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Abstract. In this paper, we present a hybrid BDI-PGM framework,
in which PGMs (Probabilistic Graphical Models) are incorporated into
a BDI (belief-desire-intention) architecture. This work is motivated by
the need to address the scalability and noisy sensing issues in SCADA
(Supervisory Control And Data Acquisition) systems. Our approach uses
the incorporated PGMs to model the uncertainty reasoning and decision
making processes of agents situated in a stochastic environment. In
particular, we use Bayesian networks to reason about an agent’s beliefs
about the environment based on its sensory observations, and select
optimal plans according to the utilities of actions defined in influence
diagrams. This approach takes the advantage of the scalability of the
BDI architecture and the uncertainty reasoning capability of PGMs. We
present a prototype of the proposed approach using a transit scenario to
validate its effectiveness.

1 Introduction

SCADA (Supervisory Control And Data Acquisition) systems have proved
to be a powerful and successful technology in various application domains,
including power generation, power transmission, transportation, and military
applications [1]. However, the complexity of such systems increases too rapidly
to be handled by traditional software engineering approaches. This complexity
comes from the large number of subsystems needed to implement business
process requirements [2]. Moreover, trained experts who supervise the entire
system also face the challenge of dealing with explosively growing amounts of
sensory data, especially in emergency situations. Current SCADA systems lack
autonomous and intelligent capabilities to meet these pressing requirements and
are difficult to scale up to larger and more complex deployments [3, 4].

As SCADA systems are situated in dynamic environments, not all sensory
data can be deemed completely accurate. Nevertheless, human experts are
capable of estimating the state of the world even if the sensory data has inherent
errors/noise or uncertainty, is incomplete or in conflict with data acquired from
other sources. Experts also have to make decisions based on uncertain and
incomplete information. Therefore, an autonomous SCADA system requires an
adequate framework to reason about uncertainty and model decision making
based on uncertain information.



The belief-desire-intension (BDI) agent architecture is a successful paradigm
for modeling rational agents [5]. BDI agents have been used to develop SCADA
systems by treating system components as autonomous agents, to provide better
scalability, autonomy and intelligence [6, 7, 2]. Each agent’s beliefs (knowledge
about the environment), desires (goals), and intentions (commitments to act)
are explicitly represented. These beliefs, desires, and intentions are also known
as the agent’s mental states. Using the BDI architecture, one can specify, design
and verify different types of agents in different application domains. AgentSpeak
[8] is an agent-oriented programming language for specifying agents within the
BDI framework.

In this paper, motivated by the need to address the scalability and noisy
sensing issues in SCADA systems, our main contribution is the incorporation
of two probabilistic graphical models (PGMs) (Bayesian networks (BNs) and
influence diagrams (IDs)) into a BDI architecture. Specifically, we introduce an
agent’s epistemic state [9] in the hybrid BDI-PGM framework, and define that
based on PGMs which model the stochastic environment where the agent is
situated. Sensory observations in the environment are first fed into the PGMs,
and the corresponding belief sets are derived after uncertainty propagation
in the PGMs. Since it is possible that an agent may be ignorant about the
environment because of the inherent uncertainty, we take into account the
utilities of actions, and maximize the utility in such situation. For example, when
a train agent does not know the actual state of a signal, it prefers to stop rather
than keeping moving. We specify utilities of actions in various situations using
influence diagrams (IDs), and formulate plan selection as a utility-based decision
problem. The hybrid BDI-PGM framework takes the advantage of the scalability
of the BDI architecture and increases its uncertainty reasoning capability by
incorporating PGMs (BNs and IDs) into it. In addition, a prototype of the
proposed approach applied in a transit scenario is designed and implemented to
validate its effectiveness.

The rest of the paper are organized as follows. Section 2 reviews the related
work. Section 3 presents the essentials of the techniques we use, including the
AgentSpeak framework, BNs, and IDs. Section 4 discusses how to embed PGMs
into a BDI architecture, and propose a utility-driven plan selection approach.
In Section 5, we describe the design and implementation of the transit scenario
with noisy sensing to validate our approach. Section 6 concludes the paper and
describes future work.

