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Abstract
In this paper we propose a graph stream clustering algorithm
with a unified similarity measure on both structural and
attribute properties of vertices, with each attribute being
treated as a vertex. Unlike others, our approach does
not require an input parameter for the number of clusters,
instead, it dynamically creates new sketch-based clusters and
periodically merges existing similar clusters. Experiments
on two publicly available datasets reveal the advantages
of our approach in detecting vertex clusters in the graph
stream. We provide a detailed investigation into how
parameters affect the algorithm performance. We also
provide a quantitative evaluation and comparison with a
well-known offline community detection algorithm which
shows that our streaming algorithm can achieve comparable
or better average cluster purity.

1 Introduction

Online streaming data analytics is an emerging research
area. Much of the data generated can naturally be
modelled as graphs, such as from sensor and social net-
works. These streams constantly evolve, producing dy-
namic graphs of rich information. Graph stream clus-
tering algorithms aim to extract useful information on-
line from these graphs. Furthermore, these networks
tend to be extremely large which introduces computa-
tion and memory demands, adding further challenges to
the graph stream clustering problem.

Clustering is a widely used approach to analysing
data[10]. Its objective is to identify sets of items where
objects in the same set show high levels of similarity
to each other. In the graph or network setting, this is
often called community detection[9] and the objective
is to identify sets of items that are densely connected
with each other. Typically this is done in an offline,
static environment, where the data has been completely
collected. However, now research has increasingly
focused on dynamic, online clustering where the data
is clustered as it arrives[13].

Clustering streams of graph data is regarded as
a challenging problem due to constraints such as the
number of passes on the data, having a large stream of
potentially unbounded length, as well as computational
and memory demands. In graph stream clustering, the
updates to the graph dataset arrive in a continuous way
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and can be considered as individual transaction graphs.
These transaction graphs themselves are relatively small
but form a part of the extremely large aggregated
graph and are usually defined over a massive domain
of distinct vertices such as users on a social network
or hyperlinks on the world wide web. The size of
the aggregated graph prevents it from being stored in
memory and storage on disk would be too slow for an
online setting. Furthermore, due to the large volume,
each transaction graph can only be examined with few
passes, typically one.
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Figure 1: How graph augmentation enlarges the trans-
action graph Gt (left) to Gs (right). All of Gs (right) is
the augmented subgraph.

Example 1: A social network consists of many
people where directed messages are exchanged publicly
between groups of users. Each new message arrives
from the stream and is modelled as a graph consisting
of directed edges from the user who sent the message
to the users who received it. Let User-A be the sender
and User-B and User-C be the receivers of one single
message.

If applying clustering, or community detection, to
this stream described in Example 1, one would aim
to assign each user to the cluster that they are most
similar to based on structural connectivity of their
communication patterns. Furthermore, attributes of
each vertex can be considered meaningful information
and be taken into account during the clustering process,
and they can be directly incorporated into the graphs
via augmentation[22]. We illustrate how augmentation
will affect our example graph in Figure 1. In this
example, these attributes consist of a users profile



on a social network but other examples include the
title and citations of a scientific paper in a stream
of paper publications, or the transaction history of
a user during a purchase in a financial transaction
stream. These attributes can lead to the discovery
of clusters that may otherwise have been missed if
only structural connectivity was considered. Ideally an
algorithm should consider both structural and attribute
information to achieve a better clustering result. For
example, small sparsely connected communities may
be completely unconnected when attributes are not
considered, but otherwise, densely connected around
attributes. Attributes are considered as vertices and
this allows a unified similarity function to be applied to
both the original vertices and the augmented vertices.

The constraints of the graph stream setting, such as
the limited number of passes and a huge amount of data,
make many existing substructural analysis algorithms,
especially algorithms that compare graphs on a pairwise
basis, unsuitable for processing streaming data.

To the best of our knowledge, vertex clustering
has not been applied to augmented graph streams.
GSSClu[21] studies a related problem of clustering
the graph objects, rather than the vertices themselves.
In many domains, such as Example 1, we may be
more interested in clustering each vertex (user) of a
new transaction graph individually rather than the
transaction graph (communication) as a whole. In doing
so, our approach looks at each individual vertex and its
attributes as well as its relationship to the vertices in
every transaction graph.

