
Science of Computer Programming () –

Contents lists available at SciVerse ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Measuring the significance of inconsistency in the
Viewpoints framework
Kedian Mu a,∗, Zhi Jin b,c, Weiru Liu d, Didar Zowghi e, Bo Wei f
a School of Mathematical Sciences, Peking University, Beijing 100871, PR China
b Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, Beijing 100871, PR China
c School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
d School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, BT7 1NN, UK
e School of Software, Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia
f Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100190, PR China

a r t i c l e i n f o

Article history:
Received 27 December 2010
Received in revised form 11 October 2012
Accepted 10 December 2012
Available online xxxx

Keywords:
Requirements
Measure of inconsistency
Significance of inconsistency
Viewpoints

a b s t r a c t

Measuring inconsistency is crucial to effective inconsistency management in software
development. A complete measurement of inconsistency should focus on not only the
degree but also the significance of inconsistency. However, most of the approaches
available only take the degree of inconsistency into account. The significance of
inconsistency has not yet been given much needed consideration. This paper presents an
approach for measuring the significance of inconsistency arising from different viewpoints
in the Viewpoints framework. We call an individual set of requirements belonging to
different viewpoints a combined requirements collection in this paper. We argue that the
significance of inconsistency arising in a combined requirements collection is closely
associated with global priority levels of requirements involved in the inconsistency. Here
we assume that the global priority level of an individual requirement captures the relative
importance of every viewpoint including this requirement as well as the local priority
level of the requirement within the viewpoint. Then we use the synthesis of global priority
levels of all the requirements in a combined collection to measure the significance of the
collection. Following this, we present a scoringmatrix function tomeasure the significance
of inconsistency in an inconsistent combined requirements collection, which describes the
contribution made by each subset of the requirements collection to the significance of
the set of requirements involved in the inconsistency. An ordering relationship between
inconsistencies of two combined requirements collections, termed more significant than,
is also presented by comparing their significance scoring matrix functions. Finally, these
techniques were implemented in a prototype tool called IncMeasurer, which we developed
as a proof of concept.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The development of any complex system always involves many different stakeholders with different background
knowledge, technical expertise, responsibilities, and expectations of the benefit of the system [1,2]. Each stakeholder
imagines the system-to-be fromaparticular perspective. TheViewpoints is a frameworkproposed to describe these different

∗ Corresponding author.
E-mail address:mukedian@math.pku.edu.cn (K. Mu).

0167-6423/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2012.12.006

http://dx.doi.org/10.1016/j.scico.2012.12.006
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:mukedian@math.pku.edu.cn
http://dx.doi.org/10.1016/j.scico.2012.12.006

2 K. Mu et al. / Science of Computer Programming () –

perspectives and their relationships explicitly [1]. In the Viewpoints framework, the concerns about the system-to-be from a
particular stakeholder, or a group of stakeholders are captured by a distinct viewpoint, and the requirements are represented
by a collection of locally structured, loosely coupled and distributable viewpoints and constraints between them [2].

It seems to be inevitable to confront inconsistency in the Viewpoints framework. Different viewpoints invariably
overlap, complement, or contradict each other [2]. Moreover, maintaining completeness and correctness of requirements
specifications is always associated with the problem of inconsistency. For example, Zowghi et al. [3] argued that there is an
important causal relationship between consistency, completeness and correctness of requirements. This also implies that
inconsistency is not a self-contained problem in requirements engineering.

Contrary to viewing inconsistency as an absolute undesirable, it has been increasingly recognized that inconsistency
may also play a positive role in facilitating requirements elicitation if management of inconsistency becomesmore effective
and flexible [4,5]. In particular, as pointed out in [6], the use of logic in managing inconsistency in requirements was
proven to be effective in a number of studies. Various logic-based techniques have been proposed tomanage inconsistencies
in requirements engineering and software engineering [6–11]. Most of these techniques focus on a particular type of
inconsistency in requirements engineering, i.e., logical contradictions: any situation in which some fact and its negation
can be simultaneously derived from the same requirements set.

It has been recognized thatmeasuring inconsistency is crucial for effectivemanagement of inconsistency in requirements
engineering [4,5]. Appropriate assessment of inconsistencies in a requirements specification can provide sound bases for
trade-off decision making on handling these inconsistencies. To achieve this, developers would like to know the degree
of inconsistency arising from a requirements set. More importantly, developers also need to know the significance of
inconsistency arising from that requirements set. Clearly, a stakeholder may consider that inconsistency α ∧ ¬α is more
important than β ∧ ¬β if α is more important than β from his point of view. Therefore, a complete measurement of
inconsistency in requirements should focus on the significance as well as the degree of inconsistency.

The degree of inconsistency and the significance of inconsistency are two essential aspects for articulating an individual
inconsistent requirements collection (i.e., a set of requirements). The degree of inconsistency describes how inconsistent a
requirements collection is, whilst the significance of inconsistency measures how important the inconsistency arising from
a requirements collection is. Then they may be viewed as two distinct dimensions of measurement of an inconsistency.

Apart from requirements engineering,measuring inconsistency is one of the important topics in the Artificial Intelligence
(AI for short) community [12,13]. Various techniques for measuring inconsistency have been proposed in the AI literature.
The overwhelming majority of these techniques focus on different measures of the degree of inconsistency [14–18,13,19–
21,12,22]. Hunter et al. have argued in [12] that these current proposals for measuring the degree of inconsistency may be
classified into two categories: formula-based and variable-based. Roughly speaking, proposals such as [22,14,13] belong
to the first category because these proposals involve counting the minimal number of formulas that are needed to cause
inconsistency [12]. In contrast, proposals such as [15–18,13,19,20] belong to the second category because these approaches
allow us to look inside the formulas involved in inconsistency [12]. Generally, the proposals of the first category are syntax
sensitive, while the proposals of the second category are not. However, as argued in [13], the syntax sensitivity is necessary
for formal representation of requirements. For example, {α, β} should be treated differently from {α ∧ β} since the first set
states that there are two requirements α and β , whereas the second states that there is only one requirement α ∧ β [13].
In this sense, the proposals of the second category are less appropriate for measuring the inconsistency in requirements
engineering. Among the proposals of the first category, the scoring function presented in [14] can be considered as one of
the proposals appropriate for summarizing the degree of inconsistency, since it provides a succinct means for articulating
the nature of inconsistency in a set of classical formulas [14].

In contrast, the significance of inconsistency has not yet been given much deserved consideration. There are relatively
few investigations as how the significance of inconsistency can be measured [21,23]. The approach in the framework of
Quasi-classical (QC for short) logic to evaluating the significance of inconsistency presented in [21] is one of the most
representatives for measuring the significance of inconsistency in knowledge or belief bases. QC logic is a paraconsistent
variation of the classical logic, which allows us to continue reasoning in the presence of inconsistency [9]. However, this
approach is difficult to apply in RE, since it is based on specifying the relative significance of incoherent QC models using
additional information, encoded as amass assignment in the Dempster–Shafer theory [24]. In contrast, the scoring function-
based approachpresented in [23] can be considered as the first attempt tomeasuring the significance of inconsistency arising
from prioritized requirements. It focused on measuring the inconsistency from a given viewpoint rather than multiple
viewpoints. However, as illustrated later, this approach can be considered as a special case of our approach presented in
this paper.

Intuitively, the significance of an inconsistency depends on the relative importance of requirements involved in the
inconsistency. However, the same shared requirement among different viewpoints may have different relative importance
within these different viewpoints. It may lead to a disagreement on the significance of a given inconsistency among these
viewpoints. Thus developers need to reach an agreement on which inconsistencies are more important than others from a
global perspective. That is, we should evaluate the significance of inconsistency based on the global priority of requirements
involved in inconsistency, which considers the local priority of requirements within each viewpoint as well as the relative
importance of each viewpoint. In addition, given an inconsistent requirements collection, it is desirable to identify most
possible sources of inconsistency in the collection to know what specific requirements make more significant contribution
to the inconsistency.

K. Mu et al. / Science of Computer Programming () – 3

This paper concentrates on the problem of how to measure the significance of inconsistency arising from different
viewpoints within the Viewpoints framework. This work extends Hunter’s approach for dealing with the degree of
inconsistency [14] by developing the measures of significance of inconsistency. We argue that the significance of a given
requirements collection from the integrated perspective depends on the global relative importance of requirements in that
collection. We thus present an innovative approach to measuring the significance of inconsistency arising from different
viewpoints based on a novel scoring function. Roughly speaking, given an inconsistent requirements collection, the scoring
matrix function is proposed to describe the contribution made by each subset of that collection to the inconsistency in that
collection. An ordering relationship between inconsistencies of two requirements collections, termedmore significant than,
is also presented by comparing their significance scoring matrix functions. These techniques were implemented and tested
in a proof of concept prototype tool called IncMeasurer. The effectiveness of the innovative techniques presented in this
paper and the supporting tool are illustrated by a case study involving conflicting requirements from multiple viewpoints
in an electronic health records system.

The rest of the paper is organized as follows. Section 2 introduces the theoretical foundations and formal details of
the techniques developed. Section 3 provides a brief overview to our previous work on measuring the significance of
inconsistency in a given viewpoint, which can be considered as a simple case of an approach presented in Section 4. Section 4
presents an approach tomeasuring the significance of inconsistency arising from different viewpoints. Section 5 gives a case
study to illustrate the feasibility of our approach and its supporting tool in requirements engineering and Section 6 compares
our work with other related research. Finally, we conclude this paper in Section 7.

2. Preliminaries

Throughout this paper, we use first order logic to formulate requirements in the Viewpoints framework. First of all,
this paper aims to capture the underlying nature of conflicts between requirements, which should be independent of
any individual representation of requirements. For example, the severity of conflicts between requirements should not
depend on whether the requirements are in natural language or UML. Representation frameworks with better capability
of articulating the nature of inconsistency strictly and unambiguously are more preferred. Moreover, heterogeneity of
representation in the Viewpoints framework allows different viewpoints to use different notations to represent their
requirements during the requirements stage. This requires that any chosen tool for formulating requirements in the
Viewpoints frameworkmay represent requirements expressed in different forms. However, most notations for representing
requirements such as ER diagrams, dataflow diagrams, inheritance hierarchies, and much of the Z language, could be
translated into formulas of first order logic [9]. These make first order logic more appealing for formulating requirements in
general. Second, as pointed out in [6], a number of studies have shown that the use of logic in managing inconsistency
in requirements is effective. This implies that some appropriate logic-based approaches to handling inconsistency are
appropriate and applicable to requirements engineering. Third, as shown later, we characterize and measure inconsistency
in terms of minimal inconsistent subsets, which captures the most essential aspects of characterization of conflicts, i.e.,
minimality and logic contradiction. This renders the approaches presented in this paper feasible to be adapted to other
cases such as conflicts between requirements assertions presented in [8]. Allowing for these, first order logic is considered
as a promising language to represent different viewpoints and their relationships uniformly.

Moreover, in a logic-based framework for representing requirements, consistency checking is always associated with
certain scenarios with regard to the requirements specification [9,6], or some specific domain knowledge [8]. That is, we
must add further relevant facts (e.g., domain knowledge) to model each scenario. Then reasoning about requirements is
always based on these certain facts. This implies that checking the consistency of requirements collections only considers
ground formulas1 rather than unground formulas. Furthermore, if we assume a universally quantified formula is just an
abbreviation for a conjunction of the formulas that can be formed by systematically instantiating the variables of the
quantified formula with the constants in the language used in formulation of requirements, then we may restrict the first
order language to the propositional case [9]. It iswell known that consistency checking is decidable in the propositional case,
then this restriction will bring some computational advantages, especially for tool support on validation of our approaches.
Actually, restricting first order logic to propositional logic in some way is a useful and practical way of balancing the
computational advantages of propositional logic against its limited expressive power in requirements engineering as well
as software engineering [9,6,25,26,11]. For these reasons, we adopt a classical first order languagewithout function symbols
and existential quantifiers used in [9] to represent viewpoints in this paper. This classical first order logic is convenient to
illustrate our approach, as will be shown in the rest of the paper.

We use the following notations about first order logic used in [9]. Let P be a set of predicate symbols. Let V be a set of
variable symbols, and C a set of constant symbols. We call A = {p(q1, . . . , qn)|p ∈ P and q1, . . . , qn ∈ V ∪ C } the set
of atoms. Let F be the set of classical formulas formed from A and logical connectives {∨,∧,¬,→}. In particular, we call
p(q1, . . . , qn) a ground atom if and only if q1, . . . , qn ∈ C . Let A0 be a set of ground atoms. Let F0 be the set of classical
formulas formed from A0 and logical connectives {∨,∧,¬,→}.

1 There is no variable symbol appearing in the ground formula. For example, user(John) is a ground atom, and user(x) is not a ground atom.

4 K. Mu et al. / Science of Computer Programming () –

Let G be a set of ground formulas and universally quantified formulas (in which the quantifies are outermost) formed
fromF . That is, ifα ∈ F , and X1, . . . , Xn are the free variables ofα, then∀X1, . . . ,∀Xnα ∈ G . Note thatwe use G to formulate
requirements in this paper.

Let α ∈ G be a first order formula and ∆ ⊆ G a set of formulas in G . In this paper, we call ∆ a set of requirements or a
requirements collection (mostly referred to as a (partial) requirements specification) while each formula α ∈ ∆ represents
a requirement.

For example, for a requirement: if an authorized student requests to choose a course and the course is available, then the
student can choose the course, if we

• use auth(X) to denote that X is authorized;
• use requ(X, Y) to denote that X requests to choose Y ;
• use avai(Y) to denote that Y is available;
• use choo(X, Y) to denote that X can choose Y ;
• use variable Stud to denote a student;
• use variable Cour to denote a course;

Then we can represent the requirement by

∀Stud∀Cour (auth(Stud) ∧ requ(Stud, Cour) ∧ avai(Cour)→ choo(Stud, Cour)).

However, to check inconsistency of requirements collections, the universally quantified formulas are always instantiated
by the constants in certain scenarios. For example, given the following facts in a scenario:

• Bob is an authorized student (auth(Bob));
• Bob applies to choose Probability Theory (requ(Bob, Prob));
• Probability Theory is available (avai(Prob));

Then we use the following ground formula as a substitute for the universally quantified formula above:

auth(Bob) ∧ requ(Bob, Prob) ∧ avai(Prob)→ choo(Bob, Prob).

Generally, if ground formulas α1, α2, . . . , αn are the instantiations of the universally quantified formula α by using
different facts in a scenario, then wemay use α1∧α2∧· · ·∧αn as a substitute for α in the scenario. Thus, we concentrate on
the instantiated requirements collections in the rest of this paper. That is, we assume that all the requirements collections
are subsets of F0. By this, we restrict the first order logical representation of requirements to the propositional case.

Based on these notations, we can formally define the logical contradiction (inconsistency) as follows:

Definition 2.1 (Inconsistency). Let ∆ be a set of requirements. Let ⊢ be the classical consequence relation. If there exists
α ∈ F0 such that ∆ ⊢ α and ∆ ⊢ ¬α, then we call ∆ inconsistent.

An inconsistent set ∆ of requirements is denoted by ∆ ⊢ ⊥ if we abbreviate α ∧ ¬α as⊥.
We use the following example to illustrate the inconsistency in requirements.

Example 2.1. Consider the following two requirements about choosing courses:
(r1) if an authorized student requests to choose a course and the course is available, then the student can choose the course;
(r2) if a student failed the prerequisite course of a course requested, then the student cannot choose the course.