2 Related Work

In [2], the advantages of applying MAS (multi-agent systems) technologies
to address the challenges of traditional control systems are discussed. The
advantages (e.g., scalability, autonomy and intelligence) are illustrated through
a case study describing a SCADA system for electricity transportation
management. In [6, 7] the authors focus on the application of MAS to
power engineering, where problems are formalized, technologies are discussed,



and several implementation issues are addressed. In [10] it is reported that
MAS technologies outperform classical technologies in the protection of power
distribution systems.

There have been several approaches to modeling uncertainty in MAS. In [11]
the degrees of beliefs that a BDI agent has are quantified using Dempster-Shafer
theory. The graded BDI architecture [12] uses uncertain beliefs (as probabilities)
and graded preferences (as expected utilities) to rank plans. Bayesian networks
have been widely used for modeling uncertain environments [13]. There have
been studies about combining BNs with the BDI architecture to handle the
uncertainty in beliefs and select appropriate plans in a dynamic environment.
In [14] the agent deliberation process is modeled by a BN. Both causality and
quantitative relations between beliefs are taken into account, and applicable
plans are sorted so that the plan whose context has the highest likelihood to be
valid is selected. Its threshold-based plan selection approach is further extended
in [15] by adding bias and randomness to all applicable plans. In [16] a tool
connecting an MAS development framework (Jason [17]) with a BN constructor
is developed. These approaches essentially focus on selecting plans based on
the likelihood of their contexts. However, the acquisition of uncertain beliefs
has not been addressed. In this paper, we consider a more realistic situation,
where an agent makes observations by performing sensing actions. The sensory
observations are first fed into PGMs, leading to an agent’s epistemic state being
revised after uncertainty propagation in the PGMs. Beliefs may be derived from
the revised epistemic state and such beliefs are then added to an agent’s belief
set.

Autonomous agents have to make rational decisions to pursue their goals
(i.e., selecting appropriate plans) in a stochastic environment. Markov decision
processes (MDP) and partially observable MDPs (POMDPs), as well as their
graphical representations, IDs [18], are popular frameworks to model an agent’s
decision making processes in stochastic environments. In [19] POMDPs and
the BDI architecture are compared, and the correspondences between desires
and intensions on the one hand, and rewards and policies on the other hand
are illustrated. In [20] the relationship between the policies of MDPs and the
intentions in the BDI architecture is further discussed. In particular, it shows
that intentions in the BDI architecture can be mapped to policies in MDPs.
The performance and scalability of (PO)MDPs and the BDI architecture are
compared in [21]. In particular, (PO)MDPs have a better performance when
the domain size is tractable since the BDI architecture uses a heuristic planning
approach. The BDI architecture has better scalability since the state space in
(PO)MDPs grows explosively when modeling complex application domains (e.g.,
SCADA systems). A hybrid BDI-POMDP framework [22] has been proposed
for quantitatively analysing the teaming behaviours of agents in an uncertain
environment. Different from this approach, our proposed approach embeds
PGMs into the BDI architecture to model the uncertainty about the environment
and reason about optimal decisions of agents.



3 Preliminaries

In this section, we describe the basics of the techniques we use in the paper.

3.1 AgentSpeak

An AgentSpeak agent A can be represented as a tuple
〈BB,PLib,E,A, I,Sε,SO,SI〉, where BB,PLib,E,A, I are its belief base, plan
library, event set, action set and intention stack, respectively. Sε,SO,SI are
the selection functions for events, plans and intentions, respectively. We define
beliefs, goals, triggering events, and plans for an AgentSpeak agent following
the notation in [8]. We use Φ to denote a finite set of symbols for predicates,
actions, and constant, and V to denote a set of variables. We use a, b, . . . to
denote elements in Φ and X,Y, . . . to denote elements in V. A term t is a
constant symbol in Φ or a variable in V.

Definition 1. Let b be a n-ary predicate symbol, and t1, . . . , tn be terms
(collectively referred as t thereafter), then b(t) is a belief atom. Given belief
atoms b(t) and c(t), then b(t), c(t), b(t) ∧ c(t), and ¬b(t) are beliefs.

Definition 2. Let g be a predicate symbol, and t1, . . . , tn be terms, then !g(t)
and ?g(t) are goals. Specifically, !g(t) is an achievement goal and ?g(t) is a test
goal.