Therefore our approach will not only take into
account edges, but also consider the vertices of each
graph object individually, as well as the attributes as
vertices. The original idea behind the sketches used in
the current literature for cluster storage (see Section
4.1), lacks the ability to retrieve an arbitrary vertex
without enumerating all combinations of vertices and
edges. We overcome this weakness by storing each graph
vertex, as well as edges, in the clusters. For instance
in Example 1, if User-A communicates with another
user, User-D, it would be beneficial to know to which
cluster User-A belongs. Our approach supports this
finer grained analysis.

Vertex clustering can be considered more challeng-
ing than graph object clustering. One challenge arises
from the increased likelihood that the same vertex may
appear multiple times in the stream, and potentially
with different attribute values. Referring back to Ex-
ample 1, User-A may have sent the message from a spe-
cific location, but this is an attribute that is likely to
change. This problem is related to the phenomenon of
concept drift[17].

Another challenge is to estimate the number of
clusters a priori. Many graph clustering algorithms
require an input parameter specifying the number of
clusters to be created, which is a known limitation in
clustering[11]. This problem can be even more challeng-
ing in the stream setting where the data stream may be
unbounded and analysis is limited. Our algorithm does
not require setting the number of clusters up front, in-
stead, we dynamically create new clusters under certain
conditions, outlined in Section 4.5. Our main contribu-
tions in this work are:

� The first augmented vertex graph stream clustering
algorithm.

� A novel cluster definition that samples the best
substructures and vertex label values.

� A novel graph stream cluster merging scheme.

� A quantitative evaluation of our technique and a
comparison with the well-known Louvain[7] offline
community detection algorithm.

The rest of this paper is organised as follows.
Section 2 briefly surveys related work. In Section 3,
we define how we augment the graph stream while
discussing its benefits. In Section 4 we describe how
we adapt the sketch for our purpose, how our clusters
and likeness measures are defined and our algorithm in
detail. We proceed in Section 5 to evaluate our approach
on two public datasets. We conclude in Section 6.

2 Related Work

In the literature techniques exist for mining graphs in
the traditional static context. Many of them focus on
the problem of static vertex clustering on a single graph
with the aim to group similar vertices together based
on their linkage properties. One of the earliest ap-
proaches was graph partitioning[12] which partitioned
weighted graphs with respect to edge weights. The
Louvain method[7] is a widely used algorithm for the
detection of communities in large networks. It uses
the modularity metric which favours dense intra-cluster
and sparse inter-cluster connections, but requires mul-
tiple passes over the entire dataset. Not limited to only
looking at the structural relationships between graph
vertices, [22, 23] integrated attributes into the cluster-
ing process by adding these attributes as vertices to
the original graph via augmentation for an offline ran-
dom walk based approach. In two other recent ap-
proaches, CESNA[19] integrated network connectivity
with attribute similarity to detect overlapping commu-
nities and [18] developed a probabilistic Bayesian model
for attributed graphs. This recent and ongoing interest



in the relationship between vertices and their attributes
in clustering and community detection have provided
many examples of the advantages. However, many of
the proposed techniques in the literature, such as those
mentioned, are not suitable for the streaming data set-
ting as they require multiple passes over the data or rely
on the ability to be able to retrieve previous data.

Recently in the graph stream setting, techniques
have been proposed which address issues with min-
ing graph streams. The focus of techniques range
from outlier detection[5], classification[2], dense pat-
tern mining[3], as well as clustering algorithms[4, 20].
Some research has been carried out into dynamic com-
munity detection[16, 15, 14] but none considered aug-
mented graph streams and probabilistic data structures
for ‘big data’. The approaches only take the structural
linkage information from the graph into account during
the mining process. One exception, a very recent work,
GSSClu[21] incorporated attributes into the clustering
algorithm as what they called ‘side information’ for each
graph object from the stream as a whole, rather than
the individual vertices of the graph object.

We propose a novel approach to addressing the
issues of one pass processing of graph stream data
and association of attribute information to vertices
in a graph. We incorporate attributes directly into
the graph stream via graph augmentation, similar to
what is proposed by [22] (but our approach is applied
to graph streams) for the static domain. To the
best of our knowledge, this is the first attempt to
apply vertex clustering to the problem of streaming
augmented graphs.