We may use the following formulas to formulate the two requirements:

∀Stud∀Cour (auth(Stud) ∧ requ(Stud, Cour) ∧ avai(Cour)→ choo(Stud, Cour));
∀Stud∀Cour1∀Cour2(requ(Stud, Cour1) ∧ prer(Cour2, Cour1) ∧ fail(Stud, Cour2)
→ ¬choo(Stud, Cour1)).

Moreover, we give the following facts in a scenario:
(f1) Bob is an authorized student (auth(Bob));
(f2) Bob applies to choose Probability Theory(requ(Bob, Prob));
(f3) Probability Theory is available (avai(Prob));
(f4) Advanced Mathematics is the prerequisite of Probability Theory (prer(Adma, Prob));
(f5) Bob failed Advanced Mathematics (fail(Bob, Adma)).

Then we can get the following instantiated requirements in this scenario:

(r1) auth(Bob) ∧ requ(Bob, Prob) ∧ avai(Prob)→ choo(Bob, Prob);
(r2) requ(Bob, Prob) ∧ prer(Adma, Prob) ∧ fail(Bob, Adma)→ ¬choo(Bob, Prob).

Let ∆ = {(r1), (r2), (f 1), f (2), f (3), f (4), f (5)}, then

∆ ⊢ choo(Bob, Prob), and ∆ ⊢ ¬choo(Bob, Prob),

i.e., ∆ is inconsistent.

K. Mu et al. / Science of Computer Programming () – 5

2.1. The degree of inconsistency

Let ∆ be a requirements collection. A minimal inconsistent subset of ∆, denoted Φ , is an inconsistent subset of ∆ such
that none of its proper subsets is inconsistent. Note that minimal inconsistent subsets are considered as the purest form of
inconsistency for applications of syntax sensitive inconsistency handling, because one only needs to remove one formula
from each minimal inconsistent subset to restore consistency [27]. In this sense, we may consider requirements in the
union of all minimal inconsistent subsets of ∆ as problematical ones, i.e., requirements involved in inconsistencies [9]. We
use CORE(∆) to denote the set of all the requirements involved in inconsistencies in ∆. In contrast, a maximal consistent
subset of ∆, denoted Γ , is a consistent subset of ∆ such that no requirement in ∆ − Γ can be added to it without creating
an inconsistency. Roughly speaking, each maximal consistent subset of ∆ may be considered as the reflection of one of
many plausible views of the requirements collection [9]. Then the common subset of all maximal consistent subsets of ∆

may be considered as the collection of all the uncontroversial requirements in ∆, i.e., the requirements free from minimal
inconsistent subsets [9]. We call such requirements free requirements(formulas) in ∆, and use FREE(∆) to denote the set of
all the free requirements in ∆ [9].

We use MI(∆) and MC(∆) to denote the set of all the minimal inconsistent subsets of ∆ and the set of all the maximal
consistent subsets of ∆, respectively. That is,

MI(∆) = {Φ ⊆ ∆|Φ ⊢ ⊥, and ∀α ∈ Φ, Φ \ {α} ⊬ ⊥},

MC(∆) = {Γ ⊆ ∆|Γ ⊬ ⊥, and ∀α ∈ ∆− Γ , Γ ∪ {α} ⊢ ⊥}.

Then

FREE(∆) =

Γ ∈MC(∆)

Γ , and CORE(∆) =

Φ∈MI(∆)

Φ.

In particular, CORE(∆) = ∆ − FREE(∆) [9]. Essentially, this means that we may divide a given inconsistent requirements
collection ∆ into two parts, i.e., FREE(∆) and CORE(∆).

Hunter’s approach [14] to measuring the degree of inconsistency arising in a set of formulas based on scoring function
can be stated as follows. For a set of formulas∆, a scoring function S is defined fromP (∆) (the power set of∆) to the natural
numbers so that for any Γ ∈ P (∆), S(Γ) gives the number of minimal inconsistent subsets of ∆ that would be eliminated
if the subset Γ was removed from ∆ [14]. That is, for Γ ⊆ ∆,

S(Γ) = |MI(∆)| − |MI(∆− Γ)|.

As such, sets of formulas could be compared using their scoring functions so that an ordering relation≤, which meansmore
inconsistent than, over these sets can be defined [14]. That is, assume that Γi and Γj are of the same cardinality, Si is the
scoring function for Γi, and Sj the scoring function for Γj. Si ≤ Sj holds iff there is a bijection f : P (Γi) → P (Γj) such that
the following condition can be satisfied:

∀Θ ∈ P (Γi), Si(Θ) ≤ Sj(f (Θ)).

We say Γj is more inconsistent than Γi iff Si ≤ Sj [14].
If we sort the scoring functions {Si(Θ)|Θ ⊆ Γi} and {Sj(Θ ′)|Θ ′ ⊆ Γj}, respectively, it is easy to find whether there is

such a bijection.
Roughly speaking, the scoring function-based idea ofmeasuring the inconsistency inΓ focuses on the contributionmade

by each subset of Γ to the inconsistency in Γ [14].

2.2. Logical representation of viewpoints

In the Viewpoints framework, a viewpoint is a description of concerns of a particular group of stakeholders. Let
Viewpoints = {v1, . . . , vn}(n ≥ 2) be the set of viewpoints, then the requirements specification could be represented
by an n-tuple R = ⟨∆1, . . . , ∆n⟩, where ∆i is the set of requirements of viewpoint vi, for i = 1, . . . , n. We call each subset
of ∆i a requirements collection in viewpoint vi. In contrast, we call

n
i=1 Γi a combined requirements collection if for each

i (1 ≤ i ≤ n), Γi is a requirements collection in viewpoint vi (i.e., a subset of ∆i). It may be viewed as a combination of
requirements collections in different viewpoints.

The relative importance of requirements has gained attention in requirements process [28,29]. For example, Davis argued
that the relative importance of requirements is one of themost important knowledge for balancing the desired requirements,
available budget, and the desired schedule in requirements triage [29]. Generally, the relative importance of a requirement
is represented by the priority of the statements. One way for doing this is to prioritize requirements specifications based
on numerical estimations of value, cost and risk of each requirement, such as cost-value approach [30] and quality function
deployment [31]. However, Wiegers pointed out that few software organizations are willing to undertake such rigorous
numerical approaches in his experience [28]. In contrast, a popular approach for prioritizing a requirements collection is
to group requirements into several priority categories, such as three-level priority scheme of High, Medium, and Low and
five-way priority scheme presented by Davis [29]. For the simplicity of discussion below, we assume that all the viewpoints

6 K. Mu et al. / Science of Computer Programming () –

use the same scale of priority categories. Furthermore, all the viewpoints have an agreement on the meaning of each level
of priority.

Let m, a natural number, be the scale of priority categories, and L be

lm0 , lm1 , . . . , lmm−1

, a totally ordered finite set of m

symbolic values of the priorities, i.e. lmi < lmj iff i < j. Furthermore, each symbolic value in L could be associated with a
linguistic value. For example, for a three-level priority set [32,33], we have a totally ordered set L as L = {l30, l

3
1, l

3
2}, where

l30 : Optional, l31 : Conditional, l32 : Essential.

According to the convention in software engineering, the intuitive meaning of essential is that the software product could not
be acceptable unless all of the essential requirements are satisfied; the meaning of conditional is that these requirements would
enhance the software product, but it is not unacceptable if absent; the meaning of optional is that these requirements may or
may not be worthwhile [32,33]. In all of the examples in this paper, we adopt this three-level priority set, though it is not
obligatory.

For each viewpoint vi ∈ Viewpoints, prioritizing the requirements of ∆i is in essence to establish prioritization, denoted
Pi, a mapping from ∆i to L by balancing the business value of requirements against its cost and technique risk [32]. Then
the requirements specification with prioritizationmay be represented by (R, P) = ⟨(∆1, P1), . . . , (∆n, Pn)⟩, where Pi is the
prioritization of the viewpoint vi.

As mentioned earlier, for each given viewpoint vi, any requirements collection Γ in vi is stratified into m strata by
prioritization Pi. For each k (0 ≤ k ≤ m−1), the k-th stratumofΓ , denoted byΓ k, is a subset ofΓ inwhich each requirement
has the level of priority lmk . That is, Γ

k
= {α|α ∈ Γ , Pi(α) = lmk }. Obviously, Γ =

m−1
k=0 Γ k and Γ k

∩Γ k′
= ∅, for any k ≠ k′.

We call n-tuple ⟨Γ 0, . . . , Γ m−1
⟩ a priority-based partition of Γ under L [23].

2.3. The significance of requirements collections

Intuitively, the relative importance of a requirements collection in a given viewpoint depends on the relative importance
of individual requirements in that collection. In our previous paper [23], we gave the following intuitive assumptions about
significance of a requirements collection in a given viewpoint:

• the requirements with the same priority have the same significance;
• any requirement with a higher priority is more significant than all of those with lower priorities;
• those requirementswith higher priorities play dominant roles inmeasuring the significance of a requirements collection.

Given a requirements collection of viewpoint vi, denoted Γ , these assumptions imply that the number of requirements
in each stratum of Γ plays a role in measuring the significance of Γ . We introduce the cardinality vector of a requirements
collection in a given viewpoint (also termed as priority-based cardinality vector in [23]).
Definition 2.2 (Cardinality Vector). Given a viewpoint vi, let L be anm-level priority set. ∀Γ ⊆ ∆i, the cardinality vector of
Γ , denoted

−→
C i(Γ), is defined as

−→
C i(Γ) = (|Γ 0

|, . . . , |Γ m−1
|), where ⟨Γ 0, . . . , Γ m−1

⟩ is the priority-based partition of Γ
under L and |Γ k

| is the cardinality of Γ k, for k = 0, . . . ,m− 1.

Essentially, for Γ ⊆ ∆i, the k-th component of
−→
C i(Γ) is the number of the requirements with the k-th level of priority

in viewpoint vi. Then the cardinality vector
−→
C i(Γ) provides the number of requirements in each stratum of Γ . Moreover,

the relative location of |Γ k
| in the vector

−→
C i(Γ) reflects the relative priority of requirements in Γ k. In this sense,

−→
C i(Γ)

gives a priority-based measure of significance of Γ from the perspective of vi.
In order to compare two requirements collections in a given viewpoint, we assume the following lexicographical ordering

relationship between cardinality vectors.
Definition 2.3 (Lexicographical Ordering,≼). Let R be a set of real numbers and Rm an m-dimensional space. For A =
(a1, . . . , am), B = (b1, . . . , bm) ∈ Rm, the lexicographical ordering, denoted≼, is defined as: A ≼ B iff ∃k such that
(a) ak ≤ bk, and
(b) ∀i > k, ai = bi.

Furthermore, A ≺ B iff A ≼ B and B ⋠ A; A = B iff A ≼ B and B ≼ A.
The lexicographical ordering relationshipmay be easily generalized to the lexicographical ordering relationship between

two n× m matrices. Suppose that A = (aij)n×m and B = (bij)n×m. Let Ai = (ai1, . . . , ain) and Bi = (bi1, . . . , bin), the A ≼ B
iff ∃k such that
(a) Ak ≼ Bk and
(b) ∀i > k, Ai = Bi.

For the simplicity of discussion, we use formulas such as α and β to stand for any unspecified requirements statements
in the examples in subsequent sections.

In the next section, we will provide an overview of an approach for measuring the significance of inconsistency in a
requirements collection within a given viewpoint which was proposed in our previous paper [23]. And then in Section 4, we
will elaborate an approach to systematically measuring the significance of inconsistency arising from different viewpoints.

K. Mu et al. / Science of Computer Programming () – 7

3. Measuring significance of inconsistency in a given viewpoint

This section briefly introduces our previous work [23], which is for measuring the significance of inconsistency within
one viewpoint.

Intuitively, for a given set of requirementsΓ , the significance of the inconsistency inΓ is associatedwith the significance
of CORE(Γ). However, the scoring function-based approaches to measuring inconsistency argued that the contribution
to the inconsistency made by each subset of Γ should also be considered. For an individual subset of Γ , denoted Θ , its
contribution to the inconsistency should be described by the reduction of requirements involved in inconsistency after the
requirements of Θ were removed from Γ . Then we define the significance scoring vector function as follows:

Definition 3.1 (Significance Scoring Vector Function [23]). Given a viewpoint vi, let L be anm-level priority set. ∀Γ ⊆ ∆i, let
P (Γ) be the power set of Γ , then the significance scoring vector function for Γ ,

−→
Sc i : P (Γ) → Rm, is defined such that

∀Θ ∈ P (Γ),
−→
Sc i(Θ) =

−→
C i(CORE(Γ))−

−→
C i(CORE(Γ −Θ)).

Essentially, for Θ ∈ P (Γ),
−→
Sc i(Θ) captures the reduction of the significance of those problematical statements in Γ

from viewpoint vi after Θ were removed from Γ .

Definition 3.2 (Significance Ordering,≼S
i [23]). Given a viewpoint vi, let L be an m-level priority set. ∀Γ1, Γ2 ⊆ ∆i and

|Γ1| = |Γ2|, let
−→
Sc 1

i and
−→
Sc 2

i be the significance scoring vector functions under L forΓ1 andΓ2 respectively. Then
−→
Sc 1

i ≼
S
i
−→
Sc 2

i
holds iff there is a bijection f : P (Γ1) → P (Γ2) such that the following condition can be satisfied:

∀Θ ⊆ Γ1,
−→
Sc 1

i (Θ) ≼
−→
Sc 2

i (f (Θ)).

We call ≼S
i the significance ordering. We also say the inconsistency in Γ2 is more significant than that in Γ1 in viewpoint vi

iff
−→
Sc 1

i ≼
S
i
−→
Sc 2

i . Furthermore,
−→
Sc 1

i ≺
S
i
−→
Sc 2

i iff
−→
Sc 1

i ≼
S
i
−→
Sc 2

i and
−→
Sc 2

i ⋠
S
i
−→
Sc 1

i ;
−→
Sc 1

i ≃
S
i
−→
Sc 2

i iff
−→
Sc 1

i ≼
S
i
−→
Sc 2

i and
−→
Sc 2

i ≼
S
i
−→
Sc 1

i .

Actually, for Γ1 and Γ2, if the inconsistency in Γ2 is more significant than that in Γ1, then there is a bijection f from
P (Γ1) toP (Γ2) such that for any subset of Γ1, denotedΘ , the contribution to the inconsistency in Γ2 made by f (Θ) is more
significant than the contribution to the inconsistency in Γ1 made by Θ .

Another particular thing is the constraint of |Γ1| = |Γ2|. It is only a necessary condition to construct a mapping from the
subsets of Γ1 to the subsets of Γ2 conveniently. In practice, if this constraint is not satisfied, e.g., |Γ1| < |Γ2|, we may add
some formulas being free from the inconsistency in Γ1 to Γ1 such that the constraint can be satisfied [14]. Actually, these
formulas added to Γ1 make no contribution to the significance of the original inconsistency in Γ1.

Nowwe give the following example presented in [23] to showhow to compare two inconsistent requirements collections
in a given viewpoint in the sense of significance of inconsistency.

Example 3.1. Assume that ∆1 = {α,¬α, β,¬β} and

P1(α) = l30, P1(¬α) = l31, P1(β) = l31, P1(¬β) = l32.