Definition 3. Let b(t) be a belief atom, and !g(t) and ?g(t) be goals, then +b(t),
−b(t), +!g(t), −!g(t), +?g(t) and −?g(t) are triggering events. Here operators
+ and − denote addition and deletion of a belief or goal, respectively.

Definition 4. Let a be an action symbol, and t1, . . . , tn be terms, then a(t) is
an action.

Definition 5. Let e be a triggering event, b1, . . . , bm be beliefs, h1, . . . , hn be
goals or actions, then e : b1 ∧ . . .∧ bm ← h1; . . . ;hn is a plan. Here, b1 ∧ . . .∧ bm
is referred as the context of the plan.

The belief base represents an agent’s knowledge about the environment in
which it is situated. The plan library PLib contains a set of plans for either
achieving the agent’s goals or responding to changes in the environment. In
AgentSpeak, an agent’s behaviour is specified by a set of beliefs and plans. Each
plan may specify a set of actions to be performed, a set of subgoals to be achieved
and a set of conditions under which the plan is applicable. A plan is applicable,
when its triggering event occurs and its context is valid. The applicable plan can
be executed by performing actions and achieving subgoals specified in its body.
The execution of a plan is the agent’s response to changes in the environment
and the means to achieve its goals.

In a reasoning cycle as shown in Fig. 1, agent A responds to the triggering
event e at the top of its event stack, by selecting and executing a plan p, which is



referred to as an intention. A set of plans, whose contexts are valid according to
the belief base BB, will be identified from the plan library PLib. Only one plan
will be selected and executed. Performing an action may change the environment
and consequently change the agent’s belief base. The execution of the chosen
plan may also add new events to the event stack, which will be handled in future
reasoning cycles.
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Fig. 1. The reasoning cycle of an AgentSpeak agent

Example 1. Assume that agent A represents an autonomous train. In train agent
A’s belief base BB, some of its belief atoms can be:

– Sig(red): the signal is red;
– Moving: the train is moving;
– Train(A, 100): agent A’s own position;
– Train(B, 300): another train’s position;
– Station(central, 1000): the location of the train station named central.

The train agent can perform the following actions:

– stop: stop from normal speed;
– accel: accelerate from still to normal speed;
– move(X, Y): move from the current position X to the new position Y with

normal speed;
– senseSignal: observe the signal within its sensing range;
– openDoor: open doors on the train for passengers to board;



– closeDoor: close doors after boarding;
– senseBoarding: observe whether boarding is completed;

The following plans in PLib specify the train agent A’s behaviours under
different contexts. P1 and P2: if a signal is sensed either green or red while the
train is moving, it will either keep moving or stop, and keep checking the signal.
P3 and P4: while the train is still, it will move when the signal becomes green;
otherwise it will stay still and keep sensing.

– (P1)+!drive : Moving ∧ Sig(green) ← move; senseSignal; !drive;
– (P2)+!drive : Moving ∧ Sig(red) ← stop; senseSignal; !drive;
– (P3)+!drive : ¬ Moving ∧ Sig(red) ← senseSignal; !drive;
– (P4)+!drive : ¬ Moving ∧ Sig(green) ← move; senseSignal; !drive;

3.2 Probabilistic Graphical Models

Probabilistic graphical models (PGMs) are a combination of graph theory
and probability theory by encoding probabilistic dependency relations in the
graphical structures. Bayesian networks (BNs) and influence diagrams (IDs) are
two popular PGMs. They provide a natural specification language for various
problem domains with inherent uncertainty. Over the past decades, a set of
efficient algorithms and sophisticated tools have been developed for PGMs [13].

A Bayesian network B over a set of random variables
−→
X = {X1, . . . , Xn} is

defined by a pair B(
−→
X) = 〈G,Θ〉. G is a directed acyclic graph, in which each

node represents a random variable Xj , with edges representing the dependencies
between variables. Θ is a set of parameters θxj,i|πj,i

= P (xj,i | πj,i) for
each instantiation of xj,i of variable Xj given πj,i which is the instantiation
of the parents of Xj . These conditional probabilities are used to quantify
dependencies between variables. Given a BN B, a joint probability distribution
over {X1, . . . , Xn}, P (X1, . . . , Xn), is defined.