3 Graph Vertex Augmentation with Attributes

Definition 1. A graph G = (V,E) consists of a set of
vertices V and edges E ⊆ V × V . Two vertices v,w are
adjacent iff ⟨v, w⟩ ∈ E. If the tuple ⟨v, w⟩ is ordered,
the graph is directed, otherwise it is undirected.

Definition 2. A graph Gt = (Vt, Et) is a subgraph of
G, denoted Gt ⊆ G, iff Vt ⊆ V,Et ⊆ E ∩ (Vt × Vt).

Definition 3. A graph stream G = {G1, Gt, . . . , Gn}
is a stream of subgraphs; For clarity, we call each Gt

from the stream a transaction graph.

The stream of transaction graphs vary by domains,
such as graphs consisting of emails, telephone calls,
URLs on webpages, financial transactions or commu-
nications between users on the Twitter social network.
These transaction graphs can then be augmented with
attributes of the vertex to provide more information and
discover more meaningful clusters based on both struc-
tural and attribute similarity.

Definition 4. Let A be a set of discrete attribute labels
A = {a1, . . . , an} associated with a graph stream. Let
a ∈ A be an attribute label with the domain Da =
{d1, . . . , dm}. The set of attribute-value pairs λ =
{⟨a, d⟩ : a ∈ A, d ∈ Da}.

Each transaction graph Gt will be partitioned into
|Vt| augmented subgraphs. For each vt ∈ Vt we
create one augmented subgraph that contains the set of
attribute value pairs for vertex vt in addition to original
transaction graph Gt.

Definition 5. An augmented subgraph Gs of the graph
Gt is denoted Gs = (vt, Vs, Es, λs) where vt is the
structure vertex of Gs, Vs is the set of other structure
vertices in Gt, Es is the set of edges, and λs the set of
attribute-value pairs belonging to vt.

For clarity, like [22], we will refer to the original
vertices as structure vertices and the original edges as
structure edges. Attribute vertices that were added via
the augmentation process will be referred to as attribute
vertices and the resulting edges from these vertices
referred to as attribute edges.

When a vertex vt has a value for attribute aj , an
attribute vertex for aj is added to Gs, with an attribute
edge between vt and this new attribute vertex.

The set of discrete attribute labels A from Defini-
tion 4 plus the label for the structure vertex vt (labels
are also the names of the vertices) will be referred to as
the Complete Label Set or CLS.

An alternative approach to augmentation may be
to associate attributes as feature vectors for each ver-
tex. However, this does not lend itself well to providing
a unified similarity measure of attribute and structural
information, as the attributes would be explicitly ex-
cluded from any similarity function that measures con-
nectivity. As shown, we choose to add each attribute
into the graph as a vertex to provide a unified similar-
ity measurement framework for vertex clustering with
augmented graph streams. In this generalised frame-
work, each vertex label, including those of the attribute
vertices, are treated as discrete labels. In our unified
approach, by augmenting the graph with attributes as
vertices, the same similarity measurement for structure
vertices is applied to attribute vertices and the varying
importance of each can be controlled by weights applied
to each attribute.

We stress how our approach differs to that of
GSSClu[21]. Their method of incorporating these at-
tributes mean that each set of side information is associ-
ated with the graph object as a whole, which limits the
effectiveness in domains where side information may be
associated uniquely to individual vertices in each graph.



For example, if we are clustering graph objects consist-
ing of user communication on a social network, user lo-
cations may be a useful attribute as part of the side in-
formation. However, vertices in the graph object may be
associated with different locations. Since we are propos-
ing vertex clustering, it is natural to only consider the
attributes relevant to the vertex being clustered. Where
as for GSSClu each cluster is a set of transaction graphs
(Gt), with our approach each cluster is a set of vertex
augmented subgraphs (Gs).

