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Abstract

Combiningmultiple sources of information is a major and di�cult task in the management
of uncertainty� Dempster�s combination rule is one of the attractive approaches� However�
many researchers have pointed out that the application domains of the rule are rather limited
and it sometimes gives unexpected results� In this paper� we have further explored the nature
of combination and achieved the following main results� ��� The condition of combination in
Dempster�s original combination framework is more strict than that required by Dempster�s
combination rule in Dempster�Shafer theory of evidence� ��� Some counterintuitive results
of using Dempster�s combination rule shown in some papers are caused by the overlooking
	or ignorance� of di
erent independence conditions required by Dempster�s original combi�
nation framework and Dempster�s combination rule� ��� In Dempster�s combination rule�
combinations are performed at the target information level� This rule itself does not provide
a combination mechanism at the original information level so that it is not able to combine
the overlapped information� ��� An alternative approach to the combination of di
erent
pieces of evidence by using incidence calculus is proposed� In this approach di
erent pieces
of evidence are combined at both the original information level and the target information
level rather than only at the target information level� 
�� In this approach� we can combine
not only independent pieces of evidence but also dependent pieces of evidence� ��� This new
approach turns out to be consistent with traditional probability theory� It is more powerful
than Dempster�s combination rule at combining dependent evidence�

� Introduction

The management of uncertainty within knowledge and evidence includes three main tasks� the
representation� propagation and combination of evidence� The combination of di�erent pieces
of evidence is the most di�cult task in many cases� Up to date� several approaches have been
proposed to represent uncertain information� and the corresponding combination mechanisms
have been established� Among these approaches� the Dempster�Shafer theory of evidence is
quite popular� But the problems in applying this theory� particularly applying Dempster	s
combination rule have been discussed intensively by many researchers 
Hunter ��� Lemmer �
�
Pearl ��� ��� Zadeh ��� �
�� Several authors showed that in some situations Dempster	s rule
gives counterintuitive results� Several other authors 
Shafer ��� ��� Smets ��� Ruspini etal ���
disagreed with this criticism and argued that the counterintuitive results are caused by the
misapplication of the rule� The discussion on this problem has lead to the topic of how to
understand belief functions� � functions which assign a number between � and � to every subset
of a given set�

One view of belief functions is that the theory of belief functions is the generalized probability
theory� Another view is that a belief function is an alternative way of representing evidence�

Recently� Halpern and Fagin 
Halpern and Fagin ��� further explored the nature of belief
functions� and clari�ed these two views in some detail� They indicated �it seems that all the

�The formal de�nition of belief functions is given in section ����
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examples showing the counterintuitive nature of the rule of combination arise from an attempt
to combine two beliefs that are really being viewed as generalized probabilities� If we view beliefs
as a generalized probability� then it makes sense to update beliefs but not combine them� On
the other hand� if we view beliefs as a representation of evidence� then it makes sense to combine
them� but not update them�� But the ideal solution should be that the �same conclusions will
be reached no matter which viewpoint is taken�� In their paper� they concluded that �� we have
to accept the two views of belief functions� �� thinking of beliefs as generalized probabilities
gives more reasonable results in some cases where thinking of beliefs as a representation of
evidence doesn	t� �� the examples in 
Black ��� Hunter ��� Lemmer �
� Pearl ��� regarding the
counterintuitive nature of belief functions can all be explained in terms of a confusion of these
two views� That is� the belief functions in those examples can only be interpreted in terms of
generalized probabilities�

Several questions have to be answered� Why di�erent viewpoints may result in di�erent
solutions� What is the key cause of such problems� Is it because of the di�erent viewpoints of
belief functions� the weakness of the rule itself� or the misapplication of the rule�

With respect to these questions we are going to investigate Dempster	s combination rule from
a di�erent perspective� We will examine both Dempster	s original motivation on combination in
his original paper and Dempster	s combination rule named by Shafer in DS theory� In the rest of
the paper� in order to distinguish them we use Dempster�s combination framework to name
the description of combination in Dempster	s original paper and Dempster�s combination
rule to stand for the rule commonly used�

Actually� when people refer to DS theory and mention Dempster	s combination rule� they
all implicitly mean the combination formula� in Shafer	s book� The applications and problem
examinations are focused on this formula which was abstracted from 
Dempster 
��� The spirit
of the rule can be stated as� if there are two belief functions bel� and bel�� de�ned by two
distincted pieces of evidence� on the same space S� then their joint impact on the space can be
represented by bel�� bel�� where � means using Dempster	s combination rule� The condition of
applying � to two belief functions is usually mentioned as independence in many sources� such
as in 
Shafer ��� P������ This more or less gives the condition of using the rule� In other words�
the information carried by one belief function tells us nothing about the information carried by
another belief function� Some examples given in several articles seem to satisfy this requirement
but give counterintuitive results�

In order to explain why Dempster	s combination rule is unapplicable in some cases� we
go back to explore Dempster	s original paper which is the basis of Shafer	s work and to see
what we can �nd� Based on Dempster	s paper 
Dempster 
�� we can simply state his idea of
combination as follows�� suppose there are two pieces of evidence which are given in the form
of two probability spaces� �X�� ��� ��� and �X�� ��� ���� Further suppose there is another space
S and some kind of mapping relations from space X� and X� to S� The relation between one
space and another space says that the truth of some elements in the former space suggests the
possibility of truth of some elements in the latter space� Given the probability of truth of some
elements in spaces X� and X�� we are interested in knowing the impact of the evidence on the
space S �we may think S contains answers to our questions or the possible values of a variable��

�See de�nition in section ���
�See detailed analysis in Section ���
�See de�nition in Section ���
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Facing to this problem� Dempster suggested that we can get the joint probability space �X��� ��
� �X��X�� ������ ������ out of the two original spaces as well as the joint mapping relation
from X to S �rst and then propagate the e�ect of probability distribution � to S�

The condition of obtaining the product space is that �the sources �if we treat a space

and its probability distribution as a source� are assumed independent� ��� Opin�
ions of di�erent people based on overlapping experiences could not be regarded as

independent sources� Di�erent measurements by di�erent observations on di�er�
ent equipments would often be regarded as independent� 
Dempster 
��� If we refer to
the levels containing spaces �X�� ��� ��� and �X�� ��� ��� as the original information level�
and space S as the target information level� then Dempster	s condition of independence
is assumed at the original information level� This requirement is called DS�Independent� in

Voorbraak ����

Under such a requirement� Shafer	s simpli�ed procedure can be explained as propagating
two probabilistic distributions from X�� X� to S separately� then combining them on the space
S� Therefore the condition of applying Dempster	s renowned combination rule is that the two
pieces of information �in the form of belief functions� are independent �or distinct� on the
same domain i�e� at the target information level� Clearly if two pieces of information are DS�
Independent� then they must be independent in the normal sense and Dempster	s combination
rule is applicable� The other way around� two independent belief functions may not be DS�
Independent if they are rooted at the original information level� that is� if they are in the form
of providing evidence rather than in the form of giving an e�ect on a speci�c domain �or space��
This can be seen in those examples given in the later sections of this paper� There is ignorance
throughout the literature that di�erent independence conditions are required by Dempster in his
original framework and by Shafer when he gave Dempster	s combination rule in his book� A rare
exception is Voorbraak who touched upon this point in giving his DS�Independent de�nition�
but even he failed to make this point explicitly�

Therefore by contrast to these two opinions� we argue that the key cause of giving coun�
terintuitive results in using Dempster	s combination rule is the overlooking �or ignorance�

of the condition of combination given in Dempster	s original paper� That is� the condition of
combination given by Dempster in his framework is not quite the same as what Shafer �in his
book�� as well as many people� explained� The former is more strict�

The conclusion we get from the above analysis and section � is that those counterintuitive
examples given in some articles 
Black ��� Hunter ��� Lemmer �
� Pearl ��� ��� Voorbraak ��� are
caused by such ignorance� In the sense of DS�Independence required by Dempster	s combination
framework� those examples don	t satisfy this requirement� so Dempster	s combination framework
is not applicable� However if we accept that those examples satisfy the independent requirement
needed by Dempster	s combination rule so Dempster	s combination rule is applicable� but the
combined results are counterintuitive� From the former point of view� they are caused by the
misapplication of the framework� from the latter point of view they are caused by the weakness
of the combination formula� Neither of them is able to deal with those cases� Based on such
a discussion� those belief functions� which can only be viewed as generalized probabilities� are
precisely the cases which fail to satisfy the requirement of DS�Independence� So Dempster	s
combination rule is not suitable to cope with them�

�See de�nition in section ���
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The aim of our research is twofold� arguing the independence requirement among several be�
lief functions when using Dempster	s combination rule and proposing an alternative combination
mechanism to overcome the weakness of Dempster	s combination rule� In this new approach�
on the one hand we absorb the combination spirit of Dempster	s combination framework� that
is� multiple sources of information are described at the original information level and the joint
source needs to be constructed before we do the combination� On the other hand we adopt a
di�erent methodology which goes deeper in showing the nature of combination than Dempster	s
combination rule� that is we prefer that the e�ect of the original information should be seen in
the new combination mechanism�

In order to reach this goal� we have to employ an alternative theory of dealing with un�
certainty which is similar in some sense to DS theory� The alternative theory should have the
ability to carry out set operations at the original information level�

In this paper� we present a new mechanism for the combination of di�erent pieces of evidence
by using incidence calculus 
Bundy ��� ���� The important feature of incidence calculus is that
probabilities are not directly associated with formulae� rather incidences are directly associated
with some formulae� The incidence set of a formula� containing a set of possible worlds each of
which is associated with a probability� is a set in which this formula is true� So incidence calculus
forms an incidence set �rst for a formula and then calculates its probability � or upper and
lower bounds on its probability�� It has well de�ned set operations on the original information
space and suits the requirement of carrying out the combination at both the original and target
information level� As a consequence� we can deal with multiple�sources of information no matter
whether they are dependent or not�

The paper is organized as follows� Section � introduces the relevant terminology of the
propositional language and the probability structure which will be used later� Section � describes
Dempster�Shafer theory of evidence and analyzes problems in Dempster	s combination rule in
greater detail� In section �� we will brie�y introduce the basics of incidence calculus and the
main features of the theory which will be used in the subsequent sections� Following this we
will discuss the way of representing incomplete information and modelling problems� Section
� describes the new combination rule in incidence calculus which can handle both dependent
and independent pieces of information� Section 
 is about the comparison between DS theory
and incidence calculus� We will show that they have the same ability to represent evidence
�information�� We will also prove that Dempster	s combination rule is covered by this new
combination rule� Several examples will be given to demonstrate the features of the new rule in
section �� Finally� in section �� we will summarize the paper and discuss further work�

� Propositional Language and Probability Structure

��� Propositional Language

The language we are using in this paper is a �nite propositional language�

De�nition �	 Propositional Language�
L�P � is the propositional language formed from P � where P is a �nite set of propositions�

L�P � is the smallest set containing the truth values and the members of P � It is closed under
the operations of negation ���� disjunction ���� conjunction ��� and implication ����
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Suppose a proposition set P contains p�� p�� ���� pn� At is the set of basic elements� each of
which is in the form p�� � ��� � p