Consider Γ1 = {α,¬α} and Γ2 = {β,¬β}. Let
−→
Sc 1

1 and
−→
Sc 2

1 be significance scoring vector functions for Γ1 and Γ2,
respectively. Then

−→
Sc 1

1(Γ1) = (1, 1, 0),
−→
Sc 1

1({α}) = (1, 1, 0),
−→
Sc 1

1({¬α}) = (1, 1, 0)
−→
Sc 2

1(Γ2) = (0, 1, 1),
−→
Sc 2

1({β}) = (0, 1, 1),
−→
Sc 2

1({¬β}) = (0, 1, 1).

Therefore,
−→
Sc 1

1 ≺
S
1
−→
Sc 2

1, andwe conclude that the inconsistency inΓ2 is more significant than that inΓ1 from the perspective
of v1.

4. Measuring significance of inconsistency in a combined requirements collection

The significance scoring vector function presented in [23] focuses on the significance of inconsistency from a given
viewpoint. However, in the Viewpoints framework, many inconsistencies arise from overlaps of different viewpoints. The
requirements involved in such an inconsistency may belong to different viewpoints. Moreover, for a shared requirement,
different viewpoints may assign different local priorities to it. As a result, for the same inconsistency, different viewpoints
may have different priority-based measures of its significance from their own perspectives, as shown in the following
example.

8 K. Mu et al. / Science of Computer Programming () –

Example 4.1. Let Viewpoints = {v1, v2}. Consider (R, P) = ⟨(∆1, P1), (∆2, P2)⟩, where

∆1 = {α, β, γ }, ∆2 = {¬α,¬β, φ};

P1(α) = l30, P1(β) = l31, P1(γ) = l32; P2(¬α) = l32, P2(¬β) = l31, P2(φ) = l32.

Then MI(∆1 ∪∆2) = {Γ1, Γ2}, where Γ1 = {α,¬α}, Γ2 = {β,¬β}.
Intuitively, from the perspective of v1 (resp. v2), we should assign a priority lower than l30 to each requirements statement

of∆2−∆1 (resp.∆1−∆2). For a combined requirements collectionΓ ⊆ (∆1∪∆2), the cardinality vector ofΓ in viewpoint
vi,
−→
C i(Γ) could be defined as
−→
C i(Γ) = (|Γ − (Γ ∩∆i)|, |(Γ ∩∆i)

0
|, . . . , |(Γ ∩∆i)

2
|),

where ⟨(Γ ∩∆i)
0, . . . , (Γ ∩∆i)

2
⟩ is the priority-based partition of Γ ∩∆i under L in viewpoint vi(i = 1, 2). We may also

define the significance vector function for Γ in each viewpoint in the similar way.
Let
−→
Sc 1

1 (resp.
−→
Sc 1

2) and
−→
Sc 2

1 (resp.
−→
Sc 2

2) be the significance scoring vector functions for Γ1 and Γ2 from viewpoint v1 (resp.
v2), respectively. Then

−→
Sc 1

1({α,¬α}) = (1, 1, 0, 0),
−→
Sc 2

1({β,¬β}) = (1, 0, 1, 0);
−→
Sc 1

1({α}) = (1, 1, 0, 0),
−→
Sc 2

1({β}) = (1, 0, 1, 0);
−→
Sc 1

1({¬α}) = (1, 1, 0, 0),
−→
Sc 2

1({¬β}) = (1, 0, 1, 0);
−→
Sc 1

2({α,¬α}) = (1, 0, 0, 1),
−→
Sc 2

2({β,¬β}) = (1, 0, 1, 0);
−→
Sc 1

2({α}) = (1, 0, 0, 1),
−→
Sc 2

2({β}) = (1, 0, 1, 0);
−→
Sc 1

2({¬α}) = (1, 0, 0, 1),
−→
Sc 2

2({¬β}) = (1, 0, 1, 0).
−→
Sc 1

1 ≺
S
1
−→
Sc 2

1,
−→
Sc 2

2 ≺
S
2
−→
Sc 1

2.

That is, from viewpoint v1, inconsistency {β,¬β} is more significant than {α,¬α}. In contrast, from viewpoint v2, inconsis-
tency {α,¬α} is more significant than {β,¬β}.

Asmentioned above, the disagreement between the two viewpoints on the significance of inconsistencies is due to differ-
ent prioritization functions used in different viewpoints. To establish an acceptable common measurement of significance
of inconsistency in a combined requirements collection to all the viewpoints, it is necessary to re-prioritize requirements
from an integrated perspective.

4.1. Prioritizing requirements from the integrated perspective

Intuitively, to establish a global prioritization scheme over the requirements specification from a set of local priority
levels within different viewpoints, the following factors should be taken into account [11]:

• the number of viewpoints that include a particular requirement statement;
• the relative importance of each viewpoint which the requirement statement belongs to;
• the relative importance of the requirement statement within the viewpoint that includes it.

Essentially, these are important concerns in evaluating the relative importance of an individual requirement from the
global perspective.

Most of the current proposals for globally prioritizing requirements from multiple perspectives such as [34,35] con-
centrated on numerical (or weighted) priorities rather than qualitative priority levels used in this paper. However, in our
previous paper [11], we have presented two approaches to globally prioritizing the requirements based on a set of local pri-
ority levels within different viewpoints, i.e., the merging-based approach and the priority vector-based approach. Roughly
speaking, the merging-based approach considers each locally prioritized requirements collection as a stratified knowledge
base, whilst some extension of the merged result of these stratified knowledge bases is considered as a globally priori-
tized requirements collection [11]. This kind of global prioritization always depends on the choice of merging operators.
In contrast, the priority vector-based approach transforms each local priority level into a 0-1 vector (i.e., each element of
this vector is either 0 or 1). Further, it transforms the process of global prioritization into some integrated operation over
these vectors, which takes the factors above into account explicitly. Compared to transformation of qualitative levels into
weighted values, the 0-1 vectors are more appropriate to articulating the nature of qualitative prioritization [11]. For these
reasons, in this paper, we adopt a slight variation of the priority vector-based approach to construct a global or integrated
prioritization over requirements based on the local priority of requirements within each viewpoint and the priority level of
viewpoints. We start with the notation of supporting viewpoints of a given requirement defined in [11], i.e. the viewpoints
which include the requirement.

K. Mu et al. / Science of Computer Programming () – 9

Definition 4.1 (Supporting Viewpoints). Let (R, P) be a requirements specification comprising viewpoints {v1, . . . , vn} and
∆ =

n
i=1 ∆i. Let L be an m-level priority set. ∀α ∈ ∆, for 0 ≤ k ≤ m− 1, we define the set of supporting viewpoints of α

with the priority lmk , denoted Supk(α), as follows:

Supk(α) = {vi|α ∈ ∆i, Pi(α) = lmk }.

We call Sup(α) =
m−1

k=0 Supk(α) the set of supporting viewpoints of α. In particular, for each viewpoint vi(1 ≤ i ≤ n), we
define the projection of Supk(α) onto vi as

Supki (α) = Supk(α) ∩ {vi}.

Note that for the same requirements statement, different supporting viewpoints may assign it different priorities. On the
other hand, as stated in [36,11], different stakeholders play different roles during the software system development, e.g.,
some stakeholders aremore important than others. Therefore, it is not surprising that viewpoints are also prioritized during
software development. Similar to prioritization of requirements, a common approach to prioritizing viewpoints is to group
the set of viewpoints, Viewpoints, into several priority categories. Let LV be an r-level priority set used in prioritizing the set
of viewpoints. Then prioritizing viewpoints is to establish a prioritization PV from Viewpoints to LV in essence [11]. From
now on, we call a set of viewpoints with different levels of priority a set of stratified viewpoints.

For each given requirements α, any set of supporting viewpoints Supk(α) is also stratified into r strata by prioritization
PV . Let

⟨Sup(0,k)(α), . . . , Sup(r−1,k)(α)⟩

be priority-based partition of Supk(α), then the j-th stratum of Supk(α) is Sup(j,k)(α) = {vi ∈ Supk(α)|PV (vi) = lrj }. That is,
Sup(j,k)(α) is a subset of supporting viewpoints of α with the priority lmk in which each viewpoint has been given the priority
of level lrj .

Intuitively, the integrated prioritization, denoted PI, should be characterized by the following assumptions:
(a) Given a requirement α, the priority levels of its supporting viewpoints rather than the priority levels of α in these

viewpoints play a dominating role in prioritizing α from the integrated perspective [11]. It is similar to the role of suits
in playing cards when we are sorting the cards.

(b) If two requirements α and β have the same set of supporting viewpoints (i.e., Sup(α) = Sup(β)), then β should take
priority over α if ∃i such that

(|Sup(i,0)(α)|, . . . , |Sup(i,m−1)(α)|) ≺ (|Sup(i,0)(β)|, . . . , |Sup(i,m−1)(β)|),

and ∀j > i,
(|Sup(j,0)(α)|, . . . , |Sup(j,m−1)(α)|) = (|Sup(j,0)(β)|, . . . , |Sup(j,m−1)(β)|).

holds. Roughly speaking, if the viewpoints with higher priority levels prefer β to α, then wemay consider that β is more
important than α from the integrated perspective.

Then we define the integrated prioritization as follows:

Definition 4.2 (Integrated Prioritization, PI). Let (R, P) be a requirements specification comprising stratified viewpoints
{v1, . . . , vn} and ∆ =

n
i=1 ∆i. Let L be an m-level priority set used in all the viewpoints. Let LV be an r-level priority

set used in prioritizing viewpoints. From the integrated perspective, the prioritization PI is defined as PI : ∆ → Rr×m such
that ∀α ∈ ∆,

PI(α) =

 |Sup
(0,0)(α)| · · · |Sup(0,m−1)(α)|
...

. . .
...

|Sup(r−1,0)(α)| · · · |Sup(r−1,m−1)(α)|

 .

Furthermore, ∀α, β ∈ ∆, α ≺PI β iff PI(α) ≺ PI(β), and we say that β takes priority over α from the integrated perspective.

Note that PI satisfies the assumptions (a) and (b) mentioned above. Moreover, the j-th row of PI(α) is (|Sup(j,0)(α)|,
. . . , |Sup(j,m−1)(α)|). For each k, Sup(j,k)(α) is a subset of supporting viewpoints with priority level lvj . Then the relative
location of the j-th row in PI(α) reflects the relative importance of these supporting viewpoints. Moreover, the relative
location of |Sup(j,k)(α)| in the j-th row reflects the relative importance ofα with regard to these viewpoints since |Sup(j,k)(α)|
is the number of viewpoints with lrj which assign the priority of level lmk to α. In summary, the relative location of |Sup(j,k)(α)|

in PI(α) reflects the relative importance of viewpoints in Sup(j,k)(α) as well as the relative importance of α with regard to
these viewpoints. Thus, PI(α) captures the relative importance of α from the integrated perspective.

In particular, suppose that Viewpoints = {vi}, i.e., there is only one viewpoint vi, then ∀α ∈ ∆i, PI(α) = (|Sup0i (α)|, . . . ,

|Supm−1i (α)|), where |Supki (α)| = 1 and |Supli(α)| = 0 for all l ≠ k if and only if Pi(α) = lmk . From this sense, we present an
alternative representation of prioritization Pi (also termed the priority vector function of vi in [11]), denoted P∗i , as follows:

∀α ∈ ∆i, P∗i (α) = (a0, . . . , am−1) iff Pi = lmk ,

10 K. Mu et al. / Science of Computer Programming () –

where ak = 1 and aj = 0 for all j ≠ k. By this, we transform the qualitative prioritization Pi into a 0-1 vector representation
of priorities P∗i over ∆i. Moreover, we provide an alternative representation of prioritization PV , denoted P∗V , as follows:

P∗V (vi) = (b0, . . . , br) iff PV (vi) = lrk,

where bk = 1 and bj = 0 for all j ≠ k. Then we can get the following result:

PI(α) =

i s.t.α∈vi

P∗V (vi)

τ P∗i (α),

where

P∗V (vi)

τ is the transpose of P∗V (vi). It shows that we can compute the integrated prioritization PI from the prioriti-
zation P∗V and the set of locally prioritization with regard to each viewpoint

P∗i |1 ≤ i ≤ n.

directly.

We give an example to illustrate how to get the integrated prioritization.

Example 4.2. Let Viewpoints = {v1, v2, v3}. Consider

(R, P) = ⟨(∆1, P1), (∆2, P2), (∆3, P3)⟩,

where ∆1 = {α,¬β}, ∆2 = {β, γ }, ∆3 = {¬α, β}, and

P1(α) = P1(¬β) = l32,

P2(β) = l31, P2(γ) = l32,

P3(¬α) = l30, P3(β) = l32.

Suppose that PV (v1) = l31 and PV (v2) = PV (v3) = l32. Then

P∗V (v1) = (0, 1, 0), P∗V (v2) = P∗V (v3) = (0, 0, 1);
P∗1 (α) = P∗1 (¬β) = (0, 0, 1),
P∗2 (β) = (0, 1, 0), P∗2 (γ) = (0, 0, 1),
P∗3 (¬α) = (1, 0, 0), P∗3 (β) = (0, 0, 1).

Furthermore, we get the integrated prioritization PI as follows:

PI(α) = P∗V (v1)
τP∗1 (α) =

0
1
0

(0, 0, 1) =

0 0 0
0 0 1
0 0 0

;

PI(β) = P∗V (v2)
τP∗2 (β)+ P∗V (v3)

τP∗3 (β) =

0 0 0
0 0 0
0 1 1

;

PI(¬α) =

0 0 0
0 0 0
1 0 0

; PI(¬β) =

0 0 0
0 0 1
0 0 0

; PI(γ) =

0 0 0
0 0 0
0 0 1

.

Thus

α, ¬β ≺PI ¬α ≺PI γ ≺PI β.

That is, the priority of β is higher than that of others from the integrated perspective.

4.2. Measuring significance of inconsistency based on stratified viewpoints

Given a viewpoint vi, for anyΓ ⊆ ∆i,
−→
C i(Γ)describes the significance of requirements collectionΓ from the perspective

of vi. However, it is easy to get that
−→
C i(Γ) =

α∈Γ P∗i (α). It implies that the relative importance of Γ with regard to vi

equals to the sum of the relative importance of requirements of Γ . In this sense, we define the significance matrix, denoted
SiM, to describe the relative importance of a combined requirements collection with regard to the integrated perspective.

Definition 4.3 (Significance Matrix). Let (R, P)be a requirements specification comprising stratified viewpoints {v1, . . . , vn}

and ∆ =
n

i=1 ∆i. Let L be an m-level priority set used in all the viewpoints. Let LV be an r-level priority set used in priori-
tizing viewpoints. ∀Γ ⊆ ∆, the significance matrix of Γ , denoted SiM(Γ) is defined as follows:

SiM(Γ) =

α∈Γ

PI(α),

where PI is the integrated prioritization over ∆.

K. Mu et al. / Science of Computer Programming () – 11

Given a combined requirements collection Γ , suppose that SiM(Γ) = (sij)r×m. Then sij =

α∈Γ |sup
(i−1,j−1)(α)|. It

describes the total number of viewpoints in the (i−1)-th stratum of Viewpoints that assigned lmj to at least one requirement
in Γ . Moreover, the relative location of sij in SiM(Γ) reflects the relative importance of these viewpoints as well as the
relative importance of the related requirements with regard to these viewpoints. Then the significance matrix can be used
to describe the significance of the combined requirements collection.

Furthermore, for a given combined requirements collection Γ , we concentrate on the contribution made by each subset
of Γ to the significance of requirements involved in the inconsistency in Γ , which constitutes a scoring function-based
measurement of the significance of inconsistency in Γ from the integrated perspective.