4 Methodology

4.1 Sketch Statistics. In the graph stream setting,
we require a method to overcome the computational and
memory limitations that come with large amounts of
data. Furthermore, due to our augmentation process
and storage of vertices as well as edges, we expect the
volume of data to be even greater. One approach to
solve this may be to use a form of random sampling of
the incoming data stream[5], however we would like to
keep a count of each item we see in the stream, including
sparse regions, which is easier if we can process all
items. An approach that supports processing all items
in the stream, but still accommodates large amounts
of data is a sketching data structure called Count-
Min[8] which maintains summary statistics over the
entire data stream, storing a constant sized sub-linear
space representation in memory. Sketch data structures
such as Count-Min can be considered a ‘synopsis’ of
the input data stream, maintaining specific summary
statistics, providing approximations over accuracy for
increased efficiency.

We adapt the Count-Min sketch for estimating fre-
quency statistics of the vertices and edges in the graph
stream. Count-Min is a sketch approach to summaris-
ing data streams and approximate aggregation. Each
sketch table is maintained as a 2D array with ln(1/δ)
rows (denoted d) and e/ϵ columns (donated w) where
e is the base of the natural logarithm. δ and ϵ are in-
put parameters required by Count-Min to determine the
sketch dimensions. d different hash functions are gener-
ated randomly from a pairwise independent family, each
of which corresponds to one of the 1D rows with w cells.
For example, when a new vertex v is being added to the
sketch, each hash function is applied to v and maps it
to a hash value hvj with range [0, w − 1]. For the jth

hash function, the frequency of the vertex v is added
to the hvj

th column on the jth row of the sketch. To
retrieve the estimated frequency of a vertex v we map it
to d cells by applying d hash functions. The frequency
of the vertex is the minimum value among all these d
cells. This value will either be correct or an overestima-
tion with maximum bound of ϵ · T with probability at

least 1− δ for a data stream with T arrivals. The same
process occurs for storing and retrieving edge frequen-
cies. The edge is derived by concatenating the vertices
of the edge; e = ⟨vi, vj⟩ is vi ⊕ vj .

Our extension of the use of Count-Min in the graph
stream setting is to not only estimate the frequency
statistics of edges, but also of vertices.

4.2 Cluster Definition. As we aim to divide ver-
tices into clusters, we need an efficient method to main-
tain the contents of each cluster.

ESketch (cl) for storing the frequency of each struc-
ture and attribute edge in cl.

V Sketches (cl) = {sketch (l0) , . . . , sketch (lm)} for
vertices, one sketch for each label l ∈ CLS.

SoB(cl): A vector of frequencies of substructures
(called Sample of Best) assigned to cluster cl which
are the top |SoB (cl) | frequencies. That is, SoB(cl) =
{s1, s2, . . . , sq} where each sc is the total frequency
value of an augmented subgraphs vertices and edges in
the cluster.

W : a set of weights, each of which is associated with
a label l ∈ CLS and represents the importance of this
label in the clustering processing.

HGS(cl) = {heap (l0) , . . . , heap (lm)} maintains a
set of heaps for each label l ∈ CLS. Each heap(lj)
holds the top p most frequent values for label lj in their
non-hashed form. This is used by the cluster merging
algorithm to be discussed in Section 4.6.

By including a sketch of vertices in each cluster, we
can extend queries to include the frequency of vertices
in each cluster, not just edges. By maintaining heaps
of the most frequent values for each vertex, including
attribute vertices, we retain the most frequent values
for vertices which can be used during the merging of
clusters, without enumerating all past inputs.

4.3 Graph Preprocessing. Since we are proposing
a unified similarity measurement framework for aug-
mented graphs, we consider the situation where each
structure and attribute vertex label is discrete without
losing generality. Discrete types are chosen as our sim-
ilarity function is based on frequency statistics of ver-
tex and edge labels. The vertex labels of the edge are
ordered as stated in Definition 5. Ordering is impor-
tant for consistent cluster sketch statistics as an edge
labela − labelb will hash to a different value, and there-
fore different sketch locations, than labelb − labela.

4.4 Likeness. For a structure vertex vt in a transac-
tion graph, the goal is to place its augmented subgraph
Gs = {vt, Vs, Es, λs} into the cluster that Gs is most
similar to based on other items in the cluster. We use



K to denote a set of clusters.
To define a unified measure in this subsection, we

use va to denote an attribute-value pair in λs from a
given Gs. The frequency of a structure vertex or an
attribute-value pair in a cluster cl, denoted FV (v, cl),
(v is either vt or va), is simply the number of times it
has been placed into cluster cl previously.