�
n� where p

�
i is either pi or �pi and pi � P � Any formula � in the

language set L�P � can be represented as

� � �� � ���� �k where �i � At� ���

��� Probability Structure

In the discussion� we will use the formalization about probability structures given by Fagin and
Halpern 
Fagin and Halpern ����a��

De�nition 
	Probability Space
A probability space �X��� �� has	
X	 a sample space usually containing all the possible worlds

�	 a ��algebra containing some subsets of X� which is de�ned as containing X and closed

under complementation and countable union�
�	 a probability measure which gives � � �� 
�� �� and it has the following features	
P�� ��Xi� � � for all Xi � �

P
� ��X� � �

P�� ��	�j��Xj� � ��j����Xj�� if the Xj�s are pairwise disjoint members of ��
Propagating a probability distribution from a probability space to a language set is done

through a mapping �� � is a mapping which associates with each x � X a truth assignment
��x� � P � ftrue� falseg� Here P is a �nite set of primitive propositions as de�ned in de�nition
� and At is its corresponding basic element set� We say that p� an element of P � is true at x if
��x��p��true� otherwise we say that p is false at x�

If �X��� �� is a probability space and � is such a mapping then a tuple M � �X��� �� ��
is called a probability structure� In this way� we can associate with each state x in X a unique
basic element of At describing the truth values of the primitive propositions in x� That is
� � s� p�� � p

�
� � ��� � p

�
n � �i where if ��x��pi� � true then p�i � pi� otherwise p�i � �pi� we use

�
x� to denote this element� Thus for any subset Xi � fxi�� ���� xilg of X � we de�ne �
Xi� � 	Xi

where 	Xi
� �j�
xij ��

For any formula 	 in L�P �� 	� is de�ned as a subset of X containing all the states where
	 is true� that is 	� � fx j ��x��	� � trueg� Further it is de�ned that WM�	� is the weight
or probability of 	 in M �a probability structure�� which is calculated from ��	��� If 	� is
measurable� that is when ��	�� exists� we can talk about the probability of formula 	� otherwise
we can only calculate the lower and upper bounds on the probability of 	� In general� if 	� is
not measurable� then we de�ne WM�	�����	

��� � which is the inner measure of 	 in M � In
addition� we de�ne that true� � X and false� � fg�

A subset �� of � is called a basis of � if it contains non�empty and disjoint elements� and if
� consists precisely of countable unions of members of ��� For any �nite � there is a basis of �
and it follows that

��� is a inner measure induced by ��

���A� � supf��X� j X � A and X � �g

�



�Xi�����Xi� � �

If � is �nite� then it must have a basis and the basis is unique� In the following� we suppose
that we only consider �nite probability structures�

� Dempster�Shafer Theory of Evidence

Even though we are using probabilistic terminology to state DS theory� we do not mean to
reject the view of belief functions as representing evidence� This topic will be further discussed
in Section ����

��� Basics of D�S Theory

Dempster�Shafer theory of evidence� or as it is usually called� belief function theory 
Shafer �
�
Smets ���� associates degrees of belief with every subset of a space which consists of mutually
exclusive and exhaustive explanations for a problem� Such a space is named a frame of discern�
ment �or frame�� and is normally denoted as �� A belief function bel on space � is required to
obey the following three features�

��bel�
� � �
��bel��� � �
��bel�A� 	 ���	 An� � �ibel�Ai�� �i�jbel�Ai �Aj�  �i�j�kbel�Ai �Aj � Ak��  ���

A belief function is usually described in the form of function called a mass function m� or
a basic probability assignment which follows m�
� � �� and �A��m�A� � �� Given a mass
function on a frame of discernment� a corresponding belief function can be calculated� The
relation between these two functions is�

bel�A� � �B�Am�B�

Similarly� another function called plausibility function is de�ned as

pls�A� � �B�A���m�B� � �� bel��A�

A subset A of � is called a focal element of belief function bel if m�A� 
 �� If all the focal
elements of bel are single elements of �� then the mass function m is a probability distribution�
In general mass functions are generalized probability distributions� The di�erence between a
mass function and its belief function is that the degree of belief on a subset A of � represents
our total belief on the set and all its subsets while the mass value of A is the degree of belief
exactly assigned to the set and not any of its subsets�

In 
Fagin and Halpern ��b�� a speci�c representation of a belief function on a frame of
discernment is given as a tuple �X� bel� �� which is called a DS structure where X is a frame and
� is the same as in probability structures� and bel � �X � 
�� �� is a belief function�

It has been proved 
Fagin and Halpern ����b� that if �X��� �� �� is a probability structure�
then �X� ��� �� is a DS structure where �� is the inner measure of � on space X � that is� ��
is a belief function on X � Because of the mapping � from X to L�P � and the de�nition of
WM �	�����	

��� it is easy to see that �� also gives a belief function on space �
At in the sense of

the equivalence between a subset Ai of At and a formula 	Ai in L�P �� This is explained as�






Ai 
� 	Ai j 	Ai � �i� � �i� � ��� � �in where �ij � Ai and Ai � At� ���

That is �
Xi� is thought of as a subset of At if we consider the mapping from X to set At
while �
Xi� is treated as a formula in L�P � if we consider the mapping from X to the language
set L�P ��

Therefore for a basic element set At� a subset of Ai in �
At is treated to be equivalent to

a formula ��ij �where �ij � Ai� in L�At�� In other words� �� is a belief function on space At
in the de�nition of ���A� � ���	

�
A� when A � At� Under this assumption� we can derive the

following de�nition�

De�nition �	 Complete DS structures	

A structure �X��� ��At� �At� �� is called a complete DS structure in which a belief function
on frame At can be derived from the probability structure �X��� �� ��� When X is �nite� this
belief function can be constructed by applying the following steps�

�� Let �� be the basis of �� �� � fX�� ���� Xng


� Find ADS� fA�� ���� An�g where for each Ai there is at least one Xj which has �
Xj� � 	Ai 

�� De�ne a function m on At and let m�Ai� � ��
Xi���Ai

��Xi�� It is easy to see that

�m�Ai� � � for all Ai � A� so m is a mass function

�� De�ne Bel�B� � �A�Bm�A�� so Bel is a belief function on �At�

In DS theory when two independent belief functions are known on the same frame of dis�
cernment� their joint impact on that frame can be obtained by using Dempster	s combination
rule� Dempster	s rule is stated as follows�

m�C� �
�A�B�Cm��A�m��B�

�� �A��B���m��A��m��B��

where m� and m� are two mass functions representing the two belief functions on the frame and
A�B�A�� B� are arbitrary subsets of the frame of discernment� The advantage of DS theory is that
it narrows the hypothesis space using Dempster	s combination rule as evidence accumulation�

It has been proved 
Fagin and Halpern ��b� that for any DS structure� there is a �nite
DS structure� and for every DS structure there is an equivalent probability structure� In the
following we only consider �nite DS structures and �nite probability structures without losing
generality� Given two DS structures ��� bel�� �� and ��� bel�� ��� the combined DS structure
will be ��� bel� � bel�� ��� This is the direct application of Dempster	s combination rule� The
combination procedure says that we have two mass functions on frame �� after we combined
them we can propagate the joint impact to the language set through mapping ��

Similarly considering two complete DS structures �X��X�� ���At� �
At� ��� and

�X��X�� ���At� �At� ���� if we consider using the formula above to combine them� the combi�
nation procedure will be as follows� from the two complete DS structures� we can calculate two
belief functions bel� and bel� on frame At and then use the combination rule to combine them�
The condition of doing such combination is that these two belief functions must be independent�
Looking at two probability spaces� the independence between bel� and bel� does not imply the

�A similar structure was given in 	Correa da Silva and Bundy 
�� which is called Total Dempster�Shafer

Structure� In that structure instead of using �
 they used an incidence mapping i which is produced from the
mapping function �� The detailed de�nition can be found in their paper�
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independence between two probability distributions on two spaces� This is the point we are
going to explore in the Section ����

��� Constructing Complete DS Structures for Any Belief Functions

We have just de�ned complete DS structures and suggested using such a structure to represent
both the source of a message and the belief function generated from the message on a frame of
discernment� Some one may argue that such a structure can only be used when we view belief
functions as generalized probabilities� In this subsection� we are going to show that complete DS
structures are su�cient enough to represent any belief functions on a frame� In particular we
can also use it to represent a belief function even we view it as an alternative way of representing
evidence� at least it is possible and sensible from the computational point of view�

Usually in DS theory� a belief function may be de�ned on a frame of discernment without
giving the source� That is� we only know ��� ��� bel�� In this case� we de�ne At � � and
��ai���i� � true where At is the basic element set of P � and � is the mapping function from
At to �� It is easy to see that bel also gives the same belief function on At� Hence we have a
DS structure ��� bel� ��� It have been proved 
Fagin and Halpern ��b� that for every DS struc�
ture ��� bel� �� there is an equivalent probability structure �X��� �� ���� The equivalence here
means that the belief function on At given by ��� bel� �� through � is the same as that given by
�X��� �� ��� through ��� Therefore we get a complete DS structure �X��� ��At� �At� ���� Replac�
ing At by � �as they are the same�� we get �X��� ���� ��� ���� In other words the belief function
given by ��� ��� bel� can be calculated from the complete DS structure �X��� ���� ��� ����

From the above discussion we had the conclusion that every belief function on a frame can
be equivalently represented by a complete DS structure on that frame no matter which view of
beliefs we take as long as we concern with the calculation procedure� So complete DS structures
are su�cient to be used to denote any belief functions �and their sources if we know� in DS
theory�

��� Problems with Dempster�s Combination Rule

In Dempster	s original paper� a probability space �X��� �� denotes a piece of information where
X is a space� � is a ��algebra of X and � is a probability measure on �� The relation among the
elements of space X and another space S is given by a multivalued mapping !� A multivalued
mapping� usually denoted as !� is a function which takes every element in a space and maps it
to a non�empty subset of another space� From the probability distribution � on space X � the
probability measure on space S is calculated as upper and lower probabilities on all subsets of S�
In the case that space S contains a set of propositions� and an element s in !x means that s is
true at x� that is� ��x��s� � true when s � !x� then ! is exactly the same as a mapping �� So in
general ! and S represent a wider range of mappings and spaces than � and P � In order to keep
consistency in using terminology� in the following we will use P and � to replace S and ! and
use ��x� to denote the subset in P where ��x� � fpi j ��x��pi� � trueg� Such replacement will
not a�ect our discussion about the independence requirement among the original information
sources�

Suppose n pieces of information are known� i�e� �Xi� �i� �i� for i � �� ���� n� which all have
mapping relations ��i� with another set P � and they are independent� Dempster suggested that
the combined source �X��� �� and � are de�ned in Equation � ���
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X � X� �X� � ����Xn

� � �� � �� � ���� �n ���

� � �� � �� � ���� �n

��x� � ���x� � ���x�� ���� �n�x�

The fourth formula can be restated and explained as

��x� � ����x� � �
�
��x�� ���� �

�
n�x�

where ��i�x� � �i�xi� when x � X� � ����Xi	� � fxig � ����Xn�
The meaning behind this set of formulae is that from n independent sources we can get the

joint source which denotes the message carried by all separated sources and establish di�erent
mapping relations from the joint source to the target space P � Di�erent mapping relations are
further uni�ed to get the joint mapping function � and using � the joint probability distribution
� is propagated to P �

The de�nition of � re�ects that x � �x�� x�� ���� xn� � X is consistent with pi � P if and only
if pi belongs to all �i�xi� simultaneously�

The intuitive meaning of this procedure can be shown in Figure ��

Original info level

Target info level

�X� �� ��

P

� � �

�X�� ��� ��� �X�� ��� ��� �X�� ��� ���

�
�
�
�
�
�
��� �

�
�

�
�

�
�

��I

Figure � Combination " Propagation

Because neither upper probabilities� nor lower probabilities have a simple product rule of
combination� Dempster created another function q� which is called communality functions in DS
theory� and q was given as follows�

for a subset T � P � let

T � � fx � X� ��x�� Tg T �i � fxi � Xi� �i�xi� � Tg ���

and let
q�T � � ��T �� qi�T � � �i�T

�
i� ���

�



Dempster got
q�T � � q��T �� q��T �� ���� qn�T � �
�

In this way Dempster	s combination procedure can be explained as propagating di�erent
probability distributions �i� for i � �� ���� n� from di�erent sources to P �rst and then producing
a uni�ed function q� All the lower and upper probabilities can be calculated on P by using q�

Intuitively Figure � demonstrates how those formulae work�

Original info level

Target info level P

�X�� ��� ��� �X�� ��� ��� �X�� ��� ���

�
�
�
�
�
�
��� �

�
�

�
�

�
�

��I

Figure � Propagation " Combination

Figure � and � suggest that there are two ways to combine n di�erent sources�

�� Combining them at the original information level by producing a joint space and a single
probability distribution on the space� This should consider the di�erent mappings from the joint
space to the target information space� unify these mappings into one mapping and propagate
the joint probability distribution to the target information level�

�� Propagating di�erent pieces of evidence at the original information level to the target
information level and then combining them�

Dempster assumed implicitly that the results obtained in the above two ways are the same
under the condition that n sources are statistically independent� When simplifying from Demp�
ster	s combination framework to Dempster	s combination rule� Shafer adopted the second ap�
proach under the condition of independence between the original information sources� But in the
simpli�ed combination rule �i�e� Dempster	s combination rule� the original sources are hidden
so that the requirement of independence among the original sources is automatically replaced
by the requirement of independence among the di�erent belief functions on the same domain�
that is� on the target space P � The invisible of original sources in the simpli�ed combination
rule makes it di�cult to judge the dependent relations among the belief functions which in turn
causes counterintuitive results in many cases�

Actually Dempster	s combination framework can be described as� if there are n sources of
information which are in the form of complete DS structures �Xi� �i� �i� S� �

S� �i� and these
n sources are independent then the combined result is given in a complete DS structure
�X��� �� S� �S� ��� What should be the mathematical description of statistically independent
required by Dempster	s combination framework� The way of describing and judging dependent
relations among the original probability spaces is shown by Shafer and Tversky 
Shafer and
Tversky ����� and Voorbraak 
Voorbraak ��� as follows�

Suppose X stands for an infallible encoded message� where the code is randomly taken from
the subsets of list C�� C�� ���� Cn and the chance that code Ci is used is pi �suppose both the list
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and the associated chances are known�� We use a probability space� �X��� �� to denote such a
piece of information� where X denotes both the message and the space we are concerning� � is
a ��algebra of the space X and C�� ���� Cn form its basis� � is a probability distribution which is
de�ned as ��Ci� � pi�Ci�� A complete DS structure is obtained as �X��� ��At� �At� ��� If two
such complete DS structures are known with two corresponding probability spaces �X�� ��� ���
and �X�� ��� ��� representing the bodies of evidence where C�� ���� Cn and D�� ���� Dm form the
bases for �� and �� respectively� that is �

�
� � fC�� ���� Cng and ��� � fD�� ���� Dmg� then the

combination of these two bodies of evidence can be represented by ��X�� X��� ���� ���� ���� ����
At� �At� ���� ����� where �X�� X�� denotes both the conjunction of the encoded messages and
their joint space� ���� ��� denotes the combined ��algebra of space �X�� X��� ���� ��� is the
probability distribution on the joint space� and ���� ��� is the uni�ed mapping from the joint
space to the language set�

De�nition �	 DS�Independent 
restated from 
Voorbraak ���� Two complete DS structures
�X�� ��� ���At� �

At� ��� and �X�� ��� ���At� �
At� ��� are called DS�Independent if the two cor�

responding probability spaces are DS�independent� that is if they satisfy the condition

���Ci j Dj� � ���Ci� ���Dj j Ci� � ���Dj�

for all codes Ci and Dj�
where �� is the �a priori� probability measure on � which is the ��algebra of the joint space

X� Spaces X� and X� are constructed from the joint space X� If the joint space is X� � X��
then ���ci� is an abbreviation for ���f�ci� dj� j � � j � mg��

According to this de�nition� only when two complete DS structures are DS�Independent can
their combined structure be in the form of ��X� �X��� ��� � ���� ��� � ����At� �At� ��� � ����
which follows the spirit of Dempster	s combination framework� For a case in which multiple
sources of information are not DS�Independent� the joint probability space of these pieces of
evidence cannot be simply treated as a set product of several individual probability spaces�
Rather� every single probability space in a complete DS structure is constructed out of a well
de�ned probability space from a speci�c perspective� In such a situation� the combination should
be carried out on this well de�ned space by combining di�erent mappings from this space to the
language set� and these mappings are given in di�erent complete DS structures�

The discussion on the dependence at the original information level has nothing to do with the
mapping � and S � so this condition is also true in the more general cases� that is for multivalued
mapping ! and S�

��� An Example

In the following we will examine an example which shows the importance of considering inde�
pendent relations among the original information sources� If we only require the independence
among the belief functions on a target space without considering the relations among the original
sources� we will get counterintuitive results�

Here we look at an example given in 
Halpern and Fagin��� �which is original from 
Hunter
����� The example is stated as� Suppose that we have ��� agents� each holding a lottery ticket�
numbered �� to ��� Suppose that agent a� holds ticket number ��� Assume that the lottery is

�Note that in Voorbraak�s paper
 he used a pair �X� c�
 c � fc�� c�� ���� cn� Pcg
 to denote such a message�
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fair� so� a priori� the probability that a given agent will win is ������ We are then told that the
�rst digit of the winning ticket is �� the problem is to determine the probability agent � will win�

Using DS theory to model this example� two mass functions on space fa�� a�� ���� a�

g are
m��ai� � ����� for i � �� ���� ��� from the priori probability and m��a�� � ����� m��S�fa�g� �
���� from the new information that #the �rst digit of the winning ticket is � 	� The combined
result is m�a�� � ������ m�ai� � ����� for i � �� ���� ���� This result is inconsistent with the
straightforward reasoning in the sense of probability which gives the probability that agent �
will win as �$���

Halpern and Fagin argued that there are two objections to the use of the Dempster	s com�
bination rule� ��� Considering the meaning in the story� it is hard to think the second mass
function �or belief function� is independent of the belief that the lottery is fair� �In fact� the
second mass function is a direct consequence of our belief that the lottery is fair�� ��� In the
two views of belief functions� �the real problem is that we are trying to use the rule of combina�
tion with a belief function that is meant to represent a generalized probability�� They gave an
alternative way to deal with this example�

Here we consider this example in Dempster	s combination framework� Suppose the target
space S is S � fa�� a�� ���� a�

g� and two original sources are �X�� ��� ��� S� �

S�!�� where X� �
f��� ��� ���� ��g� �� � X�� ���x� � ����� when x � ��� !��x� � ai when agent ai	s number
is x and �X�� ��� ��� S� �

S�!�� where X� � f��� ���� ��g� �� � X�� ���x� � ���� when x � ���
!��x� � ai when agent ai	s number is x� then the two original information sources �X�� ��� ���
and �X�� ��� ��� are not independent as they are based on the overlapped information � the
lottery is fair� More precisely� these two pieces of information are not DS�independent� For any
ci � X� and dj � X�� we have ��ci j dj� � � when ci � dj and ��ci j dj� � � when ci �� dj where
� is the priori probability on space f��� ���� ��g� Therefore ��ci j dj� �� ���ci�� In the same way
we have ��dj j ci� �� ���dj�� So Dempster	s combination framework is not applicable here and
Dempster	s combination rule cannot be used This conclusion is the same as Halpern and Fagin
got but from a di�erent perspective� We also need to point out that the joint original space X
in this case is not the product set �that is X� �X�� rather it is exactly the same as X� and its
priori probability distribution is ��x� � ������

The importance of considering relations among the original information sources has been
discussed above� The result tells us that it is more natural to consider the combination at both
the original information level and the target information level than only at the target infor�
mation level� However neither Dempster	s combination framework nor Dempster	s combination
rule provides such combination facilities� The nature of combination is re�ected in our new
combination mechanism in which the combination is performed at both the original information
level and the target information level� In particular the combination is carried out after the joint
probability space is found � as a set product of several single spaces or a well de�ned space� The
most important feature of incidence calculus� i�e� indirect encoding of probabilities on the lan�
guage set� over other numerical methods makes it possible to generalize Dempster	s combination
framework� As a result� using this new approach we can deal with not only DS�Independent
pieces of evidence but also the overlapped information�

��



� Incidence Calculus

Incidence calculus 
Bundy ��� ��� is a method for managing uncertainty in numerical way�
Di�erent from other numerical approaches� in incidence calculus probabilities are associated
with a set of possible worlds rather with formulae directly� The probability of a formula is
calculated through the incidence set assigned to the formula�

��� Incidence Calculus

De�nition 
	Possible Worlds
Each possible world is a primitive object of incidence calculus which can be thought of as a

partial interpretation of some logical formulae�
The probability is represented by a function 
 from possible worlds to real numbers between

� and ��
If I is a subset ofW of possible worlds then wp�I� is called the weighted probability of I � and

is de�ned to be�

wp�I� � �w�I
�w� ���

De�nition �	Incidence Calculus Theories
An incidence calculus theory is a quintuple �W � 
� P�A� i 
� where	

W is a �nite set of possible worlds�
For all w � W� 
�w� is the probability of w and wp�W�� ��
At is the basic element set of P � L�P � is the language of the theory�
A is a distinguished set of formulae in L�P � called the axioms of the theory�
i is a function from the axioms A to �W � the set of subsets of W� i�	� is called the

incidence of 	� i�	� is to be thought of as the set of possible worlds in W in which 	 is true� i�e�
i�	� � fw � Wj w j� 	g� It must satisfy the following two conditions	�

i�	� � 	�� � i�	�� � i�	�� ���

i��� � fg

That is A is closed under the operator �� For any two formulae 	�� 	� � A� if i�	��� i�	�� ��
fg then 	� �	� must be in A and i�	� �	�� � i�	��� i�	�� � otherwise when i�	��� i�	�� � fg�
it doesn	t matter whether i�	� � 	�� is in A as this formula has no e�ect on further inference�
Usually we don	t include it in A� However if 	� �	� �� then i�	��	�� � i�	��� i�	�� must be
empty otherwise the information for constructing the function i implies mistakes� In particular�
we always let i�T � �W � Here � stands for False and T means True�

	In Bundy�s original paper about incidence calculus 	Bundy ���
 more restrictions were given on an incidence
function i� Here we only require that i possesses these two features�
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It is not usually possible to infer the incidence of all the formulas in L�P �� What we can do
is to de�ne both the upper and lower bounds on the incidence using the functions i� �
 and i�
respectively� For all 	 � L�P � these are de�ned as follows�

i��	� �W n i���	� ���

i��	� �
�

�
��T

fi���g ����

where � � 	 � T i� i��� 	� �W or we can explain � � 	 � T as � � 	 � ��
For any 	 � A� we have i��	� � i�	��
The probability of a formula� such as 	� is represented using the partial function p from

formulae to real numbers in the interval between � and �� When i�	� is de�ned� p�	� is de�ned
as�

p�	� � wp�i�	�� ����

For any formula 	 in L�P �� we can only de�ne its lower and upper bounds on the probability
using the function p� and p� respectively�

p��	� � wp�i��	��

p��	� � wp�i��	��

If 	 and � are formulas� let p�	 j �� be the conditional probability of 	 given �� We de�ne�

p�	 j �� �
p�	 � ��

p���
����

More features of incidence calculus were discussed in 
Bundy��� �
� ����

��� Representing Ignorance in Incidence Calculus

In the above subsection we claimed that incidence calculus has a special feature over other
numerical approaches to managing uncertainty� This distinguished feature is the association
of an incidence set with a formula rather a probability with a formula directly� Therefore the
calculation of the probability of a formula is performed after calculating its incidence set� We call
this procedure an indirect encoding of probabilities� In this section� we will further explore the
incidence function i� The result of this investigation shows that we can also represent ignorance
in incidence calculus� By contrast to DS theory� the lack of knowledge �or the lack of precise
information regarding the problem we concern� is described in the form of incidence function i

�
The original de�nition for upper bound on an incidence set is

i
���� �

�

����T

fi���g

which was given in 	Bundy �
���� Here we follow the de�nition given by Correa da Silva and Bundy 	Correa da
Silva and Bundy �

��� The meaning of this upper bound is quite similar to the plausibility function in DS theory
except the former is an incidence measure and the latter is a probability measure�
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in incidence calculus� In this section� we will further show that an incidence function i can be
calculated from a more basic function basic incidence assignment which is denoted as ii�

In the following� we will see how to �nd the basic incidence assignment from an incidence
function i and how to recover an incidence function i from its basic incidence assignment and
why an incidence function i has the ability to represent ignorance�

Given an incidence calculus theory �W � 
� P�A� i 
� we have

i�	 � �� � i�	�� i���

where 	� � � A�
This requirement of i leads us to the conclusion that if � � 	 � T then i��� � i�	�� As

we assume that P is �nite� then At�L�P �andA are all �nite� We also have the assumption that
any formula in L�P � is in the form of

� � �� � �� � ���� �n where �i � At

If a subset A
 of A is chosen as A
 � f��� ���� �ng� then A
 satis�es the condition that

��i � A
� �	 � A� if 	 �� �i then 	� �i �� T

Therefore� A
 contains the �smallest� formulae in A and A
 is not empty� In fact� we can
get A
 using the following procedure� For a formula �i � A� if �	 � A� 	 �� �i and 	� �i � T �
then we use 	 to replace �i and repeat the same procedure until we obtain a formula 	j and
we cannot �nd any formula which makes 	j true� and 	j will be in A
� For any two formulae
�i� �j � A
� when �i �� �j we have

i��i� � i��j� � fg

In fact if i��i� � i��j� �W
 �� fg� then

W
 � i��i � �j� ��

� � �i � �j �� false � A ��

� � �i � T� � � �j � T ��

�i� �j �� A


Contradictory% So we have i��i� � i��j� � fg�

For any formula 	i in AnA
� there are �i�� ���� �il � A
 where �ij � 	i � T � So i��ij� � i�	i�
and �

S
j i��ij�� � i�	i��

From a function i� we can obtain another function ii using the following procedure�

Step �� for any formula � � A
� de�ne ii��� � i����

Step �� de�ne a subset A� of A as A
 and update A as A nA��

Step �� chose a formula 	 in A which satis�es the requirement that there are �i�� ���� �il � A


where �ij � 	i � T and for any 	j � A� 	j �� 	� then 	j � 	 �� T �
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Step �� update A� as A� 	 f	g and delete 	 from A� If A is empty then terminate the
procedure otherwise go to step ��

We call the function ii the basic incidence assignment� A possible world w in ii�	�
means that w makes formula 	 true but doesn	t make any subformula of 	 true� Following this
explanation we immediately have

ii�	i� � ii�	j� � fg where	i �� 	j

We can have actually the following inference procedure�

w � ii�	i� � ii�	j� ��

w � i�	i� and w � i�	j� ��

w � i�	i� � i�	j� ��

w � i�	i � 	j� ��

w � i�	� �	 ��� �	 � 	i � 	j ��

w �� i�	i� n i�	� and w �� i�	j� n i�	� ��

w �� ii�	i�� ii�	j�

Con�ict�
Further de�ning ii�T � � W n 	j ii�	j�� if ii�T � �� fg then ii�T � represents those possible

worlds which only make T true� This is also an alternative way to represent ignorance� That
is� based on the current information we don	t know which formula ii�T � makes true except T �
Given a basic incidence assignment ii� it is easy to calculate the incidence set of any formula in
A as

i�	� �
�

�j
��T

ii�	j�

Therefore
p�	� � wp�i�	�� � ��j
��Twp�ii�	j��

When a set of axioms is �xed� an incidence function i and its basic incidence assignment are
unique to each other� If we replace wp�i�	�� by bel�	� and substitute wp�ii�	j�� with m�	j��
then the above mathematical equation will be

bel�	� � ��j
��Tm�	j�

which is very similar to the relationship between a belief function and its mass function�
So it would be interesting to examine the formal relations among DS theory and incidence

calculus in representing evidence theoretically� This will be discussed in Subsection 
���
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��� Modeling a Problem in Terms of Incidence Calculus

Modelling a problem in incidence calculus can be done as follows�
�� form a set P consisting of propositions we are interested in�
�� form a setW consisting of all the possible worlds and determine a probability distribution

on it�
�� de�ne function i between sets P and W which gives the interrelations among their ele�

ments�
In order to see how this works in practice� we consider a simple example which is adopted

from 
Bundy ����
Suppose there are two propositions� P � frainy� windyg� and seven possible worlds� W �

fsun�mon� tues� wed� thus� fri� satg� Assume that each possible world is equally probable� i�e�
occur �$� of the time� Through a piece of evidence� we learn that four possible worlds fri� sat�
sun� mon make rainy true� and three possible worlds mon� wed� fri make windy true� Therefore
the incidence sets of these two propositions are�

i�rainy� � ffri� sat� sun�mong

i�windy� � fmon�wed� frig

As i�rainy � windy� � i�rainy� � i�windy�� we also have i�rainy � windy� � ffri�mong�
So the set of axioms A is A � frainy� windy� rainy � windyg� The corresponding incidence
calculus theory is

�W � 
� P�A� i 


and the At of P is At � frainy � windy� rainy � �windy��rainy � windy��rainy � �windyg�
From this we can calculate the upper and lower bound on the incidence sets of all other

formulae in the language set of L�P �� For instance�

i���rainy� � fg

i���rainy� � ftues� wed� thusg

The inference mechanism of incidence calculus begins with the assumption that some in�
cidence sets have been assigned to the axioms� But in some cases� an uncertainty inference
problem assigns probabilities to the axioms rather than incidence sets� It is then necessary to
re�discover the incidence sets of the axioms which respect the assignment of probabilities and
correlations� This topic has also been discussed in 
Bundy ��� and 
Liu and Bundy ���� In the
following� we always assume that we can de�ne the initial incidence sets for axioms for a given
problem�

Suppose we have already had an incidence calculus theory� � W � 
� P�A� i 
� for a given
problem� if a new piece of information regarding this problem is known� then it may have one
of the following e�ects�

�� This piece of information gives a new probability distribution on the set of possible worlds
to replace the old probability distribution� then the new incidence calculus theory will be created
to substitute the old one and the further inference will be made upon the new incidence calculus
theory�

Considering the ��� agents problem here� we can �rst form an incidence calculus theory
as � W � 
� P�A� i 
 where W � f��� ���� ��g� 
�w� � ������ P � fa�� ���� a�

g� A � P and
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i�ai� � fwg when ai	s number is w� Here ai stands for a proposition ai will win� When we are
told that the �rst digit of the winning ticket is � later� the probability distribution onW will be
changed as 
��w� � ���� when w is in f��� ���� ��g and 
��w� � � otherwise� Therefore the new
incidence calculus theory is �W � 
�� P�A� i 
� It is then easy to know that the probability that
a� will win is �$���


� This piece of evidence speci�es a new incidence function from sets W to L�P � without
changing the set of possible worlds and its probability distribution� Then a new incidence calculus
theory is formed� Both the new and old incidence calculus theories will make impacts on L�P ��
So it is necessary to consider how to obtain their joint impact�

Considering the weather example again� we have� �rst of all� an incidence calculus theory
as � W � 
� P�A� i 
� If a new piece of information tells us that i��rainy� � ffri� sat� sung and
i��windy� � fwed� frig� then another incidence calculus theory � W � 
� P�A�� i� 
 is formed
which gives an alternative interrelation among the elements of the two sets� We need to consider
the joint impact of both the old and new information on the formula set� That is we must
combine the two pieces of information� For a particular formula in L�P �� if we have i�	� �W�

and i��	� �W� respectively� then it is natural to infer that i� i��	� �W��W�� More generally
if i�	� � W� and i���� � W� then i � i��	 � �� � W� �W�� This is the basic idea of giving a
combination mechanism in incidence calculus which will be further discussed in greater detail
in the next section�

�� This piece of information de�nes a new incidence calculus theory di�erent from the above
two cases� Like situation 
� both the new and old incidence calculus theories will make impacts
on L�P �� so it is necessary to consider how to obtain their joint impact� If the old one is
� W � 
� P�A� i 
 and the new one is � W�� 
�� P�A�� i� 
� then we form two probability spaces
�W �W � 
� and �W��W�� 
��� However di�erent from situation 
�� these two probability spaces
are not the same�

In this case our purpose is to �nd the joint space of these two probability spaces and to
modify two incidence functions from the joint space to the language set� When these two space
are DS�independent� their joint space will be the set product� If they are not DS�independent�
then the approaches to constructing the joint space vary from problem to problem� After the
joint space is �xed and the new incidence functions are established� the principle in situation ��
can be used�

In summary� apart from some very simple cases shown in situation ��� usually when the new
pieces of information are obtained it is necessary to combine them with the existing information�
The corresponding combination mechanism is essential to play such a role in producing the �nal
e�ect of all the information� Currently incidence calculus doesn	t have such a facility to cope
with this problem� So it is important to propose a combination mechanism in incidence calculus
to combine multiple pieces of evidence and to compare it with Dempster	s combination rule�

� Combining Di�erent Pieces of Evidence

This section describes an alternative approach to the combination of di�erent pieces of evidence
in incidence calculus� which can solve the problems in applying Dempster	s combination rule�
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��� Relations among Multiple Pieces of Evidence