Definition 4.4 (Significance Scoring Matrix Function). Let (R, P) be a requirements specification comprising stratified
viewpoints {v1, . . . , vn} and ∆ =

n
i=1 ∆i. Let L be an m-level priority set used in all the viewpoints. Let LV be an r-level

priority set used in prioritizing viewpoints. ∀Γ ⊆ ∆, the significance scoring matrix function for Γ under L and LV , ScM :
P (Γ) :→ Rr×m is defined as that

∀Θ ⊆ Γ , ScM(Θ) = SiM(CORE(Γ))− SiM(CORE(Γ −Θ)),

where SiM is the significance matrix.

Note that the significance scoring vector function
−→
Sc i may be considered as a simple case of the significance scoring

matrix function ScMwhen Viewpoints = {vi}.
For a combined requirements collection Θ ⊆ Γ , ScM(Θ) is the reduction of significance of those requirements involved

in the inconsistency after Θ were removed from Γ . It describes the contribution made by Θ to the significance of inconsis-
tency in Γ from the integrated perspective. In particular, ScM({α}) captures how important the requirements disengaged
from inconsistency are if we abandon the requirement α. So it can be considered as a measurement of the blame or respon-
sibility of α for the inconsistencies in Γ for each α ∈ Γ .

The scoring function-based thought for comparing two inconsistent requirements collections requires that we concen-
trate on comparing the contributions made by subsets of Γ1 and Γ2 to the inconsistencies in Γ1 and Γ2, respectively. If we
can find a bijection f from P (Γ1) to P (Γ2) such that for any subset of Γ1, denoted Θ , its contribution to the significance
of the inconsistency in Γ1 is less than the contribution made by f (Θ) to that in Γ2, we may consider the inconsistency in
Γ2 is more significant than that in Γ1. Then we present the following ordering relationship for comparing two inconsistent
combined requirements collections in the stratified viewpoints framework.

Definition 4.5 (The Significance Ordering≼S
I). Let (R, P) be a requirements specification comprising stratified viewpoints

{v1, . . . , vn} and∆ =
n

i=1 ∆i. Let L be anm-level priority set used in all the viewpoints. Let LV be an r-level priority set used
in prioritizing viewpoints. ∀Γ1, Γ2 ⊆ ∆ and |Γ1| = |Γ2|, let ScM1 and ScM2 be the significance scoring matrix functions
under L and LV for Γ1 and Γ2 respectively. Then ScM1

≼
S
I ScM2 holds iff there is a bijection f : P (Γ1) → P (Γ2) such that

the following condition can be satisfied:

∀Θ ⊆ Γ1, ScM1(Θ) ≼ ScM2(f (Θ)).

We call≼S
I the significance ordering from the integrated perspective. We also say the inconsistency in Γ2 is more significant

than that in Γ1 iff ScM1
≼

S
I ScM2. Furthermore, ScM1

≺
S
I ScM2 iff ScM1

≼
S
I ScM2 and ScM2

⋠
S
I ScM1; ScM1

≃
S
I ScM2 iff

ScM1
≼

S
I ScM2 and ScM2

≼
S
I ScM1.

Let us give an example to illustrate how to compare two inconsistent combined requirements collections in the stratified
viewpoints framework.

Example 4.3. Let Viewpoints = {v1, v2, v3} be a set of stratified viewpoints. Consider (R, P) = ⟨(∆1, P1), (∆2, P2), (∆3,
P3)⟩, as the requirements specification of Viewpoints, where

∆1 = {α, β,¬γ }, ∆2 = {α, β → γ , ϕ}, ∆3 = {β, α→ ¬ϕ,¬γ };

P1(α) = P1(β) = l32, P1(¬γ) = l31; P2(α) = l32, P2(β → γ) = l31, P2(ϕ) = l32;

P3(β) = l31, P3(α→ ¬ϕ) = l32, P3(¬γ) = l31;

PV ({v1}) = l32, PV ({v2}) = l32, PV ({v3}) = l31.

Then the integrated prioritization PI is:

PI(α) =

0 0 0
0 0 0
0 0 2

, PI(β) =

0 0 0
0 1 0
0 0 1

, PI(¬γ) =

0 0 0
0 1 0
0 1 0

,

PI(ϕ) =

0 0 0
0 0 0
0 0 1

, PI(α→ ¬ϕ) =

0 0 0
0 0 1
0 0 0

, PI(β → γ) =

0 0 0
0 0 0
0 1 0

.

12 K. Mu et al. / Science of Computer Programming () –

For inconsistent combined requirements collections Γ1 = {α, α → ¬ϕ, ϕ} and Γ2 = {β, β → γ ,¬γ }, let ScM1 and ScM2

be the significance scoring matrix functions under L for Γ1 and Γ2 respectively. Then

ScM1({α, α→ ¬ϕ, ϕ}) =

0 0 0
0 0 1
0 0 3

; ScM2({β, β → γ ,¬γ }) =

0 0 0
0 2 0
0 2 1

;

ScM1({α, α→ ¬ϕ}) =

0 0 0
0 0 1
0 0 3

; ScM2({β, β → γ }) =

0 0 0
0 2 0
0 2 1

;

ScM1({α, ϕ}) =

0 0 0
0 0 1
0 0 3

; ScM2({β,¬γ }) =

0 0 0
0 2 0
0 2 1

;

ScM1({α→ ¬ϕ}) =

0 0 0
0 0 1
0 0 3

; ScM2({β → γ ,¬γ }) =

0 0 0
0 2 0
0 2 1

;

ScM1({α}) =

0 0 0
0 0 1
0 0 3

; ScM2({β}) =

0 0 0
0 2 0
0 2 1

;

ScM1({α→ ¬ϕ}) =

0 0 0
0 0 1
0 0 3

; ScM2({β → γ }) =

0 0 0
0 2 0
0 2 1

;

ScM1({ϕ}) =

0 0 0
0 0 1
0 0 3

; ScM2({¬γ }) =

0 0 0
0 2 0
0 2 1

;

ScM2
≼

S
I ScM1.

Thus, inconsistency in Γ1 is more significant than that in Γ2.

As shown by the following propositions, the significance scoring matrix function is a concise and expressive articulation
of inconsistencies that arise in a combined requirements collection in the context of significance.

If a combined requirements collection Γ is consistent, any rational measurement of the significance of the inconsistency
in Γ should be zero. The proposition below shows that the significance scoring matrix function satisfies this intuition
characteristic.

Proposition 4.1. Let (R, P) be a requirements specification comprising stratified viewpoints {v1, . . . , vn} and ∆ =
n

i=1 ∆i.
Let L be an m-level priority set used in all the viewpoints. Let LV be an r-level priority set used in prioritizing viewpoints. ∀Γ ⊆ ∆,
if ScM is the significance scoring matrix function for Γ under L and LV , then

Γ is consistent if and only if ∀Θ ⊆ Γ , ScM(Θ) = 0,

where 0 is the zero matrix.

Proof. Suppose first that Γ ⊆ ∆ is consistent. Then

CORE(Γ) = CORE(Γ −Θ) = ∅

for any Θ ⊆ Γ , so that

∀Θ ⊆ Γ , ScM(Θ) = SiM(CORE(Γ))− SiM(CORE(Γ −Θ)) = 0.

Second, suppose that ∀Θ ⊆ Γ , ScM(Θ) = 0 and that Γ is not consistent. Let Θ∗ = CORE(Γ). Then Θ∗ ≠ ∅ and
Γ −Θ∗ = FREE(Γ) is consistent. Thus,

0 ≺ SiM(Θ∗), and CORE(Γ −Θ∗) = ∅.

Moreover,

ScM(Θ∗) = SiM(CORE(Γ))− SiM(CORE(Γ −Θ∗)) = SiM(Θ∗) ≻ 0.

This contradicts ScM(Θ∗) = 0, and so Γ is consistent. �

Intuitively, if a requirement α is involved in the inconsistency in Γ , then the singleton {α} should make material (i.e.
non-zero) contribution to the significance of inconsistency. The following proposition shows that the significance scoring
matrix function is characterized by this assumption.

K. Mu et al. / Science of Computer Programming () – 13

Proposition 4.2. Let (R, P) be a requirements specification comprising stratified viewpoints {v1, . . . , vn} and ∆ =
n

i=1 ∆i.
Let L be an m-level priority set used in all the viewpoints. Let LV be an r-level priority set used in prioritizing viewpoints. ∀Γ ⊆ ∆,
if ScM is the significance scoring matrix function for Γ under L and LV , then ∀α ∈ Γ ,

α ∈ CORE(Γ) if and only if 0 ≺ ScM({α});

α ∈ FREE(Γ) if and only if ScM({α}) = 0,

where 0 is the zero matrix.

Proof. ‘‘=⇒’’ This part can be proved easily from the definition of significance scoring matrix function.
‘‘⇐=’’ ∀α ∈ ∆, if 0 ≺ ScM({α}), then

SiM(CORE(Γ − {α})) ≺ SiM(CORE(Γ)),

So, CORE(Γ − {α}) ⊂ CORE(Γ), that implies α ∈ CORE(Γ).
If ScM({α}) = 0, then

SiM(CORE(Γ − {α})) = SiM(CORE(Γ)),

So, CORE(Γ − {α}) = CORE(Γ), that implies α ∈ FREE(Γ). �

Furthermore, given a combined requirements collection Θ ⊆ Γ , the two propositions together demonstrate that 0 ≺
ScM(Θ) means at least one requirement of Θ being involved in the inconsistency.

We argue that the significance of an inconsistency is associatedwith the relative importance of the requirements involved
in the inconsistency earlier. The following proposition shows the relationship between the significance of the inconsistency
in Γ and the significance of the set of requirements involved in the inconsistency.

Proposition 4.3. Let (R, P) be a requirements specification comprising stratified viewpoints {v1, . . . , vn} and∆ =
n

i=1 ∆i. Let
L be anm-level priority set used in all the viewpoints. Let LV be an r-level priority set used in prioritizing viewpoints. ∀Γ1, Γ2 ⊆ ∆

and |Γ1| = |Γ2|, let ScM1 and ScM2 be the significance scoring matrix functions under L and LV for Γ1 and Γ2 respectively. Then
ScM1

≼
S
I ScM2 implies SiM(CORE(Γ1)) ≼ SiM(CORE(Γ2)). But the converse does not hold.

Proof. Suppose that ScM1
≼

S
I ScM2. Then there is a bijection f : P (Γ1) → P (Γ2) such that

∀Θ ⊆ Γ1, ScM1(Θ) ≼ ScM2(f (Θ)).

Let Θ∗ = CORE(Γ1). Then

SiM(CORE(Γ1)) = ScM1(Θ∗)+ SiM(CORE(Γ1 −Θ∗)) = ScM1(Θ∗) ≼ ScM2(f (Θ∗)).

On the other hand,

ScM2(f (Θ∗)) = SiM(CORE(Γ2))− SiM(CORE(Γ2 − f (Θ∗))) ≼ SiM(CORE(Γl)).

So, SiM(CORE(Γ1)) ≼ SiM(CORE(Γ2)). �

Example 4.4 (A Counterexample For The Converse). Assume that

PI(α) = PI(α→ β) = PI(φ) =

0 0 0
0 0 1
0 0 0

;

PI(¬β) = PI(γ) =

0 0 0
0 0 0
0 1 0

; PI(¬γ) =

0 0 0
0 0 0
0 0 1

.

Consider Γ1 = {α, α → β,¬β} and Γ2 = {γ ,¬γ , φ}. Let ScM1 and ScM2 be significance scoring matrix functions for Γ1
and Γ2, respectively. Then

SiM(CORE(Γ1)) =

0 0 0
0 0 2
0 1 0

≺ SiM(CORE(Γ2)) =

0 0 0
0 0 1
0 1 1

.

Moreover, ∀Θ ⊆ Γ1, Θ ≠ ∅,

ScM1(Θ) =

0 0 0
0 0 2
0 1 0

.

But

ScM2({φ}) = 0.

14 K. Mu et al. / Science of Computer Programming () –

Thus,

ScM1
⋠

S
I ScM2

The proposition shows the significance of the inconsistency in Γ reflects the relative importance of requirements involved
in the inconsistency in some sense. But the significance of the inconsistency is not equal to the significance of CORE(Γ). The
significance ordering≼S

I is more strict.
However, the significance ordering concentrates on the uncontroversial requirements as well as the requirements in-

volved in the inconsistency. The next proposition shows in part how a significance ordering from the integrated perspective
can be also viewed as a reflection of the numbers of requirements being free from inconsistency.

Proposition 4.4. Let (R, P) be a requirements specification comprising stratified viewpoints {v1, . . . , vn} and∆ =
n

i=1 ∆i. Let
L be anm-level priority set used in all the viewpoints. Let LV be an r-level priority set used in prioritizing viewpoints. ∀Γ1, Γ2 ⊆ ∆

and |Γ1| = |Γ2|, let ScM1 and ScM2 be the significance scoring matrix functions under L and LV for Γ1 and Γ2 respectively. Then
ScM1

≼
S
I ScM2 implies |FREE(Γ1)| ≥ |FREE(Γ2)|. But the converse does not hold.

Proof. Suppose that ScM1
≼

S
I ScM2. Then there is a bijection f : P (Γ1) → P (Γ2) such that

∀Θ ⊆ Γ1, ScM1(Θ) ≼ ScM2(f (Θ)).

Consider ∀α ∈ FREE(Γ2), then ScM2({α}) = 0, moreover f −1(α) ∈ Γ1 such that

ScM1({f −1(α)}) ≼ ScM2({α}),

Thus,

ScM1({f −1(α)}) = 0,

that is, f −1(α) ∈ FREE(Γ1). Therefore, |FREE(Γ1)| ≥ |FREE(Γ2)|. �

The proposition shows that the number of uncontroversial requirements also has some impact on the significance
ordering. As shown by Proposition 4.2, for each α ∈ FREE(Γ), {α}makes no material contribution to the significance of the
inconsistency because of ScM({α}) = 0. In this sense, |FREE(Γ1)| ≥ |FREE(Γ2)| is necessary to ensure that ScM1

≼
S
I ScM2

holds.

Example 4.5 (A Counterexample For The Converse). Let Viewpoints = {v1, v2} be a set of viewpoints. Consider (R, P) =
⟨(∆1, P1), (∆2, P2)⟩ as the requirements specification of Viewpoints, where

∆1 = {α, β, α→ ¬γ }, ∆2 = {¬α, β, γ },

PV (v1) = l32, PV (v2) = l31;

P1(α) = l32, P1(β) = l32, P1(α→ ¬γ) = l31;

P2(¬α) = l32, P2(β) = l32, P2(γ) = l31.

Γ2 = {α,¬α, β} and Γ1 = {α→ ¬γ , γ , α} are two inconsistent combined requirements collections. Then

FREE(Γ1) = {β}, FREE(Γ2) = ∅,

and

SiM2(CORE(Γ1)) =

0 0 0
0 1 0
0 1 1

≺ SiM1(CORE(Γ2)) =

0 0 0
0 0 2
0 0 2

;

Thus

|FREE(Γ1)| > |FREE(Γ2)|.

But

SiM1
⋠

S
I SiM2

according to Proposition 4.3.

4.3. Computation of the significance scoring matrix function

We discuss some issues about the computation of the significance scoring matrix function and the scalability of this
approach. Given a requirements specification (R, P) and a prioritization PV over Viewpoints, the computation of the
significance scoring matrix function for any combined requirements collection Γ may be divided into two sub-problems,
i.e., the computation of the integrated prioritization PI and the computation of CORE(Γ −Θ) for eachΘ ⊆ Γ . Asmentioned
earlier, for each α ∈ Γ , PI(α) =

i s.t.α∈vi

P∗V (vi)

τ P∗i (α). It means that the integrated prioritization can be computed from
the PV and {Pi|1 ≤ i ≤ n} directly.