The membership of v in cluster cl, denoted as
MSV (v, cl), is the frequency of v in cl taking into
account the weight of the vertex. The weights for
attributes are predefined to reflect how important they
are. We let the structure vertex weight be 1.

(4.1) MSV (v, cl) = FV (v, cl)w (v)

For ⟨vt, vj⟩ in Es the membership MSE (⟨vt, vj⟩, cl)
in cluster cl, is the frequency of ⟨vt, vj⟩ in cluster cl,
taking into account the weight of the vertex vj from the
edge. When vj is a structure vertex we let the weight
be 1, when it represents an attribute value pair it is the
attribute weight.

(4.2) MSE (⟨vt, vj⟩, cl) = FE (vt ⊕ vj , cl)w (vj)

where ⊕ is the concatenation operator on the vertex
labels strings vt and vj .

The likeness expectation of the current subgraph
Gs to an existing cluster is calculated via the likeness as
shown in formula 4.3.

(4.3) likeness (Gs, cl) =( ∑
∀v∈{vt}∪λs

(MSV (v, cl)) +
∑

∀⟨vt,vj⟩∈Es

(MSE (⟨vt, vj⟩, cl))

)
mean (SoB (cl))

max(likeness(Gs, cl)) is the most similar cluster to the
current subgraph.

The definition of likeness between an augmented
subgraph and a cluster is the central idea of our unified
similarity measurement framework.

4.5 Conditions for Cluster Creation. If there is
no single cluster cl that Gs is most similar to, then we
create a new cluster for it, that is when the maximum
likeness value is 0 which occurs when subgraph Gs has
no similarity to any current cluster.

The other condition for cluster creation is when Gs

is an outlier in the cluster to which it was closest. We
define an outlier range so we can detect and handle the
situation that occurs when the most similar cluster for
Gs is too dissimilar. To accomplish this we use the
cluster SoB data structure and determine an outlier
value to be greater than 3σ less than the current mean
of the SoB samples.

4.6 Cluster Merging. As commonly used in the in-
formation retrieval domain for finding similarity be-
tween sets of documents, we use cosine similarity for
measuring the similarity between sets of clusters. With
the use of a probabilistic data structure such as Count-
Min for storing cluster statistical contents, this would
normally be infeasible in the stream setting as retrieving
sketch hash values requires the sketch hash key. This
would be impractical to store for large amounts of data.
However, we maintain a set of heaps HGS containing
the most frequent values of each label in CLS. With
each HGS represented as vectors of feature values, the
degree of similarity between two clusters is computed as
the average cosine of the angle between them.

sim(HGS(cl),HGS(cu)) =
(HGS(cl) ·HGS(cu)

|(HGS(cl)||HGS(cu)|

(4.4)

where HGS(cl) and HGS(cu) are the sets of heaps, one
for each label in CLS, of most frequent label values. If
the resulting average similarity value is greater than a
predefined similarity threshold, then the two clusters are
to be merged.

Count-Min sketches can be merged via entry-wise
summation and the merged sketch becomes the union
of the previous two sketches[1]. Each cluster SoB and
HGS is also updated in this merging operation.

The cosine similarity is a useful metric for deter-
mining the similarity of our clusters as it is a measure-
ment of orientation and not magnitude. This is useful
as merging may occur between newly created clusters
and older and larger cluster with a larger magnitude.

5 Experiments

5.1 Datasets. As the approach of vertex clustering
in graph streams is novel and no baselines exist for
comparison, one of our experiments will use the CORA
dataset1 which was used by a related approach[21] to
clusters papers on their topics using a graph stream
with associated side information. The CORA dataset
consists of scientific articles in the computer science
domain, each of which can be represented as a graph
with co-author relationships as edges. We use the same
attributes as [21], the paper terms and citations, and
augment each author subgraph with them as defined in
Definition 5. One unique challenge of our approach on
a dataset such as CORA is that graph object clustering
approaches, such as [21], would be clustering papers,
which have a single associated topic, where as we are

1http://people.cs.umass.edu/~mccallum/data/cora-
classify.tar.gz



Algorithm 1: Augmented Vertex Subgraph
Clustering Algorithm (AVSCA)

Input: X: cluster merge smoothing parameter
1 foreach newly received graph Gt do
2 Split Gt into augmented subgraphs Gs as

defined in Definition 5;
3 foreach subgraph Gs do
4 for l = 1 to K do
5 compute likeness(Gs, Cl) defined in

equation 4.3

6 let Cclosest be the set of closest clusters;
7 if |Cclosest| >1 then
8 Create new cluster with Gs.