It is not easy to de�ne a combination mechanism to deal with both dependent and independent
evidence without getting a clear picture about the relations among multiple pieces of evidence�
In the following we will examine three cases �rst in order to explore the nature of the relation
among multiple sources of information�

CASE �� Suppose we have two pieces of evidence which de�ne two probability structures
�X�� ��� ��� ��� and �X�� ��� ��� ���� Two complete DS structures can be formed� If the two
corresponding probability spaces are DS�independent� then these two pieces of evidence can be
combined using Dempster	s combination rule� Suppose the two mass functions produced from
them are m� and m�� applying Dempster	s combination rule we can obtain their joint impact
on �At�

In fact in such a situation� because the two probability spaces �X�� ��� ��� and �X�� ��� ���
are statistically independent� that an element x� � X� makes a subset S� of S true does not
a�ect whether an element x� � X� makes S� true� So it is possible to extend �� and �� as the
new mapping relations between the joint set of X� �X� and the space S� Using the extended
mappings ��� and �

�
�� another two complete DS structures can be formed as

�X� �X�� �� � ��� �� � ���At� �
At� ����

�X� �X�� �� � ��� �� � ���At� �
At� ����

where ���
� x�� x� 
� � ��
x�� and ���
� x�� x� 
� � ��
x��� That is the two pieces of evidence
provide two mapping relations from the joint space X� �X� to �

At�

CASE 
� �from 
Smets and Hsia ���� Assume P is a set of propositions fBi� Pe� F lg where
Bi for Bird� Pe for Penguin and Fl for Fly� In common sense we can form two rules Bi� Fl with
belief �� and Pe � �Fl with belief ���� When we learn that Tweety is a bird� we can conclude
that m�Fl� � ��� When we also learn that Tweety is in fact a penguin� we can also conclude
that m���Fl� � ���� Using Dempster	s rule to combine m and m� on frame � � fFl��Flg� we
can eventually obtain m���Fl� � ���� m����Fl� � �

� m����� � ����

Obviously the intuitive result should be m����Fl� � ���� So Dempster	s rule fails to deal
with this case because of the dependence of evidence � the �rst and second mass functions are
all � or indirectly� dependent on an object Tweety� The fact that Tweety is a penguin should
in some way block the inference of Bi� Fl�

Suppose that observation X provides the information that Tweety is a bird and observation
Y provides the information that Tweety is a penguin� Let W be fTweetyg� X and Y tell us that
W supports statements Bi and Pe respectively� So we have fTweetyg�fTweetyg makes Bi�Pe
true� That is fTweetyg makes Pe true� In this way we can get the correct result� An alternative
way to solve this problem in DS theory was discussed in 
Smets and Hsia ���� Formally in such
a situation we could construct a set of possible worlds W concerning this problem� and we have
the result that if a subset W� makes Y true then it must also make the observation X true and
Y implies X � The more general situation is the information carried by X and Y may partially
a�ect each other�

CASE �� Another kind of problem arising from applying Dempster	s combination rule is
the so called #sample space problem	 
Lemmer �
 � Voorbraak ���� It was argued that if two
observations come from the di�erent aspects of the same sample space� the two mass functions
yielded from the observations could not be combined by Dempster	s combination rule�

��



Here we look at an example given by Voorbraak 
Voorbraak ����

There are ��� balls in an urn which are labelled as shown in Table ��

Label Number of Balls

axy �
ax �
ay �

a �

bxy ��
bx ��
by ��
b ��

Table �� ��� balls and their labels

Suppose X and Y are separate observations� The information carried by them is�

X � Drawing a ball from the urn and the ball has label x�

Y � Drawing a ball from the urn and the ball has label y�

Let a space be � � fa� bg� Drawing a ball from the urn� among several labels of the ball�
the labels of the ball make one and only one element of � true at each time� so � is a frame
of discernment� Then the two observations X and Y give two pieces of evidence in the form of
mass functions on � as�

mX�a� � ���� mX�b� � ���

mY �a� � ���� mY �b� � ���

where mX�fag� �mY �fag�� is the mass value given by observation X �Y � which represents the
possibility of a ball having label a when the ball is observed having label x �y��

The result of applying Dempster	s combination rule to the above two mass functions is
BelX � BelY �b� � ������

While in probability theory� the probability that a ball has both label x and y is

p�x � y� � ���� � ����� ��� � p�x�p�y�

Therefore� we have p�b j x � y� � ���� Obviously the results obtained in DS theory and in
probability theory are not the same� See the detailed analysis of the example in 
Voorbraak ����

Similar to the previous example in some sense� observations X and Y are governed by the
same set of possible worlds W which contains ��� balls and a known probability distribution on
W even though there are no explicit implications between X and Y � Each of these observations
speci�es some relations from W to proposition set P � fa� bg�

��



In summary� from the above three cases we can see that giving two observations X and Y �
no matter whether the two probability spaces produced from X and Y are DS�independent or
not� it is always possible to restate the e�ect of X and Y in means of de�ning di�erent mapping
relations from a uni�ed space �or set of possible worlds� to the target space� So considering how
to combine two mapping relations from one space X to another space S as the basis of providing
an alternative combination rule seems both reasonable and possible� This discussion leads us to
the de�nition of the combination rule in incidence calculus�

��� The Combination Rule in Incidence Calculus

As we discussed before� if we perform the combination by only considering the information
carried by observations X and Y � then the result might be wrong as shown in cases � and ��
even though sometimes we could not see the relations between two pieces of information explicitly
as in case �� The more natural way of considering and doing such combinations is to trace the
original information source which provides the basis for observations X and Y � They establish
two relationships between the propositional set and the uni�ed space �or more generally between
the language set and the uni�ed space�� Therefore the nature of the combination is to combine
these two �or more than two� relation speci�cations into one relation and then propagate the
probability from the space to the language set� The most important step in this new combination
mechanism is to form a uni�ed probability space and then carry out the combination on it� For
situations in which several pieces of evidence are not DS�Independent� we assume that we can
trace this uni�ed space� Therefore� what we need to do is to construct a uni�ed probability
space for DS�independent pieces of evidence�

Suppose we have two incidence calculus theories�

�W�� 
�� P�A�� i� 
 and �W�� 
�� P�A�� i� 


where �W��W�� 
�� and �W��W�� 
�� are two DS�independent probability spaces which carry
two pieces of information� All of them have contributions to the problem solving� that is they
all have e�ect on space At� So we need to combine them in order to get their joint impact on
space At�

The basic principle of combination is if w�i makes 	 true� and w�j makes � true� then
� w�i� w�j 
 makes 	 � � true� In other words� If w�i is in the incidence set of formulae 	 in
theory one� w�j is in the incidence set of formulae � in theory two� then we will conclude that
the pair � w�i� w�j 
 will be in the incidence set of formulae 	 � � in the combined theory�

Because these two incidence calculus theories are given independently� there may be con�icts
between them� When �	 � �� is false� we have to rule the pair � w�i� w�i 
 out of the joint set
of possible worlds� If we keep it in the joint set of possible worlds� its probability must be �
because it makes � true� Alternatively if we could con�rm that the pair � w�i� w�j 
 should be
in the joint set of possible worlds and it does make some formulas true later on� then we have
to trace the previous incidence calculus theories which must have been ill�de�ned� In this case
we need to re�de�ne those incidence calculus theories� and re�combine them again�

In principle� when two incidence calculus theories are combined� W� �W� will be the joint
set of possible worlds� and its probability distribution will be 
��� w�i� w�j 
� �
��w�i� �

��w�j�� However as we discussed above� some pairs of W should be ruled out from the joint
set of possible worlds� Suppose the set we take out from W is W
 the elements of which make
� true� The adjusted probability distribution should be given as�

��




�� w�i� w�j 
� �

��w�i�
��w�j�

�� �w��W


��w��i�
��w

�
�j�

Here w� � �w��i� w
�
�j�� It is easy to prove that �w�WnW



�w� � ��
For an incidence calculus theory � Wi� 
i� P� Ai� ii 
� �i � �� ��� if iii�T � �� fg then iii�T �

re�ects our ignorance �we cannot provide more precise information at the current stage�� This
ignorance might be changed or modi�ed to produce a meaningful result when more information
is available� So adding T to Ai is essential when we consider combining it with another incidence
calculus theory while they are DS�independent� otherwise it is not necessary to do so even in
combining two dependent incidence calculus theories�

De�nition �

Suppose we have two incidence calculus theories

�W�� 
�� P�A�� i� 
 and �W�� 
�� P�A�� i� 


and their probability spaces are DS�independent� then another two incidence calculus theories
can be constructed from them as	 �W�� 
�� P�A�� i

�
� 
 and �W�� 
�� P�A�� i

�
� 


where

W
 �
�

�����

i��	�� i����

W� �W� �W� nW


i���	 � A�� � �i��	��W�� nW


i���� � A�� � �W� � i����� nW


the new probability distribution on W� is	


��w� � 
��� w�i� w�j 
� �

��w�i�
��w�j�

�� �w��W


��w��i�
��w

�
�j�

����

Where � means false� w �� w�i� w�j 
� w� �� w��i� w
�
�j 
 � � means a set product� and

�w��W


��w

�
�i�
��w

�
�j� is the weight of the con�ict between two theories� If the con�ict part is

� then these two pieces of information are completely con�ict with each other and they cannot
be combined�

In general for any two pieces of evidence on the two sets of possible worlds� we could always
produce a common set of possible worlds and a probability distribution on it� In summary�
no matter in which case �DS�Independent or dependent� we can always assume that a uni�ed
space and its probability distribution are known based on two or more observations� These
observations establish di�erent mapping relations between the space and the language set of
propositions� The purposes of the combination are to obtain the uni�ed mapping relation and
to propagate the probability using the uni�ed relation� These are performed by the rule below�

Combination Rule

��



Suppose there are two incidence calculus theories
� W � 
� P�A�� i� 
� � W � 
� P�A�� i� 
� where W is a set of possible worlds and 
 is a
probability distribution on W� Given two incidence functions i� and i� from two observations
X and Y � then the joint impact of information carried by the two theories is represented by a
quintuple as	 �W � 
� P�A� i 
 where

A � f� j � � 	 � ��where 	 � A� � � � A� � � ���g

i��� �
�

����
���T

i��	�� i���� � � A

and let
i��� � fg i�T � �W

Here we need to prove that � W � 
� P�A� i 
 is also an incidence calculus theory� as stated
in the following theorem�

Theorem � Suppose we have two incidence calculus theories
� W � 
� P�A�� i� 
� and �W � 
� P�A�� i� 
� if by applying the above combination rule to them�
we get �W � 
� P�A� i 
 then it is an incidence calculus theory�

PROOF

Because the set of possible worlds and its probability distribution are not changed during
the combination we only need to prove that i has the feature de�ned in section ����

For any w � W � if w � i��� � ���� then we have

w � i��� � ���

�� ���
���
 � �� � �� � T � � �w � i��
��

�� ���
���
 � �� � T � � ��
 � �� � T � � �w � i��
��

�� ���
��i��
� � i������ �i��
� � i����� � �w � i��
��

�� ���
��i��
� � i���� � i������ �w � i��
��

�� w � i���� � i����

So

i��� � ��� � i����� i����

Function i has all the features of Equation � �� in Section � and it is an incidence function�

�W � 
� P�A� i 
 is an incidence calculus theory�

END

When A � fg and i��� � fg �before we assign i��� � fg arti�cially� then these two
observations are irrelevant with each other and their combined result tells us nothing�

��



When i��� �� fg �before we assign i��� � fg arti�cially� these two observations imply
mistakes� We need to re�de�ne the incidence calculus theories to cancel the e�ect of mistakes�
This phenomenon only appears when we try to combine two dependent pieces of information as
for the independent situation we have already taken the subset� which makes � true� out of the
joint space before we combine them�

When A �� fg� �	 � A� i�	� � fg and i��� � fg� these two observations repel each other� In
other words� only one of them is held at each time�

The intuitive meaning of the Combination Rule is shown in Figure ��
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Figure �� Combining two incidence calculus theories

The lower level space represents the uni�ed space of two incidence calculus theories�
A� and A� are the axioms of the two theories� and 	� � are two elements of A� and
A� respectively� The higher level space contains the conjunction of elements of A�

and A�� A vector from a formula �such as 	� to a subset of possible worlds �such as
W�� means this subset is the incidence set of the formula� The incidence set of 	��
is W� �W� in this example�

The theoretical explanation of this combination rule is that if observation X says that W�i

makes statement 	 true� and observation Y says that W�j makes statement � true� then W�i �
W�j should make statement �	 � �� true when we know that both X and Y hold� Therefore�
all the con�icts between two theories are caused by ill�de�ned axioms or incidence functions�
In other words� we suppose that the probability distribution on the set of possible worlds W
is correct and consistent� When two incidence calculus theories are speci�ed reasonably� there
should be no con�ict at all�

Corollary � Suppose we have two incidence calculus theories� � W�� 
�� P�A�� i� 
 and
� W�� 
�� P�A�� i� 
� where �W��W�� 
�� and �W��W�� 
�� are two DS�Independent proba�
bility spaces� Applying the Combination Rule to them we get � W�� 
�� P�A�� i� 
 which is an
incidence calculus theory�

��



where W� and 
� are the same as in de�nition ��

A� � f� j � � 	 � �� 	 � A�� � � A�� and � ���g

and
i���� �

�

����
���T

�i���	� nW
� � �i
�
���� nW
�

�
�

����
���T

�i��	�� i����� nW


It is easy to prove this corollary by using de�nition � and theorem �� For any formulae � in
L�P �� if we know i����� then the probability of � is

p��� � �w�i����
��w�

The Combination Rule is both commutative and associative because A � B and B � A are
the same when A and B are two subsets of a space� For the joint product of spaces X� and X�

an element � x�i� x�j 
 in X� �X� means that both possible worlds x�i and x�j are chosen to
support a formula� An element � x�j � x�i 
 in X��X� implies the same meaning as � x�i� x�j 
�
Therefore we treat X��X� as the same as X��X�� So the result of combining several incidence
calculus theories is unique irrespective of the sequence in which they are combined� The relations
between this Combination Rule and Dempster	s combination rule will be discussed in Section 
�

� Comparison with DS Theory

In this section we are going to discuss the relations between DS theory and incidence calculus�
We want to discuss their ability in presenting evidence and compare their ability in combining
evidence� We will prove that �� they have the same ability in presenting evidence and �� any
two pieces of evidence which can be combined in DS theory� can also be combined in incidence
calculus by applying the Combination Rule we proposed and that they obtain the same results�
We will also show that the new combination rule can combine dependent evidence as well�

	�� Comparison I
 Representing Evidence

In subsection ��� we de�ned a complete DS structure for the representation of a piece of evidence
and its e�ect on frame At� We start with a complete DS structure and prove that any complete
DS structure can be reformed as an incidence calculus theory� The other way around� any
incidence calculus theory can also be replaced by a complete DS structure�

De�nition �	Producing an Incidence Calculus Theory from a Complete DS Structure

Suppose �S� �� ��At� �At� �� is a complete DS structure� �� is the basis of �� and ADS �
fA�� ���AN�g is given in de�nition ��

�� let the set of possible worlds be ��� and the probability distribution 
 be �


� let a subset A� of At be f	Ai j 	Ai � Ai� Ai � ADSg

�� de�ne basic incidence assignment ii as ii�	Ai� � fXj j �
Xj� � 	Aig


��



�� let A be A� and expand A as follows� For any 	�� 	� � A
�� if 	��	� ��� and 	��	� �� A

��
then de�ne ii�	�� 	�� � fg and let A �� A	f	� �	�g� Eventually A contains A� and is closed
under operator ��

�� de�ne incidence function i from ii as i�	i� � fii�	j� j 	j � 	i � Tg�

Then � ��� ��At�A� i 
 is an incidence calculus theory �it is easy to prove that i has the
features of De�nition � in Section ���

This de�nition leads us to the next corollary�

Corollary 
 Suppose �S� �� ��At� �At� �� is a complete DS structure� �� is the basis of �� and
m is a mass function on At given in de�nition �� Let � ��� ��At�A� i 
 be the corresponding
incidence calculus theory� then for any formula 	A � A we have

p�	A� � wp�i�	A�� � �B�Am�B�

It is easy to prove this corollary from de�nition � and � and the features of the basis of ��
We will use this result many times in proving the next two theorems�

Theorem 
 If �S� �� ��At� �At� �� is a complete DS structure� ���� ��At�A� i� is the incidence
calculus theory produced from de�nition �� then for any subset Ai of �

At and its corresponding
formula 	Ai in L�At�� Bel�Ai� in the DS theory is equal to wp�i��	Ai�� in the incidence calculus
theory� That is

Bel�Ai� � p�	Ai� � wp�i��	Ai��

PROOF

For any formula 	A in L�At� and its related subset A of �
At� we have

wp�i��	A�� � wp�
S
�Ai
�A�T

i�	Ai��

� wp�
S
�Ai
�A�T fXj j �
Xj�� 	Ai � Tg�

� wpfXj j �
Xj�� 	A � Tg
� �j��Xj j �
Xj�� 	A � T �
� �lm�Al j �
Xj� � 	Al and 	Al � 	A � T �
� �lm�Al j �
Xj� � 	Al and Al � A�
� Bel�A�

Then the belief function Bel�A�� is exactly the same as wp�i��	���

End

This theorem tells us that the belief function on frame At produced by a complete DS
structure is the same as the lower bound of the probabilities on the formulae if we think of At
as a basic element set� Because any belief function can be stated in the form of a complete DS
structure� we have the conclusion that any belief function can be obtained as a lower bound
from an incidence calculus theory�

De�nition �	 Producing a Complete DS Structure from an Incidence Calculus Theory

�




Suppose � W � 
� P�A� i 
 is an incidence calculus theory and ii is the corresponding basic
incidence assignment�

�� de�ne a subset ADS of At as ADS � fA j ii�	A� �� fg� 	A � Ag�


� if
S
�A

ii�	A� ��W� then ADS �� ADS 	 fAtg where ii�At� ��W n
S
�A

ii�	A��

�� de�ne m�Ai� � wp�ii�	Ai�� where 	Ai � ADS� Then �Aim�Ai� � ��

�� let bel�B� � �Ai�Bm�Ai��

So �At� bel� gives a belief function on At� Based on the discussion in subsection ���� we
have a complete DS structure �S� �� ��At� �At� �� which is produced from the incidence calculus
theory�

This de�nition tells us that from an incidence calculus theory we can produce a belief function
on the set of basic elements� It is also easy to prove that the lower bound of the probabilities
given by the incidence calculus theory is the same as the belief function de�ned by de�nition
�� Hence incidence calculus and DS theory have the equivalent ability in representing evidence�
The same result has also been proved in 
Correa da Silva and Bundy ����

	�� Comparison II
 Combining DS�independent evidence

For any two complete DS structures� by applying Dempster	s combination rule to the two mass
functions on �At� the third mass function and its belief function can be obtained� Obviously�
from these two complete DS structures� two incidence calculus theories can also be produced�
and their combination can lead to the third incidence calculus theory� What we need to prove
in such a situation is that the combined result of the two complete DS structures turns out to
be equivalent to the third incidence calculus� The following theorem answers this question�

Theorem � Suppose �S�� ��� ���At� �At� ��� and �S�� ��� ���At� �At� ��� are two complete DS
structures and they are DS�Independent� Bel� and Bel� are two belief functions on �At

from these two structures respectively and their combined belief function is Bel� Further let
� ���� ���At�A�ic� i� 
 and � ���� ���At�A�ic� i� 
 be the two incidence calculus theories pro�
duced from these DS structures� then the combined incidence calculus theory is equivalent to
Bel��Bel�� That is� for any subset A of At� Bel�A� is the same as wp�i��	A�� in the combined
incidence calculus theory�

Bel�A� � Bel� � Bel��A� � wp�i��	A��

Our proof is divided into two parts� In part one we need to prove that the con�ict weight k
in the combined DS structure is equal to wp�W
� in the combined incidence calculus theory� In
part two we need to prove that Bel�Ai� � wp�i��	Ai���

PROOF

Suppose the two bases of two ��algebra of S� and S� are�

��� � fX�� X�� ���� Xng

��� � fY�� Y�� ���� Ymg

��



the two sets in DS structures produced from ��� and �
�
� are

A � fA�� A�� ���� Ang �m��Ai� � �

B � fB�� B�� ���� Bng �m��Bj� � �

where Ai and Bj are given in de�nition ��
Furthermore the two sets of axioms in the two incidence calculus theories are�

A�ic � f	A�
� 	A�

� ���� 	Ang

A�ic � f�B�
� �B�

� ���� �Bmg

Part One

Part one proves k � wp�W
� where k is the weight of the con�ict between these two DS
structures� and W
 � which is de�ned in section ���� is the con�ict set in the combined incidence
calculus theory�

Step I

Suppose m � m� �m�� if Ai � Bj � fg� then m��Ai�m��Bj� will be a part of k� That is
k � k�  m��Ai�m��Bj��

Because of Ai � 	Ai and Bj � �Bj
� we have 	Ai � �Bj

���
According to the de�nition of the Combination Rule� we have i��	Ai�� i���Bj

� � W
�
We further have

m��Ai� � �k���Xik� when ��
Xik� � 	Ai

m��Bj� � �k����Yjk�� when ��
Yjk� � � �Bj

those pairs �Xik� Yjk�� are in W
�
We have

m��Ai�m��Bj� � ��k���Xik����k����Yjk��� � �k�k����Xik����Yjk��

That is m��Ai�m��Bj� is a part of wp�W
�� So wp�W
� � k�

Step II

The other way around� if 	Ai ��Bj
��� then i��	Ai�� i���Bj

� � W
 and i��	Ai�� i���Bj
�

will be a part of wp�W
��
For any Xk � i��	Ai� and Yk� � i���Bj

�� there must exist 	Ak and �Bk�
which make the

following equations hold�

��
Xk� � 	Ak � ��
Yk� � � �Bk�

and
	Ak � 	Ai � �Bk�

� �Bj

so
	Ak � �Bk�

��� Ak �Bk� � fg

We can divide i��	Ai�� i���Bj
� into di�erent groups under the condition that if �Xk�� Yk���

and �Xk�� Yk��� are in the same group� then ��
Xk�� � ��
Xk�� and ��
Yk��� � ��
Yk���� Because

