively.

Now assume that there are no cycles in rules and the rules are ranked. Typically,
for a specific inferred event, it can be inferred from more than one rule in a rule cluster

11



(e.g., a PD event with value hasThreat in Example 6). Hence the mass value should
consider all these rules in that rule cluster RC. Since each rule in RC has the same
Premise, let Premise = {ET1, . . . , ETt} be a set of event types, and let Vi be the
corresponding frames of discernment of ETi. Let ΩRCE =

∏t
i=1 Vi be a joint frame

of discernment for the premise event types and ΩRCH be the frame of discernment
of the inferred event type. Then we can use evidential mapping to get the mass value
of an inferred event. Formally, for each rule R in RC, we set Γ ∗R(eR

1 .v, · · · , eR
t .v) =

((v1
1 , · · · , v1

n),mv1), · · · , ((vk
1 , · · · , vk

n), mvk) where (eR
1 , · · · , eR

t ) = EvnR(ConditionR)
and ((vi

1, · · · , vi
n),mvi) ∈ mR

IEC . For other (e′1, · · · , e′t) where (e′1, · · · , e′t) is an in-
stantiation of Premise but there does not exist a rule R in RC, s.t., (eR

1 , · · · , eR
t ) =

(e′1, · · · , e′t), we set Γ ∗R(e′1.v, · · · , e′t.v) = (∅, 1). Therefore, the mass value of inferred
event can be obtained using Equation 5.

We can also use Bel and Pl functions to get a plausible interval of inferred events.

Based on the above, here we give an algorithm to calculate event mass in Algorithm
1. Note that this algorithm executes when a new observation (hence a set of event clus-
ters are gathered from multiple sources, and a combination is carried out) is obtained.

Algorithm 1 Event Mass Calculation

Input: An event flow EF t, most recent combined event cluster ECt′ , all rule clusters RCs in
a pre-specified order.

Output: Output a mass value of each inferred event when some rules are triggered.
1: EF t′ ← EF t ∪ {ECt′};
2: for each rule cluster RC do
3: calculate LSRC(EF t′);
4: select event clusters in LSRC(EF t′) according to PremiseRC ;
5: for each selected event clusters EC1, · · · , ECt do
6: construct the frames of discernment ΩRCE and ΩRCH ;
7: for each rule R in RC do
8: for each list of events e1, · · · , et, s.t., ei ∈ ECi do
9: if ConditionR is satisfied then

10: add the contents of mR
IEC to Γ ∗R(e1, · · · , et);

11: else
12: set Γ ∗R(e1, · · · , et) to (∅, 1);
13: end if
14: end for
15: end for
16: calculate the mass values of focal elements in ΩRCH using Equation 5;
17: set the mass value of a focal element to the mass value of an inferred event whose e.v

is the focal element;
18: end for
19: end for
20: return the mass values for the inferred events.

12



5 Related Work

Our event definition is similar to that considered in [1, 15, 16] where events are con-
sidered significant (w.r.t the specified domain of the application), instantaneous and
atomic. The reason why we do not require the events to be significant is that in real
applications, we also need to model insignificant events (otherwise we may lose in-
formation). For instance, in surveillance applications, up to 99% of the events are just
trivial events. Hence, instead of defining events as significant, we introduce a built-in
significance value in the representation of events to facilitate subsequent processing.

For the inference rules, in [15], a rule is defined as (seln, patternn, eventType,
mappingExpressions, prob) where seln is used to get n events, patternn is a con-
junction of a set of conditions. However, conditions for patternn can only be an equal-
ity form as e.attri = e′.attrj or temporal conditions of the forms, a ≤ e.occT ≤ b
or e.occT < e′.occT or e.occT ≤ e′.occT ≤ e.occT + c. Obviously, it can not ex-
press conditions like E.gender = obscured, E1.speed < E2.speed, etc, while our
Condition can. In addition, a rule in [15] can only provide a single inferred event with
a probability prob whilst a rule in our model can provide a set of possibilities with mass
values.

Classical deterministic rules are special cases of our rule definition with the inferred
event cluster having only one event with a mass value 1 and probabilistic rules are also
special cases of our rule definition.

Furthermore, in our model, the notion of event history or event flow is also differ-
ent from those used in [6, 1, 15, 16] such that our event history/flow takes embedded
uncertainty (in fact it contains observations (event clusters) which consist of multiple
possible events) while in those models an event history itself is considered determinis-
tic and the uncertainty on event history is expressed as there can be multiple possible
event histories. Due to this difference, the rule semantics is totally different from the
conditional representation in [15].