K. Mu et al. / Science of Computer Programming () – 15

∅

✏✏✏✏✏✏

PPPPPP
{¬a} {b ∧ c} {a}

✏✏✏✏✏✏

PPPPPPPPPPPP

✏✏✏✏✏✏

{b ∧ c,¬a} {a,¬a} {a, b ∧ c}

✏✏✏✏✏✏

PPPPPP
{a, b ∧ c,¬a}

∅

{¬a} {b ∧ c} {a}

{b ∧ c,¬a} {a,¬a} {a, b ∧ c}

{a, b ∧ c,¬a}

Fig. 1. Boolean lattice and its binomial tree for Γ = {a, b ∧ c,¬a}.

With regard to the computation of CORE(Γ) given Γ , we may consider it as either a process of identification of all the
maximal consistent subsets of Γ or a process of finding all the minimal inconsistent subsets of Γ . We will discuss these two
possible methods, respectively.

However, for any subset ofΓ , denotedΘ , bothmethods need to checkwhetherΘ is consistent. Since we restrict the first
order logical representation of requirements to the propositional case, consistency checking ofΘ is a SAT problem. Although
SAT is a NP-complete decision problem [37], many SAT solvers have been developed to solve the SAT problem efficiently
for practical instances. For example, Conflict-Driven Clause Learning (CDCL for short) SAT Solvers are so effective that they
have been successfully applied to many applications such as hardware and software model checking, planning, equivalence
checking, bioinformatics, and cryptography [38]. Then we can utilize such an efficient SAT solver to check consistency of a
requirements collection Θ .

The first method of computing CORE(Γ) checks whether Θ is maximal when Θ is consistent. Generally, to identify the
maximal consistent subsets of Γ , each subset of Γ must be checked for consistency by a SAT solver. At worst, we need to
check 2|Γ | subsets. However, some important techniques for finding the maximal consistent subsets efficiently have been
proposed [39,40].Wemay utilize such techniques to find all themaximal consistent subsets ofΓ . For example, the algorithm
presented byMalouf [40] constructed a spanning tree of the Boolean lattice of subsets ofΓ (which takes the formof binomial
tree in [41]) firstly. Then a breadth-first search with root and leaf pruning of that binomial tree was performed for finding
locally maximal consistent subsets [40]. Further, a final post-check for set inclusion can remove pseudo-maximal results
from the set of locally maximal consistent subsets in their branch of the binomial tree [39,40]. As an important optimization
presented in [39], the root pruning stated that a subtree rooted by a consistent subset can be pruned from the search space,
because no subsets of the subset can bemaximal. In contrast, the leaf pruning stated that a subtree can be skipped if the foot
of that subtree is inconsistent [40]. In particular, it has been pointed out that keeping track of leftmost children allows us to
avoid a substantial number of redundant consistency checks, moreover, as |Γ | increases, leaf pruning can offer substantial
improvements [40]. To illustrate this algorithm, consider Γ = {a, b ∧ c,¬a}, then the Boolean lattice and binomial tree
for Γ are shown in Fig. 1 according to [40,41]. Note that {b ∧ c,¬a} in Fig. 1 is consistent, then its subtree is pruned. The
search finds that {b∧c,¬a}, {a, b∧c}, and {a} are the locallymaximal consistent subsets. Note that {c} is a pseudo-maximal
consistent subset, and can be removed by final post-check.

Unfortunately, there is no explicit relationship betweenMC(Γ) andMC(Γ−Θ) for an individual subsetΘ . Consequently,
to compute the scoringmatrix function forΓ in terms of themaximal consistent subsets, we have to construct 2|Γ | binomial
trees. This makes the first method unpractical.

However, the good thing is that we have MI(Γ − Θ) ⊆ MI(Γ) and MI(Γ − Θ) = {Φ ∈ MI(Γ)|Φ ∩ Θ = ∅}. Then if
we take the second method to compute the scoring matrix function for Γ in terms of the minimal inconsistent subsets of
Γ , we only need to construct a binomial tree corresponding to the inverse of the Boolean lattice.

The binomial tree corresponding to the inverse of the Boolean lattice is rooted by ∅ [41]. For example, the inverse of the
Boolean lattice and the corresponding binomial tree for Γ = {a, b∧ c,¬a} are shown in Fig. 2. Given a node of inconsistent
subset Φ , there is no descendant of Φ that can be minimal since any subtree of Φ is rooted by a superset of Φ . Moreover, if
the deepest leaf of a subset tree is consistent then there is no node in the tree that can be inconsistent. Then we adapt the
root pruning and leaf pruning in [40] to the case as follows:

• root pruning: the branches rooted by an inconsistent subset can be pruned from the search space;
• leaf pruning: the subtrees whose deepest leaf is consistent can be skipped.

Suppose that Γ = {γ1, . . . , γ|Γ |}, the algorithm of computing MI(Γ) may be described as follows:

Minimal_ Inconsistent_ Subsets (Γ)

1 MI(Γ)←− ∅
2 Q←− {⟨∅, 0, FALSE⟩}

16 K. Mu et al. / Science of Computer Programming () –

{a, b ∧ c,¬a}

✏✏✏✏✏✏

PPPPPP
{b,¬a} {a,¬a} {a, b ∧ c}

✏✏✏✏✏✏

PPPPPPPPPPPP

✏✏✏✏✏✏

{¬a} {b ∧ c} {a}

✏✏✏✏✏✏

PPPPPP
∅

{a, b ∧ c,¬a}

{b ∧ c,¬a} {a,¬a} {a, b ∧ c}

{¬a} {b ∧ c} {a}

∅

Fig. 2. The inverse of Boolean lattice and its binomial tree.

3 while Q ≠ ∅
4 do ⟨Φ, k, leftmost⟩ ←− head(Q)
5 if Inconsistent(Φ)
6 then if Φ ⊅ Ψ for all Ψ in MI(Γ)
7 then MI(Γ)←− MI(Γ) ∪ {Φ}
8 else L←− Φ ∪ {γi : k < i ≤ |Γ |}
9 if leftmost or Inconsistent(L)

10 then leftmost←− TRUE
11 for i = k+ 1 to |Γ |
12 do ENQUEUE(Q, ⟨Φ ∪ {γi}, i, leftmost⟩)
13 leftmost←− FALSE
14 DEQUEUE(Q)
15 return MI(Γ)

This algorithm is a slight variation of the breadth-first search algorithm with root and leaf pruning presented by
Malouf [40]. It coincides with the idea of inverting the search direction when |Γ | is likely very large [40]. As usual, a queue
is adopted to store unchecked subsets. The index k in ⟨Φ, k, leftmost⟩ is used to indicate the formula that was last added
to Φ . The queue, together with the index k, allows us to keep track of unchecked subsets. Note that a flag leftmost is used
to indicate whether that subset is the leftmost child. Because the deepest leaf node of the leftmost child is the same as the
deepest leaf node of the parent in the binomial tree, then using the flag leftmost allows us to avoid a number of redundant
inconsistency checks [40]. Of course, this algorithm also requires a post-check to remove pseudo-minimal subsets from
MI(Γ). Note that Inconsistent(Φ) is a macrocommand. Its computational complexity depends on the underlying strategies
used for checking whether Φ is inconsistent. Given a strategy for checking Inconsistent(Φ) with the maximal time cost T,
the complexity of this algorithm is O(2|Γ | · T) in the worst case in which no branch is pruned. In this sense, the efficiency of
theMinimal_ Inconsistent_ Subsets(Γ) algorithm depends on the size of Γ , the concrete elements of Γ , and the efficiency
of the selected SAT solver.

We use ⟨Θ, ScM(Θ)⟩ to denote Θ and its significance scoring matrix function. Let PI[i] be the integrated priority of γi
for each i. Then we can describe an algorithm for computing the scoring matrix function for Γ as follows:

Scoring_ Matrix_ Function (Γ , PV, {Pi}
n
i=1)

1 CORE(Γ)←− ∅
2 SiM(CORE(Γ))←− 0
3 for i = 1 to |Γ |
4 do PI[i] ←− 0
5 for j = 1 to n
6 if γi ∈ ∆j then PI[i] = PI[i] + P∗V[j] ∗ P

∗

j (γi)

7 MI(Γ)←−Minimal_ Inconsistent_ Subsets (Γ)
8 CORE(Γ)←− ∪Φ , Φ ∈ MI(Γ)
9 for i = 1 to |Γ | do

10 if γi ∈ CORE(Γ) then SiM(CORE(Γ))←− SiM(CORE(Γ))+ PI[i]
11 Q←− {⟨Γ − {γ1}, 1⟩}
12 ScM(Γ)←− SiM(CORE(Γ))
13 ScM←− {⟨Γ , ScM(Γ)⟩}
14 while Q ≠ ∅
15 do ⟨Θ, k⟩ ←− head(Q)
16 MI(Γ −Θ)←− {Φ ∈ MI(Γ)|Φ ∩Θ = ∅}

K. Mu et al. / Science of Computer Programming () – 17

17 if MI(Γ −Θ) ≠ ∅ then
18 CORE(Γ −Θ)←− ∪Φ, Φ ∈ MI(Γ −Θ)
19 SiM(CORE(Γ −Θ))←− 0
20 for i = 1 to |Γ | do
21 if γi ∈ CORE(Γ −Θ)
22 then SiM(CORE(Γ −Θ))←− SiM(CORE(Γ −Θ))+ PI[i]
23 ScM(Θ)←− SiM(CORE(Γ))− SiM(CORE(Γ −Θ))
24 else ScM(Θ)←− ScM(Γ)
25 ScM←− ScM ∪ {⟨Θ, ScM(Θ)⟩}
26 for i = k+ 1 to |Γ |
27 do ENQUEUE(Q, ⟨Θ − {γi}, k⟩)
28 DEQUEUE(Q)
29 return ScM

This algorithm consists of three parts, i.e., computation of integrated prioritization, computation of minimal inconsistent
subsets, and computation of scoring matrix function. Note that the computational complexity of this algorithm is also
O(2|Γ | · T) in the worst case. This implies that the algorithm Minimal_ Inconsistent_ Subsets(Γ) for computing all the
minimal inconsistent subsets of Γ plays an overwhelming role in computational complexity of an algorithm for computing
the significance scoring matrix function for Γ .

Next we discuss the scalability of our approach to measuring the significance of inconsistency in requirements. The
computational complexity of the algorithm for computing all the minimal inconsistent subsets seems to hinder the
application of our approach to scalable requirements. However, such a higher computation complexity is exactly a
description of the degree of difficulty of the problem of articulating inconsistency in nature. That is, it results from the
problem itself we confront, i.e, the difficulty of checking whether a set of formulas is inconsistent and the difficulty of
searching all the minimal inconsistent subsets. Nevertheless, combining the efficient SAT algorithms, the root and leaf
pruning techniques in binomial tree, and scenario-based approach together provides a promising support for the application
of our approach to a large set of requirements. Recalling that we formulate the problem of finding all minimal inconsistent
subsets as a search problem in a binomial tree, in which each node is a subset of the set of requirements. First of all, the
efficient SAT algorithms can provide an effective support checking inconsistency of a large set of requirements. For example,
the CDCL (Conflict-Driven Clause Learning) SAT algorithms can solve instances with hundreds of thousand (propositional)
variables and tens of millions of clauses, e.g., Siege can solve a problem with 0.25 million (propositional) variables in less than
30 seconds [42]. Second, the techniques for optimization based on root and leaf pruning in a binomial tree have been found
to be effective in such search problems in the binomial tree [40]. Third, we consider use of the scenario-based approach
to handling inconsistency in requirements. Although the local consistency of a set of requirements with regard to a given
scenario does not necessarily guarantee the global consistency of a requirements specification, the whole requirements
specification must be inconsistent if a set of requirements is inconsistent with regard to a given scenario. Moreover, the
scenario-based approach always involves only a part of requirements tightly related to the given scenario. In this sense, the
scenario-based approach is considered as a practical way to checking inconsistency in the whole requirements specification
as much as possible in the case of inconsistency checking with rather expensive computation cost [43].

4.4. Implementation of the tool IncMeasurer

To carry out the validation of algorithms presented above and to support the application of the approach for measuring
the significance of inconsistency, we have implemented a tool termed IncMeasurer. This tool has been developed in Java
1.6.0, based on the algorithms ofMinimal_ Inconsistent_ Subsets and Scoring_Matrix_Function. In addition, wemake use
of SAT4J library,2 which provides an efficient library of SAT solvers in Java. Compared to the OpenSAT project, the SAT4J
library facilitates the first-time users of SAT ‘‘black boxes’’, who want to embed SAT technologies into their application
without worrying about the details.3 This tool takes the following information as input:

• the scale of priority levels;
• each viewpoint and its priority level;
• scenarios for inconsistency checking;
• instantiated requirements with priority levels based on given scenarios.

As for the instantiated requirements in a given scenario, if an individual requirement r can be instantiated as r1, . . . , rn
with regard to a given scenario, then we consider r1 ∧ · · · ∧ rn as an instantiation of r with regard to that scenario. For
example, consider the requirement of ‘‘if an authorized user requests to borrow a book and the book is available, then the user
can borrow the book’’, i.e.,

∀User∀Book (auth(User) ∧ requ(User, Book) ∧ avai(Book)→ borr(User, Book))

2 https://wiki.objectweb.org/sat4j/.
3 https://www.sat4j.org.

https://wiki.objectweb.org/sat4j/
https://wiki.objectweb.org/sat4j/
https://wiki.objectweb.org/sat4j/
https://wiki.objectweb.org/sat4j/
https://wiki.objectweb.org/sat4j/
https://www.sat4j.org
https://www.sat4j.org
https://www.sat4j.org
https://www.sat4j.org

18 K. Mu et al. / Science of Computer Programming () –

and suppose that a scenario consists of the following facts

• Alice and Bob are two authorized users (auth(Alice), auth(Bob));
• Alice applies to borrow ‘‘software engineering ’’ (requ(Alice, Soft_eng));
• Bob applies to borrow ‘‘requirements engineering ’’ (requ(Bob, Requ_eng));
• ‘‘Software engineering ’’ and ‘‘requirements engineering ’’ are available (avai(Soft_eng), avai(Requ_eng));

Then the requirement above can be instantiated as follows:

(1) auth(Alice) ∧ requ(Alice, Soft_eng) ∧ avai(Soft_eng)→ borr(Alice, Soft_eng);
(2) auth(Bob) ∧ requ(Bob, Requ_eng) ∧ avai(Requ_eng)→ borr(Bob, Requ_eng).

And we consider

(auth(Alice) ∧ requ(Alice, Soft_eng) ∧ avai(Soft_eng)→ borr(Alice, Soft_eng))
∧ (auth(Bob) ∧ requ(Bob, Requ_eng) ∧ avai(Requ_eng)→ borr(Bob, Requ_eng)) .

as corresponding instantiated requirement in the scenario.
Note that facts of scenarios and instantiated requirements are inputs in terms of Conjunctive Normal Form (CNF for

short). Moreover, inmeasuring the significance of inconsistency for a requirements collection, we focus on the requirements
involved in the inconsistency rather than the facts about the application domain. That is, we assume that all the scenarios
provided by the user of this tool are developed correctly, and then facts in a given scenario should make no material
contribution to the inconsistency in requirements in the scenario. Hence we would assume that the integrated priority
of each fact is zero throughout our computation.4

This tool allows us to carry out the following tasks:

• checking consistency for a combined requirements collection;
• measuring the significance of inconsistency for a combined requirements collection, i.e., computing the significance

scoring matrix function ScM;
• Comparing two combined requirements collections with the same cardinality in terms of significance of inconsistency.