��



of the disjoint feature of any basis� every pair �Xi� Yj� in i��	Ai�� i���Bj
� must belong to one

and only one group� For each group t� the probability weight of the elements in the group is
�l���Xkl����Yk�l� � ��l���Xkl����l���Yk�l��
� m��Ak�m��Bk�� ���
Xkl� � 	Akl � ��
Yk�l� � �Bk�l

� �	Akl � �Bk�l
� ���

For all groups� we have

�t�l���Xkl����Yk�l�
� �tm��Akt�m��Bk�t� ���
Xkt� � 	Akt � ��
Yk�t� � �Bk�t

� �	Akt � �Bk�t
� ���

� �tm��Akt�m��Bk�t��Akt � Bk�t � fg�
As �tm��Akt�m��Bk�t��Akt �Bk�t � fg� is a part of k� So wp�i��	Ai�� i���Bj

�� is a part of
k� That is k � wp�W
��

To summarize steps I and II� we have the conclusion that k � wp�W
��

Part Two

For any subset C of �At� and its corresponding formula �C � we need to prove that Bel�C� �
wp�i���C���

Step I

Suppose m � m� �m�� if Ai �Bj � C� then m��Ai�m��Bj� is a part of Bel�C��
Because of Ai � 	Ai and Bj � �Bj

� we have 	Ai � �Bj
� �C � T �

According to the de�nition of the Combination Rule� we have i��	Ai�� i���Bj
� � i���C��

We further have

m��Ai� � �k���Xik� when ��
Xik� � 	Ai

m��Bj� � �k����Yjk�� when ��
Yjk� � � �Bj

those pairs �Xik� Yjk�� are in i���C��
We have

m��Ai�m��Bj� � ��k���Xik����k����Yjk��� � �k�k����Xik����Yjk��

That is m��Ai�m��Bj� is a part of wp�i���C��� So wp�i���C�� � Bel�C��

Step II

The other way around� if 	Ai � �Bj
� �C � T � then i��	Ai� � i���Bj

� � i���C� and
i��	Ai�� i���Bj

� is a part of wp�i���C���
For any Xk � i��	Ai� and Yk� � i���Bj

�� there must exist 	Ak and �Bk�
which make the

following equations hold�

��
Xk� � 	Ak � ��
Yk� � � �Bk�

and
	Ak � 	Ai � �Bk�

� �Bj

	Ak � �Bk�
� �C � T � Ak �Bk� � C

We can divide i��	Ai�� i���Bj
� into di�erent groups under the condition that if �Xk�� Yk���

and �Xk�� Yk��� are in the same group� then ��
Xk�� � ��
Xk�� and ��
Yk��� � ��
Yk���� Because

��



of the disjoint feature of any basis� every pair �Xi� Yj� in i��	Ai�� i���Bj
� must belong to one

and only one group� For each group t� the probability weight of the elements in the group is
�l���Xkl����Yk�l� � ��l���Xkl����l���Yk�l��
� m��Ak�m��Bk�� ���
Xkl� � 	Akl � ��
Yk�l� � �Bk�l

� �	Akl � �Bk�l
� �C � T �

For all groups� we have

�t�l���Xkl����Yk�l�
� �tm��Akt�m��Bk�t� ���
Xkt� � 	Akt � ��
Yk�t� � �Bk�t

� �	Akt � �Bk�t
�� �C � T �

��tm��Akt�m��Bk�t��Akt �Bk�t � C�

Because �tm��Akt�m��Bk�t� is a part of Bel�C�� so wp�i��	Ai�� i���Bj
�� is a part of Bel�C�

and Bel�C� � wp�i���C���
From steps I and II we get wp�i��	A�� � Bel�A��

END

Now it has been proved that what we can combine using Dempster	s combination rule can
also be combined in incidence calculus and they obtain the same result� Moreover in the next
subsection we are going to show that we can handle a wider range of information in incidence
calculus by applying the new Combination Rule�

	�� Comparison III
 Combining Dependent Evidence

As we discussed before� when several pieces of evidence are not DS�independent� both Dempster	s
combination framework and Dempster	s combination rule fail to cope with them� However the
alternative combination rule we have proposed in this paper is able to deal with this situation
as we will see in the next section through examples� In the following we explore the theoretical
di�erence between the two theories and argue why DS theory fails to deal with dependent
evidence while incidence calculus succeeds�

Suppose we have two pieces of evidence which are given in the form of probability spaces
�S�� ��� ��� and �S�� ��� ���� and they are not DS�independent� Even though each of them
provides a belief function on a proposition set P separately �assume we know the relations
between the two probability spaces and P �� the two belief functions should not be combined
using Dempster	s combination rule� otherwise a wrong result will be obtained� Further suppose
the two pieces of evidence are given by two observations X and Y � then the observing objects of
X and Y must be related to each other or they are the same because of the assumption that the
two pieces of evidence are not DS�independent� Let �S� �� �� be the common probability space
producing �S�� ��� ��� and �S�� ��� ��� through X and Y � then S� and S� are all connected with
S� Let S��S� � S��� then S� � S��	S�� and S� � S��	S��� When using DS theory to describe
the e�ect of the two pieces of evidence on P � we have to describe them in a numerical way� e�g�
using either m functions or bel functions� Assume that we get two mass functions m�S��
S���

and m�S��
S��� where m�S��
S��� means this mass function is obtained based on the information
carried by the subset S��	S�� of S� If we combine them in DS theory as m�S��
S����m�S��
S����
then the information carried by the subset S�� will be counted twice� So DS theory has no ability
to combine such overlapped �or dependent� evidence�

However in incidence calculus� instead of describing the e�ect of evidence in a numerical
way� it shows the e�ect of evidence by establishing the relations between the subset S��	S�� to

��



P and the subset S�� 	 S�� to P separately� During the combination� the biggest information
subset used in this procedure is �S��	S���	 �S��	S��� � S��	S��	S�� where the information
carried by S�� is used only once� For any formula in L�P �� once its incidence set �or the lower
and upper bound of its incidences� is known� its probability can be calculated from the incidence
set�

In the above discussion we assume that the intersection of S� and S� are not empty� In fact�
as long as S� and S� are constructed from a common space �which is not the set product of
S� and S��� the mass functions produced from them should not be combined in DS theory no
matter whether their intersection is empty or not� This will be seen in the next section in the
second part of example ��

Therefore the indirect encoding of probabilities of formulae in incidence calculus makes
it possible to combine the overlapped information which is superior to any other numerical
approaches to managing uncertainty�

	 Analysing Examples

In this section we are going to explore �ve examples which cannot be combined by using Demp�
ster	s combination rule� These examples can be easily dealt with in incidence calculus�

��� Example �

In Pearl	s paper 
Pearl ���� the original example is stated as

r� � I�x�� Po�x�� if a person is intelligent� then that person is popular�
r� � F �x�� �Po�x�� If a person is fat� then that person is unpopular�

It is also assumed that each of the two rules has a strength m� When one learns that #Joe
is fat	� DS theory produces the result that #Joe is believed to be not intelligent with m�	� Pearl
argued that it is more reasonable to believe �with degree m� that #Joe is unpopular	 rather #Joe
is believed to be not intelligent with m�	�

When we use incidence calculus to deal with this example� we treat the two rules r�� r� as
non�independent �we don	t assume that they are given independently�� We prefer that r� and
r� are from a well�de�ned knowledge system �common sense� in which a set of possible worlds
is implicitly used to support the rules or the rules are got from a statistical result of a large
population� Purely from these two rules we can de�ne an incidence calculus theory as�

� W� 
� P�A� i 


where P � fI� Po� F� ���g and A � fr�� r�� r� � r�� Tg� i�r�� � W�� wp�W�� � m� i�r�� �
W�� wp�W�� � m� and i�r� � r�� � W� �W��

When one knows that #Joe is fat	� another incidence calculus is formed as
� fJoeg� �� P� fFg� i�F � � fJoeg 
� Combining these two incidence calculus theories using
the following table� the result is that #Joe is unpopular with degree m	 which is more intuitive�

��



	 r� r� r� � r� T

i�	� W� W� W� �W� W

F F � r� F � r� F � r� � r� F
fJoeg W� � fJoeg W� � fJoeg �W� �W��� fJoeg W � fJoeg

Table �� Combining two incidence calculus theories

So i���Po� � W� � fJoeg 	 �W� � W�� � fJoeg� Therefore p��Po� � wp�i���Po�� �
wp�W� � fJoeg� � wp�W�� � wp�fJoeg� � m� that is� #Joe is unpopular with degree of belief
m�

��� Example �

This example is also adopted from 
Pearl ���� Suppose we are given the following two rules�

If A then B with certainty ����
If �A then B with certainty ����

If we encode the messages carried by the two rules in terms of belief functions in DS theory�
the result will be bel�B� � ��
�� Pearl argued that �common sense dictates that even if we do
not have any information about A we should still believe in B to a degree at least ����� Dealing
with this example in incidence calculus theory is somehow similar to the previous example�
First of all� an incidence calculus theory based on the two rules is constructed� secondly� another
incidence calculus theory is created regarding A� The combination of these two theories tells
us that p�B� � ���  ��� � p��A� where p��A� is the certainty of A and � � p��A� � �� So
��� � p�B� � ����

By contrast to DS theory� in incidence calculus we don	t make the assumption that several
rules are distinct� rather we consider them related to another set of events which is called the
set of possible worlds� The relation between the rules and the set of possible worlds is stated in
terms of incidence calculus theories� Dempster	s rule has no ability to cope with the cases when
a set of rules are relevant�

��� Example �

In this example we continue to analyse #Penguin � Bird � Fly	 event as we introduced in CASE
� in Section ��

From the evidence that Tweety is a bird� an incidence calculus theory describing this piece
of information can be obtained as�

�W�� 
�� P�A�� i� 


where W� � fTweetyg� 
��Tweety� � ��A� � fBig� i��Bi� � fTweetyg and P � fBi� Pe� F lg�
When one later learns that Tweety is a Penguin� another incidence calculus theory can be

as

�W�� 
�� P�A�� i� 


where W� � fTweetyg� 
��Tweety� � ��A� � fPog� i��Po� � fTweetyg�
Combining these two theories �they are based on the same set of possible worlds� using the

rule we proposed we have the third incidence calculus theory which is exactly the same as the
second one�

��



�W�� 
�� P�A�� i� 
�� W�� 
�� P�A�� i� 


The fact that Tweety is a penguin enables us make further inference by using some common
sense knowledge � a set of relevant rules� These relevant rules form the fourth incidence calculus
theory as

�W�� 
�� P�A�� i� 


where r� � Po � Bi and r� � Po � �Fl� A� � fr�� r�� r� � r�� Tg� i��r�� � W�i� i�r�� � W�j�
i�r� � r�� �W�i �W�j � 
�W�i� � � and 
�W�j� � ���� Here W�k � W� for k � i� j�

Using the combination rule to combine theories � and �� the result is p�Bi� � � and p��Fl� �
��� which is correct�

��� Example �

Following the example in case �� There are ��� balls in an urn which are labelled as shown in
Table ��

Label Number ofBalls Subset Name inW

axy � S�
ax � S�
ay �
 S�
a �
 S�
bxy �� S�
bx �� S�
by �� S	
b �� S�

Table �� ��� balls and their labels

As we assumed that observation X �or Y � denotes that a particular ball drawn from the urn
has label x �or y�� two pieces of evidence are obtained in the form of probability spaces as�

�X�� X�� ��� and �X�� X�� ���

where
X� � S� 	 S� 	 S� 	 S�

���S�� � ��� ���S�� � ���

���S�� � ���� ���S�� � ����

and
X� � S� 	 S� 	 S� 	 S	

��



���S�� � ���� ���S�� � ����

���S�� � ��� ���S	� � ���

It is easy to see these two probability spaces are not DS�independent and they cannot be
combined using either Dempster	s combination framework or Dempster	s combination rule� The
intersection of X� and X� is S� 	 S��

Let us examine the example of the labelled balls in incidence calculus theory and see what
we can get�

First of all� we suppose that the set of possible worlds W contains ��� labelled balls�

W � S� 	 S� 	 S� 	 S� 	 S� 	 S� 	 S	 	 S�

where S� contains � possible worlds each of which speci�es that a labelled ball may be chosen
later� ���� S� contains �� possible worlds and the probability distribution on W is 
�w� � �����
for any w � W � We further suppose the set of propositions P contains fa� b� x� ygwhere a means
that the chosen ball has label a et al� If observations X and Y state that a particular ball drawn
from the urn has label x or y respectively� then we can construct two mapping relations between
W and P in terms of incidence functions separately�

i��x� � S� 	 S� 	 S� 	 S�

i��a � x� � S� 	 S�� i��b � x� � S� 	 S�

i��y� � S� 	 S� 	 S� 	 S	

i��a � y� � S� 	 S�� i��b � y� � S� 	 S	

Thus two incidence calculus theories can be formed as � W � 
� P�A�� i� 
 and
�W � 
� P�A�� i� 
� where A� � fx� a � x� b� xg and A� � fy� a� y� b� yg�

Applying the Combination Rule to these two theories� we can get the third incidence calculus
theory �W � 
� P�A� i 
 where

A � fx� y� a� x � y� b� x � y� a� b � x � yg
and

i�b� x � y� � S�

i�x � y� � S� 	 S�

That is� p�b�x�y� � ������ and p�x�y� � ������� According to Equation� ��� in Section
�� we have

p�b j x � y� �
p�b� x � y�

p�x� y�
�

wp�i�b� x � y��

wp�i�x� y��
� ���

Obviously� this result is consistent with what we could get in probability theory as shown
in Voorbraak	s paper� The advantage of calculating the conditional probability based on the
incidences of the related formulas in incidence calculus theory makes it possible to be consistent
with probability theory�

��



Next� we observe the labels of the ��� balls from another perspective� Instead of having the
frame � � fa� bg� we assume another frame �� � fx�y� x��y��x�y��x��yg� When drawing
a ball from the urn� its multiple labels only make one element of � true� Further suppose that
we have two observations A and B where

A� denotes that a particular ball drawn from the urn has label a�
B� denotes that a particular ball drawn from the urn has label b�

Once again these two observations de�ne two probability spaces denoting two pieces of
evidence� and the two pieces of evidence give two mass functions on frame ��as�

mA�x � y� � ���� mA�x � �y� � ����

mA��x � y� � ��� mA��x � �y� � ���

mB�x � y� � ��
 mB�x � �y� � ��


mB��x � y� � ��
 mB��x � �y� � ��


Combining them using Dempster	s combination rule we have mA�B�x � y� � ����� That
is� the probability that a ball has both label x and y is �$�� �in this case the probability of a
ball is exactly the same as the degree of belief in the ball� based on observations A and B� In
fact� it is impossible to draw a ball which has both label a and b� So in probability we have
p�x � y � a � b� � � or we have p�x � y j a � b� � � if we consider the conditional probability
because of p�a � b� � ��

When we use incidence calculus to deal with the messages carried by the two observations�
two incidence calculus theories are formed �rst� Applying the rule we de�ned in this paper to
the two incidence calculus theories� we can combine them and get the third incidence calculus
theory as���

�W � 
� P�A� i 


where P � A � � and for any formula 	 in A� we have i�	� � fg� So we have the same
result as what we have obtained in probability theory� As we have explained in section �� in
such a situation� the two observations cannot be held at the same time� They repel each other�
Whatever the relations between two observations �or two pieces of evidence� are� incidence
calculus can be always used to deal with them and give the correct result while DS theory has
no ability to deal with them no matter in which way we explain the condition of using Dempster	s
combination rule�

��� Example �

What we will show next is that the Combination Rule can also be used to deal with the partial
implication problems� This example is also from Voorbraak	s paper� The original example states
that�

Let � be the frame fA��Ag� X and Y denote two observations� where

A denotes the proposition �patient M has �u��
X represents the observation that M has a fever � ���C and
Y represents the observation that M has a fever � �����C�

��We leave the details of the example to the reader�
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Then two mass functions are established on frame � based on these two observations�

mX�A� � ��
� mX��� � ���

mY �A� � ���� mY ��� � ��


Using Dempster	s combination rule to combine them� we get Bel�A� � ���
� But Voorbraak
argued that because X implies Y � the e�ect of observation Y should be merged by X during
the combination� and the correct result should be Bel�A� � ��
�

We explore this example again in incidence calculus� In fact we can assume that there is a
set of possible worlds W � the subset W� of W makes proposition XM��M has a fever � ���C�
true� Obviously� W� will make proposition YM��M has a fever � �����C� true as well� Then
there will be two incidence calculus theories which contain i��XM� �W� and i��YM� �W�	W�

respectively� Therefore the combination of the two theories will cause the result i�XM� �W� to
be included in the new incidence calculus theory� If we accept the description that if proposition
XM is true� then the patient M has �u with probability ��
� then we eventually have P �A� � ��
�
The concrete analysis of the example is given below� In this example we use two production
rules B � A�r� and C � B�r��C��� where the �rst rule states that if a patient M has a fever
then M has �u with probability r� Similarly the second rule says that if the patient M has a
body temperature C then M has a fever with probability r��C�� These two rules are hidden in
Voorbraak	s example�

This example is more complicated than the previous one� because in this example we need
to construct three sets of possible worlds�

Suppose a proposition set P has three propositions A� B� and C where A denotes that a
person has �u� B denotes that a person has a fever and C denotes the temperature a person
has� Then rule B � A and C � B �here we temporarily ignore the rule strengths and we will
associate the strengths later using incidence functions� are in a language set L�P ��

Assume the �rst set of possible worlds is W� and its subset w� makes rule B � A true� and
p�w�� � r� Then we have an incidence calculus theory as �

�W�� 
�� P�A�� i��

where A� � fB � Ag and i��B � A� � w��
Assume the second set of possible worlds is W� and its subset w� makes rule C � B true�

and p�w�� � r��C�� Then we have the second incidence calculus theory as�

�W�� 
�� P�A�� i��

where A� � fC � Bg and i��C � B� � w��

Further suppose the third set of possible worlds is W� and

W� � ft�� ��� ���� ����� ��� ���� ��� t�g

Here we put the temperature below ���C and above ���C into two groups t�� t�� Observations
X and Y specify the third and fourth incidence calculus theories from W� to L�P � as�

�W�� 
� P�A�� i� 


�W�� 
� P�A�� i� 


�




where A� � fCg� A� � fCg� i��A���f��� ���� ��� t�g� i��A�� � i��A��	 f����g�
In fact� the semantic meaning of this example can be shown as�

Y

X

�
��

�
�R C �B �A

This �gure shows that from a person has high body temperature we can infer that this person
has a fever� and from this person has a fever we can further infer that this person may have �u�
Two observations X and Y give two possible temperature values of the person�

Applying the Combination Rule to the last two theories� we can get a combined incidence
calculus theory as�

�W�� 
� P�A�� i� 


where A��A�� and i� � i��
Then applying the Combination Rule to incidence calculus theories �� �� and �� we eventually

have an incidence calculus theory as�

�W � 
� P�A�� i 


where W �W� �W��W�� and p�A� � r��C�� r� In the sense of Voorbraak� when C � ���C�
we have p�A� � ��
� As proved before because p�A� � wp�i�A�� � wp�i��A�� � Bel�A� we can
get the same result as Voorbraak in his paper which is di�erent from what we can get in DS
theory�

Someone may argue about the relation between the setsW� andW�� In fact we can always let
W� have two elements w�� and w��� and let w�� make B true� But the probability distribution
on W� is a function of the temperature that a person has� For example� assume a person	s
temperature is ���C� then a theory based on the information gives that i�C� � f��g� This
result produces the probability distribution onW� as 
�w��� � � and 
�w��� � �� since we think
temperature ���C is reasonable�

This example also shows us that we can associate a rule strength with an incidence calculus
theory as we have done here�

The examples in this section show that the alternative combination rule proposed by using
incidence calculus is more general than Dempster	s combination rule� In particular� this rule
can be applied to deal with the overlapped or relevant information�


 Conclusion

Pooling a joint impact from multiple sources of information is an important and di�cult task
in the management of uncertainty� In this paper� we have further explored the well known
combination rule in DS theory and revealed the failure of the rule in solving some problems� We
have argued that the counterintuitive results of using the rule are caused by the misexplanation
of the independence requirements of Dempster	s combination framework with the combination
rule� We can conclude from this exploration that the combination carried out before or after

��



the propagation of evidence may give absolutely di�erent results in many situations� However
Dempster	s combination rule in DS theory is applicable under the condition that the result of
combination is unique no matter whether it is done before or after the propagation of evidence�

Trying to combine dependent pieces of information using Dempster	s combination rule has
been mentioned in 
Dubois and Prade �
� Kennes ��� Nguyen and Smets ��� Smets ���� but
their work all focused on Dempster	s combination rule without examining Dempster	s original
combination framework�

In order to overcome this di�culty� we have proposed an alternative combination mechanism
using incidence calculus� The comparison with DS theory has shown that this new combination
approach is more powerful than Dempster	s combination rule� especially in solving those non
DS�independent problems� This result has not yet been shown in any other theories in the
management of uncertainty�

In general� independent relations among multiple sources of evidence can be considered as
the special cases of dependent situations� As Pearl indicated 
Pearl ����� p����� �If we have
several items of evidence� each depending on the state of nature� these items of evidence should
also depend on each other� This kind of dependency is not a nuisance but a necessary bliss� no
evidential reasoning would otherwise be possible�� In our proposed combination rule� we have
indeed adopted the same idea and made some e�orts towards combining dependent evidence�
Even though we cannot promise that the proposed rule in this paper is perfect to cope with all
cases� at least we have revealed the approach to combine them� This result will be useful for
further research work either on this topic or in the relevant aspects� It tells us that cancelling
the overlapped and duplicated information at the semantic level is a promising way to obtain
the result of several pieces of evidence�

The future work will be concerned with applying these combination rules to practical prob�
lems� The topics of using incidence calculus to represent default logic and to implement ATMS
are also interesting� Producing explanations after a system inference is a side product of a
knowledge based system� Usually numerical methods for dealing with uncertainty are weak in
giving explanations for the results after several steps of combination or fusion� It is worthwhile
to explore this topic in incidence calculus by tracing the incidence sets of formulas�
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