As an example, the Bayesian network as shown in Fig. 2(a) represents the
dependency relation between the observation of a signal and the actual state of
the signal. It shows that the observation (O, a binary variable with two states ‘oR’
(for observed ‘red’) and ‘oG’ (for observed ‘green’)) is determined by the actual
state of the signal (S, a binary variable with two states ‘red’ and ‘green’). The
conditional probability table in the Fig. 2(b) shows the probability distribution
over observations given different states of the signal. Each number in this table
represents the conditional probability of seeing an observation given the actual
state. For example the probability of observing ‘oR’ given the signal is ‘red’ is
denoted as P (oR | red) = P (O = oR | S = red) = 0.7.

The uncertainty reasoning in BNs is carried out by applying the Bayes’ rule.
Assuming the initial prior probability distribution over the states of the signal
(S node) is uniform, i.e., (0.5, 0.5), the posterior probability distribution can be
inferred from its prior probability distribution, the conditional probabilities and
the new observation. For example, the probability of the signal being ‘red’ given
‘red’ is observed (P (oR) = 1) is computed as follows:
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Fig. 2. (a) The Bayesian network for a signal and its observation. (b) The condition
probability table for P (O | S).

P (red | oR) =
P (red, oR)

P (oR)
=

P (red, oR)

P (red, oR) + P (green, oR)

=
P (oR|red)P (red)

P (oR|red)P (red) + P (oR|green)P (green)

=
0.7 · 0.5

0.7 · 0.5 + 0.3 · 0.5
= 0.7.

Influence diagrams (also known as decision graphs) are extended from
Bayesian networks by introducing actions and their utilities. They can
model the problem of making optimal decisions in an uncertain environment
given incomplete information. An influence diagram D is defined by a pair

D(
−→
X,
−→
D,
−→
U) = 〈G,Θ〉, which models a set of random variables

−→
X, a set of

actions
−→
D, and the utilities of actions

−→
U in various situations. There are three

types of nodes in G: chance nodes (representing the environment), decision nodes
(representing actions), and utility nodes (representing the utilities of actions).

In Fig. 3(a), D (
−→
D = {D}) and U (

−→
U = {U}) are a decision node and a utility

node, respectively. The parameter of the U node θU |D,S = U(D,S) is set in the
utility table as shown in Fig. 3(b). For example, U(D = stop, S = red) = 10
indicates that 10 reward points can be obtained if the train stops when the
signal is red. Thereafter, we will denote U(D = stop, S = red) as U(stop, red) for
simplicity.

The optimal decision is selected from a set of possible decisions based on
their expected utilities (EU), which takes into account the actions utilities and
the probability distribution over the state of the world. For example, assuming
the initial prior probability distribution of S is uniform and ‘red’ is observed
(‘oR’), EU(stop) is calculated as follows:

EU(stop) =
∑
s∈S

P (s | oR)U(stop, s)

= P (red | oR)U(stop, red) + P (green | oR)U(stop, green)

= 0.7 · 10 + 0.3 · −1 = 6.7.
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Fig. 3. (a) The influence diagram for decision making based on information observed
from a signal. (b) The utility table for U(D,S).

IDs (more specifically, dynamic IDs) are graphical representations of MDPs
and POMDPs, all of which can be used to reason about an agent’s actions
given incomplete information about the environment. Different from (PO)MDPs,
the computational complexity of reasoning under uncertainty in PGMs can be
reduced by making use of the defined graphical structures, in particular, the
conditional dependencies among random variables [18].

4 Incorporating PGMs into a BDI Architecture

In this section, we describe how to incorporate PGMs into a BDI architecture
to model the uncertainty about the situated stochastic environment and an
agent’s decision making process. First, an agent’s epistemic states for random
variables, which model the uncertainty about the stochastic environment, and
the corresponding belief sets of the epistemic state are defined. The possible
states of the environment, sensory observations, and their relationships are
modeled using PGMs. The uncertainty propagation is carried out by BNs. The
belief sets derived from the epistemic states will trigger the selection of relevant
plans. When more than one plan is applicable due to uncertainty in an agent’s
beliefs, we formulate the plan selection as a decision making process, which
models utilities of actions in influence diagrams, and propose a utility-driven
approach for plan selection.