Fig. 3 shows a screenshot of the editing window of IncMeasurer when comparing two requirements collections in terms
of the significance of inconsistency.

By using this tool, we obtained the result of Example 4.3 in 15 ms on a Notebook PC equipped with a Mobile DualCore
Intel Core Duo T2400 1.83 Ghz CPU and 2 G memory.

This tool facilitates the application of our inconsistencymeasurement to real requirements engineering to a great extent.
First of all, this tool supports all the activities in a process of measuring inconsistency in terms of logical formulas, including
consistency checking, measuring the significance of inconsistency in a set of requirements, and comparing two inconsistent
sets of requirements with the same size. It covers the main tasks addressed by this paper. Second, the input of the tool is in
the form of instantiated first order logic formulas. Actually, the first order logic can be considered as a preliminary of formal
methods used in requirements engineering, such as in [9,6]. Requirements analysts with only preliminaries of the first order
logic are able to use the tool easily. Third, there are special tools for translating requirements into logic formulas such as [6].
Then requirements analysts can combine or integrate our tool with some other available tools flexibly according to their
needs in the analysis of inconsistency.

5. Case study

In order to validate our approach, we have so far provided some representative examples that fully illustrate the strength
and utility of the integrated prioritization over requirements specification and the computation of the significance scoring
matrix functions. Our approach (as well as the tool IncMeasurer) is intended for use in conjunction with other inconsistency
management techniques in RE. It can be used to differentiate the inconsistencies by their relative importance in RE.We now
present a more substantial case study from a hospital health record system to illustrate the strength as well as the utility of
our formal techniques describe in previous sections.

Example 5.1. Consider an ElectronicHealth Record System (EHR System for short) for a hospital.We consider two important
user tasks the system must support, i.e., Admit Patient Before Arrival and Clinical Session. We divide this case study into
four parts. At first, we provide the description of requirements related to the two tasks in natural language. Then we
formalize these requirements in terms of logical formulas. In the third part, we illustrate the utility of our approach and

4 We assume the correctness of scenarios such that the illustration of the approach can be concentrated on the requirements. However, some scenarios
may also be problematic in practical requirements development. In such cases, some facts are also involved in inconsistency andmakematerial contribution
to the inconsistency. And then we also need to prioritize facts in the scenario as well to measure the significance of inconsistency in requirements with
regard to the scenario. In future work, we consider adaptation of our approach to the case of prioritized scenarios.

K. Mu et al. / Science of Computer Programming () – 19

Fig. 3. Snapshot of editing window of IncMeasurer.

its supporting tool IncMeasurer during the inconsistency analysis. Finally, we discuss some issues about application of our
approach learned from this case study.

Part A. Descriptions of the two tasks

• Task 1: Admit Patient Before Arrival. This task creates an admission record or continues the admission process if it
has been previously suspended (perhaps because some information is missing). The requirements for this task contain
information such as the following:
– Stakeholder : Doctor’s Secretary

(r1) On receipt of a call requiring an admission for a new patient with initial diagnosis and reservation department
and time, a record of the patient shall be created.

(r2) On receipt of a call requiring an admission for a patient in the system with initial diagnosis, the record of the
patient shall be updated.

(r3) If a patient’s initial diagnosis information is judged to be incomplete, then the patient shall be put on the waiting
list.

(r4) On receipt of call providing missing information for a specific patient, updating the record of the patient and
removing the patient from the waiting list.

(r5) If a patient’s initial diagnosis is complete, and there is no ward available for application time in the related
department, or the department is irrelevant to the initial diagnosis, then the application for admission shall be
transferred.

(r6) If a patient’s initial diagnosis is complete and the reservation department is related, then awardwith reservation
time shall be applied for the patient.

(r7) The same patient cannot be admitted to two different wards at the same time.

– Stakeholder : Ward Manager

(r8) On receipt of a request for a ward with reservation time and department, if the department has a ward available
for application time, then the patient shall be admitted to the ward.

(r9) If a patient is admitted to a specific ward, the patient shall be notified of the admission.

• Task 2: Clinical Session. A clinical session may comprise diagnosis, planning of treatment, etc. The requirements for this
task contain the following information:
– Stakeholder : Medical Staff

(r10) Unconscious patients shall be monitored.
(r11) Only surgeons in a department have rights to prescribe drugs in the department.

– Stakeholder: Medical Staff, Doctor’s Secretary

(r12) If the deadline for a service is passed, a reminder shall be sent to the service provider.

20 K. Mu et al. / Science of Computer Programming () –

Table 1
Variables and constants.

Variable Explanation Constant Explanation

Pati Patient Add The action of adding
Inti Initial diagnosis Delete The action of deleting
Dept Department Prescribe The action of prescribing
Time Reservation time Delay The state of delay
Ward Ward
Doct Doctor
Serv Service
Resu Result of service
Misi Missing information

(r13) Services that can be given on the spot should be recommended to the patient under diagnosis.
(r14) Services for emergency patients shall be considered as urgent services.
(r15) Obtained results of a patient’s ordered services as scheduled shall be sent to the patient.

– Stakeholder : Lab Service Staff

(r16) A service request shall be made if the reservation time is convenient for all parties involved.
(r17) Urgent services shall be ordered immediately.
(r18) If the reservation time is not available for at least one party, then the service cannot be ordered.

Note that Lab Service is often managed by an independent system in hospitals, including reservation of service, lab test,
data analysis and so on. Moreover, allowing for the complexity of clinical affairs, the first version of EHR system tries to
ensure that the requirements provided by Doctor’s Secretary, Medical Staff, and Ward Manager will be satisfied. Then
Doctor’s Secretary, Medical Staff, and Ward Manager are essential stakeholders for EHR System. In contrast, Lab Service
Staff is considered as a secondary stakeholder. Moreover,

• Doctor’s Secretary considers requirements (r1)–(r7), (r12)–(r15) are essential.
• Ward Manager considers requirements (r8)–(r9) are essential.
• Medical Staff considers requirements (r10), (r11), (r13), and (r14) are essential, and requirements (r12) and (r15) are

conditional.
• Lab Service staff states (r16)–(r18) are essential.

To check consistency of requirements of each task, we need to develop a scenario that describes an application case of
performing the corresponding task. To address this, we develop the following scenarios S1 and S2 for consistency checking
for requirements of Task 1 and Task 2, respectively. The scenario S1 models a case about an individual patient with complete
initial diagnosis requesting a ward, whilst the scenario S2 describes a case about an individual emergent patient requesting
a service. In detail,

• Scenario S1:
– An individual patient Pati1 with complete initial diagnosis Init1 requests a ward with reservation time Time1;
– The initial diagnosis Init1 is related to the department Dept1 as well as Dept2;
– An individual ward Ward1 in Dept1 is available for Time1;
– Another individual ward Ward2 in Dept2 is also available for Time1;
– Dept1 and Dept2 are two distinct departments.

• Scenario S2:
– An individual patient Pati2 is an emergency patient;
– An individual service Serv2 with reservation Time2 is requested for Pati2;
– Time2 is not available to all parties.

Part B. Formalizing the requirements and related scenarios
From the requirements document, we can generate dataflow diagrams, use cases, and so on. In this paper, we will use

logical representation to describe these requirements information. We use the variables and constants listed in Table 1, and
the atoms listed in Table 2 to formalize these requirements. Table 3 lists the formalized requirements (r1)–(r18). Scenarios
S1 and S2 are given by Table 4 and Table 5, respectively.

For the sake of simplicity, we use the labels such as (r1), (r2) and (r3) to denote the corresponding formulas. Let v1,
v2, v3, and v4 be the viewpoints corresponding to Doctor’s Secretary, Medical Staff, Ward Manager, and Lab Service Staff,
respectively. Then the priority levels of viewpoints are given as follows:

PV (v1) = PV (v2) = PV (v3) = essential, PV (v4) = conditional.

And the corresponding requirements specification is given by

(R, P) = ⟨(∆1, P1), (∆2, P2), (∆3, P3), (∆4, P4)⟩,

K. Mu et al. / Science of Computer Programming () – 21

Table 2
Atoms.

Atom Explanation

call(Pati, Init,Dept, Time) A call requires an admission for a patient with initial diagnosis,
reservation department and time.

new(Pati) Pati is a new patient.
unconscious(Pati) Pati is an unconscious patient.
monitor(Pati) Pati should be monitored.
under_diagnosis(Pati) Pati is under diagnosis.
emergency(Pati) Pati is a emergency patient.
surgeon(Doct,Dept) Doct is a surgeon in Dept .
has_right(Doct,Dept, Prescribe) Doct has right to prescribe drugs in Dept .
create_record(Pati) A record of Pati is created.
update_record(Pati) Updating the record of Pati.
complete(Pati, init) Pati’s Inti is complete.
complement(Pati,Misi) A call provides missing informationMisi of Pati.
waiting_list(Pati,Add) Pati is put on waiting list.
waiting_list(Pati,Delete) Removing Pati from waiting list.
related(Init,Dept) Inti relates to Dept .
available(Dept,Ward, Time) There is availableWard for Time in Depat .
apply_ward(Pati,Dept, Time) Applying a ward with reservation Time in Dept for Pati.
admit(Pati,Dept,Ward, Time) Pati is admitted toWard with Time in Dept .
same(Dept1,Dept2) Dept1 is the same as Dept2.
transfer(Pati, Inti, Time) Patiwith Inti and reservation Time is transferred to some other department.
notify(Pati,Dept,Ward, Time) Pati is notified with Dept ,Ward, and Time.
ordered(Pati, Serv, Time) Ordered service Serv for Patiwith reservation Time.
overdue(Time) Time is overdue.
remind_provider(Serv,Delay) A reminder of Serv being delayed is sent to service provider.
on_the_spot(Serv) Serv can be given on the spot.
recommend(Pati, Serv) Serv is recommended to Pati.
request(Pati, Serv, Time) Requesting to order Serv for Patiwith reservation Time.
urgent(Pati, Serv, Time) Serv requested for Patiwith reservation Time is a urgent service.
obtained(Serv, Resu) The result Resu of Serv is obtained.
send(Pati, Resu) Resu is sent to Pati.
available_to_all(Time) Time is available for all parties.

Table 3
Requirements.

(r1) ∀Pati∀Init∀Dept∀Time(call(Pati, Init,Dept, Time) ∧ new(Pati)→ create_record(Pati));
(r2) ∀Pati∀Init∀Dept∀Time(call(Pati, Init,Dept, Time) ∧ ¬new(Pati)→ update_record(Pati));
(r3) ∀Pati∀Init∀Dept∀Time(call(Pati, Init,Dept, Time) ∧ ¬complete(Pati, init)→ waiting_list(Pati,Add));
(r4) ∀Pati∀Misi(complement(Pati,Misi)→ (update_record(Pati) ∧ waiting_list(Pati,Delete)));
(r5) ∀Pati∀Init∀Dept∀Ward∀Time(complete(Pati, Init) ∧ (¬related(Init,Dept) ∨ ¬available(Dept,Ward, Time))

→ transfer(Pati, Inti, Time));
(r6) ∀Pati∀Init∀Dept∀Ward∀Time(complete(Pati, Init) ∧ related(Init,Dept)→ apply_ward(Pati,Dept, Time));
(r7) ∀Pati∀Dept1∀Dept2∀Ward1∀Ward2∀Time(¬same(Dept1,Dept2)→ (admit(Pati,Dept1,Ward1, Time)

→ ¬admit(Pati,Dept2,Ward2, Time)));
(r8) ∀Pati∀Init∀Dept∀Ward∀Time(apply_ward(Pati,Dept, Time) ∧ available(Dept,Ward, Time)

→ admit(Pati,Dept,Ward, Time));
(r9) ∀Pati∀Dept∀Ward∀Time(admit(Pati,Dept,Ward, Time)→ notify(Pati,Dept,Ward, Time));
(r10) ∀Pati(unconscious(Pati)→ monitor(Pati));
(r11) ∀Doct∀Dept(surgeon(Doct,Dept)→ has_right(Doct,Dept, Prescribe));
(r12) ∀Pati∀Serv∀Time(ordered(Pati, Serv, Time) ∧ overdue(Time)→ remind_provider(Serv,Delay));
(r13) ∀Pati∀Serv(under_diagnosis(Pati) ∧ on_the_spot(Serv)→ recommend(Pati, Serv));
(r14) ∀Pati∀Serv∀Time(emergency(Pati) ∧ request(Pati, Serv, Time)→ urgent(Pati, Serv, Time));
(r15) ∀Pati∀Serv∀Time∀Resu(ordered(Patient, Service, Time) ∧ ¬overdue(Time) ∧ obtained(Serv, Resu)

→ send(Pati, Resu));
(r16) ∀Pati∀Serv∀Time(request(Pati, Serv, Time) ∧ available_to_all(Time)→ ordered(Pati, Serv, Time));
(r17) ∀Pati∀Serv∀Time(urgent(Pati, Serv, Time)→ ordered(Pati, Serv, Time));
(r18) ∀Pati∀Serv∀Time(request(Pati, Serv, Time) ∧ ¬available_to_all(Time)→ ¬ordered(Pati, Serv, Time)).

Table 4
Scenario S1 .

(s1) complete(Pati1, Init1) ∧ related(Init1,Dept1) ∧ available(Dept1,Ward1, Time1);
(s2) complete(Pati1, Init1) ∧ related(Init1,Dept2) ∧ available(Dept2,Ward2, Time1);
(s3) ¬same(Dept1,Dept2).

22 K. Mu et al. / Science of Computer Programming () –

Table 5
Scenario S2 .

(s4) request(Pati2, Serv2, Time2);
(s5) ¬available_to_all(Time2);
(s6) emergency(Pati2).

where ∆i is the requirements of viewpoint vi, and Pi is the prioritization of viewpoint i for each i. In detail,

∆1 = {(r1), (r2), (r3), (r4), (r5), (r6), (r7), r(12), r(13), (r14), (r15)},
P1((r1)) = P1((r2)) = P1((r3)) = P1((r4)) = P1((r5)) = P1((r6)) = P1((r7))

= P1((r12)) = P1((r13)) = P1((r14)) = P1((r15)) = essential;
∆2 = {(r8), (r9)},
P2((r8)) = P2((r9)) = essential;
∆3 = {(r10), (r11), r(12), r(13), (r14), (r15)},
P3((r10)) = P3((r11)) = P3((r13)) = P3((r14)) = essential,
P3((r12)) = P3((r15)) = conditional;
∆4 = {(r16), (r17), (r18)},
P4((r16)) = P4((r17)) = P4((r18)) = essential.

Let

R1 = {(r1), (r2), (r3), (r4), (r5), (r6), (r7), r(8), r(9)} and
R2 = {(r10), (r11), r(12), r(13), (r14), (r15), (r16), (r17), (r18)},

then R1 and R2 are requirements corresponding to Task 1 and Task 2, respectively.