9 else if likeness(Gs, Cl) <
Outlier Range(Cclosest) then

10 Create new cluster with Gs;
11 Report Gs as an outlier;

12 else
13 Update Cclosest cluster by inserting

the augmented subgraph Gs;

14 if graph count % X == 0 then
15 call Cluster Merge Step ();

16 graph count += 1;

Algorithm 2: Cluster Merge Step

Input: similarity threshold: Threshold for
merging similarity

Input: C: Set of clusters
Output: D Set of clusters

1 Let K be the |C|;
2 for l = 1 to K do
3 for m = 1 to K do
4 if m != l then
5 Calculate cosine similarity of

HGS(cl) and HGS(cm) as defined in
equation 4.4;

6 Let similarity list be the list of similar cluster
pair tuples in descending order by similarity;

7 foreach similarity pair sp in similarity list
do

8 if similarity score (sp)
>similarity threshold then

9 Merge clusters in sp together;
10 Remove any remaining similarity pairs

containing either cluster from sp;

clustering authors who may publish papers on different
topics throughout the stream.

The Million Song Dataset (MSD)[6]2 is a 280GB
dataset consisting of data from one million songs. The
data associated with each song includes basic metadata
as well as features extracted from the audio of each
song. The last.fm dataset3 is a collection of songs
with associated ‘tags’ that have been provided by users
of the last.fm service. The tags can be linked with
songs from the MSD. These collaboratively labelled
tags can be interpreted as the genres for the songs.
By discovering songs that are similar to each other,
recommendations of similar songs (i.e. those in the
same cluster) can be provided to users based on the
songs that they like. This dataset also highlights
the importance of augmenting attributes as, unlike
the CORA graph, songs will typically only appear
once and lack any natural structural relationship to
other songs outside of the album they are present on.
Without attributes, it would be challenging to exploit
the structural relationship between songs for clustering.

We first choose 10 of the most common tags from
the dataset to use as genres. They are rock, pop, blues,
hip-hop, country, reggae, electronic, jazz, soul and folk.
For each of the 10 genres we choose 5000 songs, giving
a total of 50000 songs correctly tagged spreading over
around 23000 transaction graphs. Other songs on an
album that have been tagged as a genre outside of these
10 genres are included as features but are not processed
individually as augmented subgraphs, since they do not
belong to one of our evaluation genres. We bin our
chosen numeric features, loudness and tempo, into 50
bins and extract (up to) the top 100 most frequent
listeners for each song. These feature choices allows
songs of which we have no listener data to be clustered
on acoustic features only.

5.2 Cluster Quality Metric. The CORA dataset
provides topic classifications of publications and is used
in [21] as a means of providing ground truth for evalu-
ation of cluster quality. We use the last.fm tags as the
ground truth for the MSD graph.

Cluster quality is measured using the cluster purity
measure[4, 21]. The purity of each cluster is calculated
by taking the most frequent class in each cluster and
determining the fraction of members of the cluster that
belong to this class. For the MSD experiment this
is straightforward as each song occurs only once in
the stream and it is always associated with one genre.
However, in the case of the CORA ground truth, we

2http://labrosa.ee.columbia.edu/millionsong/
3http://labrosa.ee.columbia.edu/millionsong/lastfm



must do some further preprocessing of the data as
authors may occur multiple times in the stream, and not
always with the same class label; authors may publish
papers in various topics. Therefore, we use the paper
classifications to create an association of the authors of
each paper to the topic of their papers. Around 26% of
authors had published a paper in more than one of the
topic areas. In these cases we associate each author with
the topic in which they most frequently published. 8.4%
of authors had no single topic in which they published
most frequently. In these cases, we associate all of the
authors most frequent topics with the author. These
classifications are used as a means of ground truth for
our approach in this experiment.