4.1 Reasoning about Beliefs under Uncertainty

In a foggy day, the signal may not be as clear as in a normal day. We cannot
be certain about the colour of the signal based on a sensory observation. More
specifically, we cannot be sure whether the signal is red (‘Sig(red)’) when a certain
sensory observation is given (P (oR) = 1), let alone with given an uncertain
evidence about the sensory observation, such as P (oR) = 0.8 and P (oG) = 0.2.
The relationship between the actual state of the signal and a sensory observation
can be modelled by a BN as shown in Fig. 2(a). Inferring the actual state (S
node) from an observation (O node) is carried out by the standard reasoning
procedure in BNs. In other words, an observation is seen as evidence on O



node, and the posterior probability distribution over the states of the signal is
calculated using the Bayes’ rule.

In the reasoning cycle of the original AgentSpeak agent, given an event,
usually a set of applicable plans will be identified according to the belief base.
As an autonomous and rational agent, in addition to considering uncertainty
about the stochastic environment, the agent may also need to take into account
the utilities of actions in plans. In the signal example, when the train agent has
no clear idea about the actual state of the signal, it will perform according to the
utilities of possible actions. The train agent will be rewarded if it stops, or may
face a penalty for violating the traffic regulations. In addition to specifying the
uncertainty about the state of a variable and its relationship with its sensory
observation in a BN, the relevant actions and their corresponding utilities in
various situations are specified in an ID as shown in Fig 3. The plan which
include actions with the highest utility will be selected and executed.

First, we formally define the epistemic state [9] to link PGMs to the belief
base of an AgentSpeak agent.

Definition 6. Given a set of discrete random variables
−→
X = {X1, . . . , Xn}, a

set of actions
−→
D, and the corresponding utilities of actions in various situations−→

U, modeled by an ID D(
−→
X,
−→
D,
−→
U), an agent’s epistemic state about the states

of random variable Xi is defined as Φ(Xi) = 〈PXi
,D(
−→
X,
−→
D,
−→
U)〉, where PXi

:
SXi → [0, 1] is a prior or marginalized probability distribution obtained via

D(
−→
X,
−→
D,
−→
U) on the state space SXi

of variable Xi.

D(
−→
X,
−→
D,
−→
U) will be referred as D thereafter if the context is unambiguous.

Note that, the ID D included in the definition of the epistemic state can be
simplified into a BN when the utilities of actions are not available.

Definition 7. Let Φ(X) be an epistemic state for a discrete random variable
X with its state space SXi = {x1, . . . , xn}, the belief set of Φ(X), denoted as
Bel(Φ(X)), is defined as

Bel(Φ(X)) =

{
xi, when PX(xi) ≥ δi
T, ohterwise

Here δ is a pre-defined threshold for accepting that xi represents the real
world concerning X. Notation T is a special constant representing an agent’s
ignorance, that is, an agent is not certain about the state of variable X.

Definition 8. Given an epistemic state Φ(Xi) = 〈PXi
,D(
−→
X,
−→
D,
−→
U)〉, and a

new observation on Xj, represented by a probability function PXj
, the revision

of Φ(Xi) by PXj
is defined as

Φ(Xi) ◦ PXj
= 〈P ′

Xi
,D(
−→
X,
−→
D,
−→
U)〉

Here, P ′
Xi

is the posterior probability distribution on state space SXi
after

the propagation of an uncertain input modeled by PXj using D(
−→
X,
−→
D,
−→
U).



Example 2. In the signal example, given the ID D({S,O}, {D}, {U}) as shown
in Fig. 3, we have an epistemic state Φ(S) = 〈PS ,D〉 to represent the probability
distribution over the states of the signal. Assuming we initially have the
probability distribution PS(red) = 0.15 and PS(green) = 0.85, a new sensory
observation PO(oR) = 0.15 and PO(oG) = 0.85 will revise the epistemic state to
get 〈P ′

S ,D〉 where P ′
S(red) = 0.09 and P ′

S(green) = 0.91. Given a threshold
δ = 0.9, the belief set of the revised epistemic state Φ(S) ◦ PO is ‘green’.
Consequently, a belief atom ‘Sig(green)’ will be added into the agent’s belief
base.