Part C. Inconsistency analysis

(C1) Checking consistency of tasks.
For Task 1, given scenario S1, the requirements (r6), (r7), and (r8) can be instantiated (with regard to S1) as follows:

(r6) (complete(Pati1, Init1) ∧ related(Init1,Dept1)→ apply_ward(Pati1,Dept1, Time1)) ∧
(complete(Pati1, Init1) ∧ related(Init1,Dept2)→ apply_ward(Pati1,Dept2, Time1));

(r7) ¬same(Dept1,Dept2)→ (admit(Pati1,Dept1,Ward1, Time1)
→ ¬admit(Pati1,Dept2,Ward2, Time1));

(r8) (apply_ward(Pati1,Dept1, Time1) ∧ available(Dept1,Ward1, Time1)→
admit(Pati1,Dept1,Ward1, Time1)) ∧ (apply_ward(Pati1,Dept2, Time1)
∧available(Dept2,Ward2, Time1)→ admit(Pati1,Dept2,Ward2, Time1)).

Then for scenario S1, we consider

Γ1 = {(s1), (s2), (s3), (r6), (r7), (r8)}.

Furthermore, for Task 2, given scenario S2, the requirements (r14), (r17), and (r18) can be instantiated (with regard
to S2) as follows:

(r14) emergency(Pati2) ∧ request(Pati2, Serv2, Time2)→ urgent(Pati2, Serv2, Time2);
(r17) urgent(Pati2, Serv2, Time2)→ ordered(Pati2, Serv2, Time2));
(r18) request(Pati2, Serv2, Time2) ∧ ¬available_to_all(Time2)→

¬ordered(Pati2, Serv2, Time2).

Then for scenario S2, we consider

Γ2 = {(s4), (s5), (s6), (r14), (r17), (r18)}.

By using our tool IncMeasurer, we conclude that both Γ1 and Γ2 are inconsistent.
(C2) Analyzing Inconsistency. For the simplicity of discussion, we use ⊥1 and ⊥2 to denote the inconsistencies of Γ1 and

Γ2, respectively. Then
• Doctor’s Secretary (v1) and Ward Manager (v2) are involved in⊥1;
• Doctor’s Secretary (v1), Medical Staff (v3), and Lab Service Staff (v4) are involved in⊥2.

K. Mu et al. / Science of Computer Programming () – 23

To illustrate how useful our approach is during the requirements stage, we provide and compare two cases of
inconsistency analysis, i.e., inconsistency analysis without use of significance of inconsistency, and inconsistency
analysis making use of significance of inconsistency.
• Case 1: Inconsistency analysis without use of significance of inconsistency: Each viewpoint wants to achieve

his/her main goals in resolving more important inconsistencies by making concession in resolving less important
inconsistencies. The developers of the EHR system want to differentiate these two inconsistencies from an
integrated perspective, which takes each viewpoint’s opinion into account. At first, they consider using the degree
of inconsistency to distinguish⊥1 from⊥2. Let S1 and S2 be the scoring functions for Γ1 and Γ2, respectively. Then

S1(Γ1) = 1, S2(Γ2) = 1; S1(∅) = 0, S2(∅) = 0;
∀Θ1 ⊂ Γ1 and Θ1 ≠ ∅, S1(Θ1) = 1;
∀Θ2 ⊂ Γ2, and Θ2 ≠ ∅, S2(Θ2) = 1;

And they can get S1 ≃ S2. That is, the degree of inconsistency in Γ1 equals to that in Γ2. The developers cannot
differentiate⊥1 and⊥2 by the degree of inconsistency. Then developers need to consider the relative importance
of inconsistencies. However, these viewpoints do not give each inconsistency equal chance to be considered. In
detail,
(a) v1 (Doctor’s Secretary) is involved in⊥2 aswell as⊥1. v1 considers that⊥1 ismore important than⊥2, since two

essential requirements of v1, i.e., (r6) and (r7), are involved in ⊥1, in contrast, only one essential requirement
of v1 is involved in⊥2.

(b)v2 (Ward Manager) is indifferent to⊥2 since v2 is not involved in⊥2. Actually, v2 is only anxious to resolve⊥1.
Then v2 tells the developers that⊥1 is more significant than⊥2.

(c) v3 (Medical Staff) and v4 (Lab Service Staff) consider that⊥2 is more important than⊥1, since v3 and v4 are only
involved in⊥2.

Obviously, v1 and v2 disagreewith v3 and v4 in the problem ofwhich inconsistency should be preferred. Particularly,
v1 and v3 disagreewith each other in the importance of⊥2, which involves the shared requirement between v1 and
v3. This disagreement puts the developers into a dilemma.
• Case 2: Inconsistency analysis making use of significance of inconsistency: If we consider the measurement of

significance of inconsistency presented in this paper, we can help developers
(2.1) differentiate the two inconsistencies in terms of significance of inconsistency from an integrated perspective.

– To reach an agreement on the significance of the inconsistency, we need compare Γ1 and Γ2 from the
integrated perspective. We input the instantiated facts and requirements in the tool IncMeasurer, as shown
in Fig. 3, we can get the following result in 33 ms 5:

⊥1 is more significant than⊥2.
This result signifies that the developers can consider that⊥1 is more important than⊥2 by aggregating four
viewpoints’ opinions. That is, a reasonable compromise among the four stakeholders is that ⊥1 should be
preferred. The actions for resolving⊥1 should take priority over the actions for resolving⊥2.

– To support and explain the result above, we can also compute the significance scoring matrix functions for
Γ1 and Γ2, respectively. By using the IncMeasurer, we get each of the following corresponding significance
scoring matrix functions ScM1 and ScM2 in 17 ms on the same Notebook PC.

ScM1(Γ1) =

0 0 0
0 0 0
0 0 3

; ScM2(Γ2) =

0 0 0
0 0 2
0 0 2

;

∀Θ1 ⊂ Γ1, Θ1 ≠ ∅, ScM1(Θ1) =

0 0 0
0 0 0
0 0 3

; ScM1(∅) = 0;

∀Θ2 ⊂ Γ2, Θ2 ≠ ∅, ScM2(Θ2) =

0 0 0
0 0 2
0 0 2

; ScM2(∅) = 0.

The significance scoring matrix functions give the measurements of the significance of inconsistencies in
Γ1 and Γ2, respectively. (ScM1(Γ1))33 = 3 implies that each requirement involved in ⊥1 is considered as
one of themost important requirements to its supporting viewpoint. Moreover, these supporting viewpoints
are the most important to the project. In contrast, (ScM2(Γ2))33 = 2 implies that (r14) is a shared essential
requirement between v1 and v3, and (ScM2(Γ2))23 = 2 coincides with that (r17) and (r18) are essential
requirements of v4, a conditional viewpoint.

5 We performed it on a Notebook PC equipped with a Mobile DualCore Intel Core Duo T2400 1.83 Ghz CPU and 2 G memory.

24 K. Mu et al. / Science of Computer Programming () –

(2.2) judge whether the intuitive opinion of each viewpoint about the relative importance of inconsistencies is
reasonable.

Note that case (2.2) can be considered as a special case of case (2.1), in which there is an unique viewpoint
and its requirements. For example, for viewpoint v1, we can make use of our tool IncMeasurer to judge
the opinion of v1 mentioned in Case 1. We consider that (r8), (r17), and (r18) are also requirements of v1,
moreover, we would use L = {l40, l

3
0, l

3
1, l

3
2} and assign the priority level l40 to requirements of (r8), (r17), and

(r18) in the tool IncMeasurer.6 Then we can get the following conclusion by comparing Γ1 and Γ2:
From the perspective of v1,⊥1 is more significant than⊥2.

It signifies that the opinion of v1 mentioned in Case 1(a) is reasonable from the perspective of v1.

Part D. Further discussions

We learned the following three aspects from the case study:

• At first, having compared the second case to the first case, we can conclude that the measurement of the significance of
inconsistency and the related tool IncMeasurer do play an important role in facilitating rational inconsistency analysis.
In detail, by using the tool IncMeasurer, we have
– checked inconsistency for Γ1 and Γ2;
– compared inconsistencies in Γ1 and Γ2 from an integrated perspective;
– provided an explanation for the compared results by computing the significance scoring matrix functions.
– judged whether an individual viewpoint’s intuitive opinion is rational from its own perspective.

• Secondly, we shall emphasize that this example demonstrates typically the application of our approach. It has been
widely recognized that the relative priority of requirements can help developers to make some necessary trade-off
decisions for resolving conflicts. However, for most distributed development such as viewpoints-based approaches,
different stakeholders may assign different levels of priority to the same shared requirements statement from their own
perspectives. The disagreement in the local levels of priority assigned to the same shared requirements statement often
puts developers into a dilemma in many cases such as Case 1 mentioned above. It makes analyzing inconsistency from a
integrated or global perspective more necessary. Actually, as illustrated by this case study, our approach is appropriate
for such cases.
• Thirdly, as illustrated by this case, the scenario-based inconsistency checking and analysis involves only several rele-

vant requirements rather than all the requirements. However, as argued in [5], consistency checking for the whole re-
quirements specification often becomes impractical due to rather expensive computation cost. Although scenario-based
inconsistency checking does not always guarantee consistency of the whole requirements specification, it is a practi-
cal way to improve the quality of requirements specification under computational complex constraints of inconsistency
checking. This is also why we do not take an example of large scale to validate our approach.

6. Related works

Inconsistency is one of the pervasive issues in the software development. It has been increasingly recognized that
flexible and effective approaches tomanaging inconsistency can facilitate the requirements process. In particular,measuring
inconsistency has been considered a crucial part of the effective inconsistencymanagement framework in requirements and
software engineering [4]. In this paper, we presented an approach to measuring the significance of inconsistency arising
from multiple viewpoints in requirements engineering. In the following, we compare our approach with some of closely
related proposals for measuring inconsistency.

As mentioned in [12], most of the current proposals for measuring the degree of inconsistencymay be classified into two
categories, including formula-based category and variable-based (or interpretation-based) category. Roughly speaking, the
variable-based proposal for measuring inconsistency of a set of formulas focuses on counting the (normalized) minimum
number of variables assigned to inconsistent truth values in some paraconsistentmodels such as quasi-classical models [16]
and LPm models [13]. As argued earlier, lack of syntax sensitivity makes the variable-based proposal inappropriate
for measuring the inconsistency arising from requirements. In contrast, formula-based approaches such as [14,13] are
associated with the set of minimal inconsistent subsets of a set of formulas. The measures presented in [13] focused
on identifying the degree of blame of each formula on the inconsistency arising from a set of formulas by distributing
some measurements of inconsistency to all the formulas, whilst the scoring function proposed in [14] aimed to articulate
the nature of inconsistency arising from a set of formulas by evaluating the contribution made by each subset to the
inconsistency.

Obviously, most existing methods ignore an important issue concerning inconsistency, that is, the significance of
inconsistency. Several research efforts have tried to look into this issue. An approach to evaluating the significance of
inconsistency in the framework of QC logic was proposed in [21]. It is based on specifying the relative significance of

6 Similar to example 4.1.

K. Mu et al. / Science of Computer Programming () – 25

✲

✻

u

u

s

s

s s

Γ2

Γ1
S1

S2

ScM2 ScM1

✻
≤ more inconsistent

✲

≼
S
I

more significant

Significance of Inconsistency

Degree of Inconsistency

Fig. 4. Comparing two inconsistent sets of requirements statements.

incoherent QC models using some additional information, which is encoded as a mass assignment in Dempster-Shafer
theory. It might not be appropriate for measuring inconsistency in requirements collections, since obtaining the relevant
and important information is difficult in requirements engineering. Another particular research is the metric proposed to
evaluate the level of significance of each detected inconsistency in multi-perspective requirements specifications [44,35].
However, the term of inconsistency in [44,35] is referred to as disagreement rather than classical logical contradictions. This
approach and relatedworks such as [45] focus on the stakeholder’s belief in a given requirement (represented by aweighted
truth value such as 1,0,1/2) and the belief merging rather than the relative importance of the requirement with regard to
each stakeholder. Then the degree of disagreement among viewpoints rather than the relative importance of inconsistency
with regard to the integrated perspective is described in these works.

In contrast, our approach to measuring the inconsistency presented in this paper focuses on the significance of the
inconsistency arising from different viewpoints. We argue that the significance of the inconsistency arising from different
viewpoints is linked to the relative importance of these different viewpoints as well as the relative importance of
requirements with regard to these viewpoints. However, as pointed out in [28], there are few software organizations are
willing to undertake rigorous numerical priority levels in practice. Therefore, in this paper, we adopt the qualitative priority
levels for requirements within viewpoints as well as for viewpoints. The strength of our approach is to turn the qualitative
priorities of viewpoints and the qualitative priorities of requirements with regard to the supporting viewpoints into a 0-1
vector. This vectorial transformation articulates the nature of qualitative priority levels. Moreover, itmakes the computation
of an integrated prioritization over the requirements specification from priorities in viewpoints feasible. There are few
approaches to integrate the local priority levels into global priority levels such as [34,46,35]. However, the approaches to
integrating the priorities levels from multiple perspectives presented in [34,35] focused on numerical or weighted priority
levels. These approaches are inappropriate to handling the qualitative priority levels directly. In addition, combinatorial vote
presented by Lang [46] also involved aggregating local preferences so as to obtain globally preferences in group decision.
However, the computational complexity of votes [46]would block off its application in requirements engineering.Moreover,
the relative importance of voters (corresponding to the viewpoints) is not considered in many voting rules. In contrast, our
approach adopted the priority vector-based proposal presented in [11] to compute the integrated prioritization, which is
easy to be implemented and more intuitive.

Based on the global prioritization over the requirements specification, the significance scoring matrix function is
presented to measure the significance of the inconsistency in a combined requirements collection from the integrated
perspective.We also present an algorithm for computing the significance scoringmatrix functions. Moreover, we provide an
intuitive ordering relationship between two inconsistent combined requirements collections that we can describe as more
significant than. In this sense, our approach constructs a bridge from qualitative preference of requirements such as essential
and conditional to numerical preference of inconsistency in requirements collections. Furthermore, as shown in Fig. 4, given
two inconsistent requirements collectionsΓ1 andΓ2, wemay compareΓ1 andΓ2 from two dimensions of the inconsistency,
i.e., the degree of the inconsistency and the significance of the inconsistency using their scoring functions and significance
matrix functions, respectively.

The inconsistency measure Incv for Type-II prioritized knowledge base presented in [47] is very close to the significance
scoring matrix function presented in this paper. Both the two inconsistency measures for a set of formulas (resp.
requirements) take into account the priority of each formula (resp. each requirement) in the set. However, the significance
scoring matrix function aims to use all the contributions made by each subset to the significance of requirements involved
in inconsistency together to capture the significance of inconsistency arising in a set of requirements. In contrast, the
inconsistency measure Incv aims to integrate the degree of inconsistency and the significance of formulas involved in
inconsistency by a single vector [47]. It may be considered as an integrated measure for inconsistency in some sense.

26 K. Mu et al. / Science of Computer Programming () –

The approach to measuring the significance of inconsistencies arising from different viewpoints presented in this paper
conforms with the scoring function presented by Hunter [14] with respect to the nature of inconsistency. As mentioned
earlier, for any subset of a requirements collection Γ , denoted Θ , its significance scoring matrix function ScM(Θ) may be
viewed as a description of the reduction of the significance of those inconsistent information in Γ after Θ were removed
from Γ . It is in essence the contribution made by Θ to the significance of the inconsistency in Γ . In this sense, it consists of
a scoring function for articulating inconsistency in a set of formulas.