Finally, when our event model reduces to the situation considered in [15], it is
easy to find that our calculation of event mass reduces to the probability calculation
by Bayesian networks in [15].

Proposition 1 If we consider only one-source, one-inference-target probabilistic case
as in [15], then the mass value of inferred event is equivalent to the joint probability
obtained by the Bayesian network approach in [15].

6 Conclusion

In this paper, we proposed an event model which can represent and reason with events
from multiple sources, events from domain knowledge, and have the ability to repre-
sent and deal with uncertainty and incompleteness. For events obtained from multi-
ple sources, we combined them using Dempster-Shafer theory. We introduced a notion
called event cluster to represent events induced from an uncertain observation. In addi-
tion, in our model, inference rules can also be uncertain. Furthermore, we discussed how
to calculate the mass values of a set of events. This framework has been implemented
and evaluated by a bus surveillance case study.

13



Since in real-world applications, information is frequently gathered from multiple
sources, and uncertainties can appear in any part of the applications, our event model
can serve as an important foundation for these applications. Domain knowledge is very
useful in many active systems, however, it is somehow ignored in the existing event
reasoning systems. Our model can also represent and deal with it.

For future work, we want to extend this event model to include temporal aspects
of events. First, in some active systems, there is no accurate occurrence time attached
with events. Second, some behaviours associated with a time interval such as a person is
holding a knife is hard to be represented in this event model. In fact, as the instantaneous
nature of events in this event model, we can only tell at a certain time point (or a set of
successive time points), the person is holding a knife.

Acknowledgement This research work is partially sponsored by the EPSRC projects
EP/D070864/1 and EP/E028640/1 (the ISIS project).
References

1. A. Adi and O. Etzion. Amit - the situation manger. VLDB J., 13(2):177–203, 2004.
2. Bsia. Florida school bus surveillance. In http://www.bsia.co.uk/LY8VIM18989 action;displays

tudy sectorid;LYCQYL79312 caseid;NFLEN064798.
3. S. Chakravarthy-S and D. Mishra. Snoop: an expressive event specification language for

active databases. Data and Knowledge Engineering, 14(1):1–26, 1994.
4. A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping. The

Annals of Statistics, 28:325–339, 1967.
5. B. Abreu et al. Video-Based Multi-Agent Traffic Surveillance System. In Proc. IEEE Intel.

Vehi. Symp., Lecture Notes in Computer Science, pages 457–462. SPIE, 2000.
6. N. H. Gehani, H. V. Jagadish, and O. Shmueli. Compostite event specification in active

databases: Model & implementation. In Proc. of VLDB, pages 327–338, 1992.
7. W. Liu, J. G. Hughes, and M. F. McTear. Representating heuristic knowledge in d-s theory.

In Proc. of UAI, pages 182–190, 1992.
8. J. D. Lowrance, T. D. Garvey, and T. M. Strat. A framework for evidential reasoning systems.

In Proc. of 5th AAAI, pages 896–903, 1986.
9. J. Ma, W. Liu, P. Miller, and W. Yan. Event composition with imperfect information for

bus surveillance. In Procs. of 6th IEEE Inter. Conf. on Advanced Video and Signal Based
Surveillance (AVSS’09), pages 382–387. IEEE Press, 2009.

10. N. W. Patton. Active Rules in Database Systems. Springer-Verlag, 1998.
11. Gardiner Security. Glasgow transforms bus security with ip video surveillance. In

http://www.ipusergroup.com/doc-upload/Gardiner-Glasgowbuses.pdf.
12. G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.
13. C. F. Shu, A. Hampapur, M. Lu, L. Brown, J. Connell, A. Senior, and Y. Tian. Ibm smart

surveillance system (s3): a open and extensible framework for event based surveillance. In
Proc. of IEEE Conference on AVSS, pages 318–323, 2005.

14. L. Snidaro, M. Belluz, and G. L. Foresti. Domain knowledge for surveillance applications.
In Proc. of 10th Intern. Conf. on Information Fusion, 2007.

15. S. Wasserkrug, A. Gal, and O. Etzion. A model for reasoning with uncertain rules in event
composition. In Proc. of UAI, pages 599–608, 2005.

16. S. Wasserkrug, A. Gal, and O. Etzion. Inference of security hazards from event composition
based on incomplete or uncertain information. IEEE Transactions on Knowledge and Data
Engineering, 20(8):1111–1114, 2008.

17. S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin. Complex event processing over uncertain
data. In Proc. of DEBS, pages 253–264, 2008.

14