Our approach is flexible in that it can result in both
hard and soft clusters, as authors from the CORA graph
may be placed in different clusters over the course of the
stream resulting in a soft clustering, but in the MSD
experiment each song will only be in one cluster and
therefore a hard clustering. This affects the calculation
of the cluster purity in the CORA graph. In our
calculation of the cluster purity score, we only take into
account authors in clusters where the majority of their
membership belongs to that cluster. In the case where
the highest membership of an author is shared with
more than one cluster, the author is included in the
purity calculations for all of those clusters.

5.3 Results. Since our algorithm is novel, namely
online vertex clustering, no other online vertex clus-
tering methods exist to provide a suitable comparison.
However existing offline algorithms can analyse these
datasets for the same purpose, and we will do so to pro-
vide a baseline for comparison. An online streaming al-
gorithm will encounter issues that the offline algorithms
do not and we will be able to observe these differences
in our experiments. The key difference is that the offline
algorithm has the benefit of making multiple passes over
the complete graph. This is in contrast to a streaming
algorithm which will only be processing small sections
of the graph at any time, and has limited access to the
previous sections processed.

We note that we do not evaluate the efficiency
of our approach but we expect it to be less efficient
than GSSClu since for each transaction graph we
cluster each vertex and its attributes (via the augmented
subgraph) from the transaction graph individually.

5.3.1 Settings. Since we store the frequencies of
each attribute type in a separate Count-Min sketch, we
initialise each sketch with values chosen based on the
estimated size of each feature space. The weight of each
attribute is manually set to 1. The HGS size will be 25

and X, which determines when the merging algorithm
is run, is set to 100.

5.3.2 Effects of the Merging Algorithm Similar-
ity Threshold on the Clustering. As our merging
algorithm uses only the HGS structures from each clus-
ter and we only consider the best values in each cluster,
we can expect that even low thresholds can result in
meaningful merges. We provide an overview of a range
of similarity thresholds along with a finer grained analy-
sis of thresholds we found to be particularly influential.

Figures 2a and 3a show the average purity versus
the number of transaction graphs processed for a range
of different similarity thresholds on the CORA and
MSD graphs respectively. Figure 2a shows that
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Figure 2: Effect of cluster merge threshold value on the
CORA graph (SoB size of 200).
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Figure 3: Effect of cluster merge threshold on the MSD
graph (SoB size of 200).

for the CORA graph varying the threshold has little
effect on the cluster purity which remains relatively
constant. The results for the MSD graph in Figure
3a are somewhat different in that the cluster purity
significantly decreases when the threshold is increased
from 0.2 to 0.3. On closer investigation, clusters are of
poor quality at 0.2, with one very large impure cluster of
49463 subgraphs. The reason for the higher purity is due
to all of the other clusters at this threshold being small
in size with a high purity. Thresholds of 0.3 resulted
in a large cluster of 25173 subgraphs. For thresholds
of 0.4 and above, too many clusters are created, with
few merges, resulting in excessive computational times.



However with a threshold of 0.39 around 30 merges
occur, which is enough to create distinct clusters early in
the stream and prevent excessive clusters being created.
This resulted in a much better distribution of subgraphs
among clusters with the largest cluster being just 1403
subgraphs in size. Figures 2b and 3b show the number
of clusters versus the number of graphs processed for
a range of different similarity thresholds for the CORA
and MSD graphs, respectively. For almost all thresholds
on the CORA graph, the performance is similar, except
for a threshold 0.1 where the increase in the number of
clusters is significantly reduced. This result is reflected
in Figure 2c which shows the number of merges versus
the transaction graphs processed. Here the number
of merges increased with 0.1 compared to the other
thresholds. The reason for this is as the cosine similarity
threshold decreases, more clusters will meet or exceed
this threshold. Figures 3b and 3c show the same results
for the MSD graph. In Figure 3b the general trend
is that the number of clusters again increase with the
number of transaction graphs processed. At a threshold
of 0.3 and 0.39 the cluster numbers trend similarly, until
15000 graphs have been processed and the threshold of
0.3 leads to cluster numbers falling to a final number
of clusters similar to 0.2, while 0.39 remains stable. A
threshold of 0.39 is the optimal value as it maintains a
better distribution of cluster sizes, which is qualitatively
more useful in practice, and still achieves a good average
purity. Once again these results are inversely reflected in
Figure 3c, which shows that as the threshold is reduced
the number of cluster merges increases. In summary,
the general trends for the CORA dataset are clearer,
in that the cluster purity and the number of clusters
remain unaffected over most of the range of thresholds.
The cluster purity remains more or less constant versus
the number of transaction graphs processed, whilst the
number of clusters increases. The situation for the
MSD graph is more complicated with excessive clusters
created at a threshold of 0.4 and above, to the extent
that given our resources we had to stop the clustering
at these thresholds early. Thresholds at 0.3 and below
were too low, both allowing very large clusters to form.
The reason for this is that many clusters had a cosine
similarity of at least these values. This may be because
the clusters in the MSD graph are naturally less distinct
than those of the CORA graph.