Our previous approach to measuring the significance of inconsistencies in a given viewpoints [23] is also a scoring
function-based approach to measuring the inconsistency. It may be viewed as a simple case of the approach presented
in this paper when there is only one viewpoint in the Viewpoints framework. However, the inconsistency arising from
multiple viewpoints rather than the inconsistency in a given viewpoint is a more deserving and common issue in
practical requirements engineering. Given an inconsistency involving a shared requirement among multiple viewpoints,
the measurement of the inconsistency from an individual viewpoint is difficult to be accepted by other related viewpoints.
The disagreement on the measurement of the inconsistency will result in confusion in making trade-off decision about
inconsistency resolution. It makes the motivation of the approach presented here more necessary.

Note that the approach presented in this paper focuses on functional requirements only. It should be pointed out
that conflicts between non-functional requirements (NFR for short) have also been the subject of substantial body of
research literature (e.g. [32]). Although conflicts between non-functional requirements cannot be formulated as logical
contradiction explicitly inmany cases, there are several commoncharacteristics among the conflicts betweennon-functional
requirements and that between functional requirements:

• in many cases, some non-functional requirements are more preferred than others. This implies that some conflicts
betweennon-functional requirements aremore important than others. Thismakesmeasuring the significance of conflicts
between non-functional requirements more necessary.
• any formulation of conflicts between non-functional or functional requirements should have two aspects: minimality

and conflicts characterized in some special form. This seems to suggest that handling conflicts between NFR is similar to
generating minimal inconsistent subsets that was used in functional requirements.

This makes our approach more promising to be adapted to the case of non-functional requirements.
To support the application of the approach to measuring inconsistency, we implemented a tool termed IncMeasurer, in

which we formulated the problem of finding minimal inconsistent subsets as a search problem in a binomial tree. However,
there are several other ways to finding minimal inconsistent subsets for a knowledge base in applications. For example,
McAreavey et al. provided an algorithm for findingminimal inconsistent subsets by using existing algorithms for identifying
Minimal unsatisfiable subformulas (MUSes) in a formula [48]. It may provide a potential way to promote our tool support
in future.

7. Conclusions

In terms of the local priorities of requirements with respect to a given viewpoint and the relative importance of
viewpoints,we have presented an approach tomeasuring the significance of inconsistency arising fromdifferent viewpoints.

This paper argues that the significance of the inconsistency arising from different viewpoints is associated with the
relative importance of these different viewpoints as well as the relative importance of requirements with regard to these
viewpoints.

We transformed the qualitative priority of an individual requirement in a given viewpoint to a 0-1 vector in which
the location of unique 1 reflects the relative importance of the requirements with regard to the viewpoint. An integrated
prioritization over the requirements specification was computed from the numerical representation of the priorities of
viewpoints and the priorities of requirements with regard to their supporting viewpoints. Then we presented a scoring
function-based approach to measuring the significance of inconsistency arising from different viewpoints. An ordering
relationship between inconsistencies of two combined requirements collections, termedmore significant than, has also been
presented by comparing their significance scoring matrix functions.

In summary, this paper presented the following contributions to inconsistency measuring in requirements engineering:
(a) We argued that measurement of the significance of inconsistency in a requirements collection depends on the prior-

itization of requirements. Most researchers and practitioners have recognized that the prioritization of requirements
plays an important role in requirements engineering [28,29]. Available prioritization of requirements makes measuring
the significance of inconsistency feasible in software development.

(b) We defined the significance scoring matrix function to measure the significance of inconsistency in a combined
requirements collection. It gives a concise articulation of the significance of inconsistency in requirements collections.
Furthermore, we can compare two inconsistent combined requirements collections by means of their significance
scoring matrix functions. This gives an intuitive ordering relationship between two combined requirements collections
that we defined asmore significant thanwith respect to inconsistency.

(c) We presented an algorithm for computing the significance scoring matrix function for a given combined requirements
collection. To carry out the validation of algorithmspresented in this paper and to support the application of the approach
for measuring inconsistency, we implemented a tool termed IncMeasurer.

K. Mu et al. / Science of Computer Programming () – 27

The approach presented in this paper also facilitates automated decision support for inconsistency handling. As
mentioned above, the only input information that our approach needs is requirements priorities. Requirements priorities
are often obtained during requirements elicitation activities either implicitly or explicitly through interaction between
the developers and project sponsors and users. If our approach to measuring inconsistency is combined with techniques
for automated inconsistency analysis and management, this integration may provide a fully automated approach for the
identification of inconsistency, the measurement of inconsistency as well as the management of inconsistency in any given
requirements collection. This will be the main direction for our future work. However, it should be also pointed out that
this approach has applications in many other fields such as evaluating the progress in negotiations between a number of
participants [14] and merging information from heterogeneous sources.

Note that inconsistency identifying in requirements in our approach is based on the choice of scenarios in some sense.
Moreover, we assume that all the scenarios are developed correctly in the tool IncMeasurer in order to concentrate on
requirements. However, some scenarios may also be problematic. How to choose and develop scenarios appropriately is
still a challenge in scenario-based approaches for inconsistency handling [43]. In future work, we will also consider the case
of prioritized scenarios and develop an approach to handling the inconsistency of a prioritized requirements specification
with regard to a given prioritized scenario.

Acknowledgments

The authors are grateful to reviewers for their valuable comments. The authors would like to thank Dr. Guohui Xiao for
his help on construction of the tool support. This work was partly supported by the National Natural Science Foundation
of China under Grant Nos 61170300 and 60703061, the National Basic Research 973 program of China under Grant
No. 2009CB320701, and the Key Project of National Natural Science Foundation of China under Grant No. 90818026.
Didar Zowghi was supported by the Research Grant (CH070139) under the International Science Linkages Programme —
Australia-China Special Fund for Science & Technology Cooperation Round 7.

References

[1] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, M. Goedicke, Viewpoints: a framework for integrating multiple perspectives in system
development, International Journal of Software Engineering and Knowledge Engineering 2 (1) (1992) 31–58.

[2] B. Nuseibeh, J. Kramer, A. Finkelstein, Viewpoints: meaningful relationships are difficult! in: Proceedings of International Conference on Software
Engineering, IEEE Computer Society, Los Alamitos, CA, 2003, pp. 676–683.

[3] D. Zowghi, V. Gervasi, On the interplay between consistency, completeness, and correctness in requirements evolution, Information and Software
Technology 45 (14) (2003) 993–1009.

[4] B. Nuseibeh, S. Easterbrook, A. Russo, Leveraging inconsistency in software development, IEEE Computer 33 (4) (2000) 24–29.
[5] B. Nuseibeh, S. Easterbrook, A. Russo, Making inconsistency respectable in software development, Journal of Systems and Software 58 (2) (2001)

171–180.
[6] V. Gervasi, D. Zowghi, Reasoning about inconsistencies in natural language requirements, ACM Transaction on Software Engineering and

Methodologies 14 (3) (2005) 277–330.
[7] S. Castro, C. Roover, A. Kellens, A. Lozano, K. Mens, T. D’Hondt, Diagnosing and correcting design inconsistencies in source code with logical abduction,

Science of Computer Programming 76 (12) (2011) 1113–1129.
[8] A. Lamsweerde, R. Darimont, E. Letier, Managing conflicts in goal-driven requirements engineering, IEEE Transactions on Software Engineering 24

(11) (1998) 908–926.
[9] A. Hunter, B. Nuseibeh, Managing inconsistent specification, ACM Transactions on Software Engineering and Methodology 7 (4) (1998) 335–367.

[10] K. Mu, Z. Jin, D. Zowghi, A priority-based negotiations approach for handling inconsistency in multi-perspective software requirements, Journal of
Systems Science and Complexity 21 (4) (2008) 574–596.

[11] K. Mu, W. Liu, Z. Jin, A. Yue, R. Lu, D. Bell, Handling inconsistency in distributed software requirements specifications based on prioritized merging,
Fundamenta Informaticae 91 (3–4) (2009) 631–670.

[12] A. Hunter, S. Konieczny, Shapley inconsistency values, in: Principles of knowledge representation and reasoning, Proceedings of the 10th international
conference (KR06), AAAI Press, 2006, pp. 249–259.

[13] A. Hunter, S. Konieczny, Measuring inconsistency through minimal inconsistent sets, in: Principles of knowledge representation and reasoning,
Proceedings of the eleventh international conference (KR08), 2008, pp. 358–366.

[14] A. Hunter, Logical comparison of inconsistent perspectives using scoring functions, Knowledge and Information Systems 6 (5) (2004) 528–543.
[15] A. Hunter, S. Konieczny, Approaches to measuring inconsistent information, in: Inconsistency Tolerance: Lecture Notes in Computer Science,

vol. 3300, Springer-Verlag, New York, Secaucus, NJ, USA, 2004, pp. 191–236.
[16] A. Hunter, Measuring inconsistency in knowledge via quasi-classical models, in: Proc. The 18th National Conference on Artificial Intelligence,

AAAI’2002, AAAI Press, Menlo Park, USA, 2002, pp. 68–73.
[17] S. Benferhat, D. Dubois, S. Kaci, H. Prade, Encoding information fusion in possibilistic logic: a general framework for rational syntacticmerging, in: Proc.

ECAI’2000, IOS Press, Amsterdam, 2000, pp. 3–7.
[18] S. Konieczny, J. Lang, P. Marquis, Quantifying information and contradiction in propositional logic through test actions, in: Proc. IJCAI2003, Morgan

Kaufmann, San Fransisco, CA, USA, 2003, pp. 106–111.
[19] J. Grant, A. Hunter, Measuring inconsistency in knowledgebases, Journal of Intelligent Information Systems 27 (2006) 159–184.
[20] J. Grant, A. Hunter, Analysing inconsistent first-order knowledge bases, Artificial Intelligence 172 (2008) 1064–1093.
[21] A. Hunter, Evaluating the significance of inconsistency, in: Proc. IJCAI’03, Morgan Kaufmann, San Fransisco, CA, USA, 2003, pp. 468–473.
[22] K. Knight, Measuring inconsistency, Journal of Philosophical Logic 31 (1) (2002) 77–98.
[23] K.Mu, Z. Jin, R. Lu,W. Liu, Measuring inconsistency in requirements specifications, in: Proc.ECSQARU2005: LNCS vol. 3571, Springer-Verlag, NewYork,

Secaucus, NJ, USA, 2005, pp. 440–451.
[24] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Princeton, 1976.
[25] A. Russo, B. Nuseibeh, On the use of logical abduction in software engineering, in: Handbook of Software Engineering and Knowledge Engineering,

World Scientific Publishing, 2001, pp. 889–914.
[26] D. Jackson, Automating first-order relational logic, ACM SIGSOFT Software Engineering Notes 25 (6) (2000) 130–139.
[27] R. Reiter, A theory of diagnosis from first priniciples, Artificial Intelligence 32 (1) (1987) 57–95.

28 K. Mu et al. / Science of Computer Programming () –

[28] K.E. Wiegers, First things first: prioritizing requirements, Software Development 7 (9) (1999) 48–53.
[29] A. Davis, Just Enough Requirements Management: Where Software Development Meets Marking, Dorset House, New York, NY, USA, 2005.
[30] J. Karlsson, K. Ryan, A cost-value approach for prioritizing requirements, IEEE Software 14 (5) (1997) 67–74.
[31] J.W. Pardee, To Satisfy and Delight Your Customer: How to Manage for Customer Value, Dorset House Publishing, New York, 1996.
[32] K.E. Wiegers, Software Requirements, 2nd ed, Microsoft Press, 2003.
[33] IEEEStd830-1998, IEEE Recommended Practice for Software Requirements Specifications, IEEE Computer Society Press, Los Alamitos, CA, 1998.
[34] X. Liu, Y. Sun, C. Veera, Y. Kyoya, K. Noguchi, Priority assessment of software process requirements frommultiple perspectives, Journal of Systems and

Software 79 (11) (2006) 1649–1660.
[35] A.B.B. Martinez, J.J.P. Arias, A.F. Vilas, J.G. Duque, M.L. Norse, R.P.D. Redondo, Y.B. Fernandez, Composing requirements specifications from multiple

prioritized sources, Requirements Engineering 13 (3) (2008) 187–206.
[36] K. Mu, W. Liu, Z. Jin, R. Lu, A. Yue, D.A. Bell, A merging-based approach to handling inconsistency in locally prioritized software requirements,

in: Z. Zhang, J.H. Siekmann (Eds.), KSEM, in: Lecture Notes in Computer Science, vol. 4798, Springer, 2007, pp. 103–114.
[37] S.A. Cook, The complexity of theorem-proving procedures, in: Proc. of the Third Annual ACM Symposium on the Theory of Computing, ACM, New

York, NY, USA, 1971, pp. 151–158.
[38] J. Marques-Silva, I. Lynce, S. Malik, Conflict-driven clause learning sat solvers, in: A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of

Satisfiability, IOS Press, 2009, pp. 131–154.
[39] C. Grover, C. Brew, M. Moens, S. Manandhar, Priority union and generalization in dsicourse grammar, in: Proc. of the 32nd Annual Meeting of the

Association for Computational Linguistics, Morgan Kaufmann, San Fransisco, CA, USA, 1994, pp. 17–24.
[40] R. Malouf, Maximal consistent subsets, Computational Linguistics 33 (2) (2007) 153–160.
[41] R. Bird, R. Hinze, Functional pearl:trouble shared is trouble halved, in: Proceedings of the 2003 ACM SIGPLAN workshop on Haskell, ACM, New York,

NY, USA, 2003, pp. 1–6.
[42] L. Ryan, Efficient algorithms for clause learning sat solvers, Master’s Thesis, Simon Fraser University, 2004.
[43] K. Mu, J. Hong, Z. Jin, W. Liu, From inconsistency handling to non-canonical requirements management: a logical perspective, International Journal of

Approximate Reasoning 54 (1) (2013) 109–131.
[44] A.B.B. Martinez, J.J.P. Arias, A.F. Vilas, J.G. Duque, M.L. Norse, R.P.D. Redondo, Y.B. Fernandez, On the interplay between inconsistency and

incompleteness in multi-perspective requirements specifications, Information and Software Technology 50 (4) (2008) 296–321.
[45] A. Martinez, J. Arias, A. Vilas, Merging requirements views with incompleteness and inconsistency, in: Proc. of Australian Software Engineering

Conference 2005, IEEE Computer Society, Los Alamitos, CA, 2005, pp. 58–67.
[46] J. Lang, From logical preference representation to combinatorial vote, in: Proc. of KR2002, Morgan Kaufmann, San Fransisco, CA, USA, 2002,

pp. 277–288.
[47] K.Mu,W. Liu, Z. Jin, Measuring the blame of each formula for inconsistent prioritized knowledge bases, Journal of Logic and Computation 22 (3) (2012)

481–516.
[48] K. McAreavey, W. Liu, P. Miller, C. Meenan, Tools for finding inconsistencies in real-world logic-based systems, in: Proceedings of the 6th European

Starting AI Researcher Symposium, STAIRS’12, IOP Press, Montpellier, France, 2012, pp. 192–203.

	Measuring the significance of inconsistency in the Viewpoints framework
	Introduction
	Preliminaries
	The degree of inconsistency
	Logical representation of viewpoints
	The significance of requirements collections

	Measuring significance of inconsistency in a given viewpoint
	Measuring significance of inconsistency in a combined requirements collection
	Prioritizing requirements from the integrated perspective
	Measuring significance of inconsistency based on stratified viewpoints
	Computation of the significance scoring matrix function
	Implementation of the tool IncMeasurer

	Case study
	Related works
	Conclusions
	Acknowledgments
	References