5.3.3 Effects of SoB Size on the Clustering.
Now we will look at the effect of varying the SoB size.
For each dataset we will choose a threshold for the
merging algorithm that is optimal.

Figures 4a and 5a show the cluster purity versus
graphs processed, with a range of SoB sizes, for the
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Figure 4: The effect of varying the SoB parameter on
the CORA graph (merge threshold 0.1).
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Figure 5: The effect of varying the SoB parameter on
the MSD graph (merge threshold 0.39).

CORA and MSD graphs respectively. It shows cluster
purity remains more or less constant at values of 0.8
and between 0.5-0.6 for the CORA and MSD graphs
respectively. Figures 4b and 5b show the number of
clusters increases versus transaction graphs processed.
This increase is greater in both with a decrease in SoB
size. This result is replicated in Figure 4c and 5c for
both graphs, which shows that the rate of increase in
cluster merges is greater for reduced SoB sizes. The
reason for this is that smaller SoB sizes will have a
tighter mean due to a more limited number of the top
substructure sample values in the SoB. One interesting
observation is that in Figure 4c and 5c the number of
merges reflect the trend seen when varying the threshold
parameter for the merging algorithm in Figures 2c and
3c, except lower values result in more merges occurring
for the same threshold.

5.3.4 Comparison with the Louvain method.
Now that we have explored the influence of the param-
eters of our method, in this experiment we compare
our streaming approach with a state-of-the-art non-
streaming and offline Louvain method. We applied the
Louvain method to the same augmented graphs but in
batch, rather than a streaming mode. This achieved
an average purity score of 0.86 over 118 clusters for
the CORA graph, and 0.46 over 116 clusters for the
MSD graph. Then, based on the CORA experiments
in subsections 5.3.2 and 5.3.3, we selected values of 800



and 0.1 for the SOB size and cluster merging thresh-
old respectively. With the chosen parameter settings
for our approach, we achieved an average cluster purity
of 0.82 over 318 clusters for the CORA graph, which is
0.04 lower than the Louvain method. These values were
the best compromise between average cluster purity and
number of clusters, but for all parameters we found sim-
ilar average cluster purities. For the MSD graph with
the optimal merge threshold of 0.39, all SoB sizes we
achieved a higher average cluster purity than the Lou-
vain method. The highest average cluster purity was
0.58 over 234 clusters with an SoB size of 800, 0.12
higher than the Louvain method.

6 Conclusions and Future Work

In this paper we present the first approach for vertex
clustering in the augmented graph stream setting, and
show potential applications via experimentation on two
real world datasets from different application domains.
We also show how the addition of vertex attributes into
the clustering process aids the clustering algorithm by
not only taking into account connectivity between the
original structural vertices, but also extra information
via a unified similarity measure. Furthermore, it can
be difficult to define the number of clusters a pirori,
particularly so for an unbounded stream and we show
how our approach solves this challenge by dynamically
creating new clusters as required. We show that our
cluster merging step is able to maintain a high average
cluster purity and low cluster count.

To conclude, in this work we presented a streaming
algorithm that incorporates attributes directly into the
vertex clustering process and demonstrated how its
cluster purity is comparable or better than a well
known offline approach but with the advantages of high
scalability that comes with online streaming methods.

For future work we would like to look into extending
our approach to very high dimensional data which would
likely introduce significant efficiency challenges.
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