The posterior probability distribution based on an sensory observation, can
be used as the prior probability distribution of the next sensory observation.
This process repeats until an agent has reached some state that it no-longer
needs to make another observation.

4.2 Utility-driven Plan Selection

After reasoning about beliefs under uncertainty in the PGMs, beliefs will be
added into an agent’s belief base and these beliefs are consistent with the original
AgentSpeak framework. In the signal example, when either ‘Sig(green)’ or
‘Sig(red)’ is added, the existing plans (P1-P4 in Example 1)) are still applicable.

Note that, when obtaining the belief sets from epistemic states, the
pre-defined threshold may not be exceeded. In this case, the belief with the
special constant T will be added to the belief base. In the signal example, when
the certainty degree on any state of the signal is not high enough, we will have
belief ‘Sig(T)’ to represent the agent’s ignorance about the actual state of the
signal. In this case, the agent can either ‘stop’ or ‘move’. Here, we have two
additional plans (P5 and P6) in the plan library.

– (P5)+!drive : Moving ∧ Sig(T) ← move; senseSignal; !drive;
– (P6)+!drive : Moving ∧ Sig(T) ← stop; senseSignal; !drive;

According to the ID D as shown in Fig. 3(a) and the utility table of the utility
node as shown in Fig. 3(b), the train agent’s plan selection shall also take into
account the utilities of actions. After inferring the probability distribution over
the states of the signal from sensory observations, the expected utility of each
possible action is calculated. In addition to considering the contexts of plans,
the expected utilities of actions in the plans will affect the plan selection of the
train agent.

Example 3. In the signal example, two plans are applicable (P5 and P6) when
the certainty degree on any state of the signal is not high enough, and we
want to select a plan which is more reasonable in terms of the utility. First,
the probability distribution over states of the signal (e.g., PS(red) = 0.2 and
PS(green) = 0.8) will be transferred to the ID D. Afterwards, the expected
utilities of actions are calculated: EU(stop) = 1.2 and EU(move) = −12. In this
case, since ‘stop’ is considered as more beneficial than ‘move’, plan P6 will be
selected.



Specifically, when the probability of a particular state si is over a threshold,
a single plan can still be selected in the first place. In this case, the expected
utility is only calculated for the action in this particular plan, and the action will
be selected (since its expected utility will be the maximum one). Therefore, the
problem of selecting a plan with normal beliefs is a special case of plan selection
when a special belief atom represents the agent’s ignorance about the state of
the variable in the environment.

Now, we extend the definition of an AgentSpeak agent as follows.

Definition 9. An extended AgentSpeak agent A′ is defined by a tuple
〈BB,PLib,E,A, I,Sε,SO,SI ,EpS〉, where EpS is a set of epistemic states, with
all other items being the same as defined in Section 3.

It should be noted that we allow an agent to have multiple epistemic states,
each for a different variable (or a set of variables). This assumption is reasonable
since an agent may have beliefs (which could be uncertain) and knowledge
about different parts of the environment (we assume these parts are localized
or isolated). For each part, the knowledge, which is represented by a BN or an
ID, and its associated beliefs constitute one localized or isolated epistemic state.

The reasoning cycle of an extended AgentSpeak agent is shown in Fig. 4.
Compared to the original reasoning cycle as shown in Fig. 1, the observations
containing uncertain information go through epistemic states before affecting
the belief base. The PGMs included in the epistemic states are used to reason
about uncertain observations and derive belief sets. After applicable plans have
been identified, in order to select a unique one to execute, expected unities of
possible actions are calculated using the PGM.

5 MAS Transit Scenario

We use a transit scenario to validate the effectiveness of the hybrid BDI-PGM
framework. We describe how to use Jason [17] to implement this scenario. Jason
is an open-source interpreter for AgentSpeak which implements AgentSpeak’s
operational semantics and thus provides a platform for developing MAS. We use
Hugin [23] to reason over the embedded PGMs. Hugin provides a friendly user
interface to create, edit and manipulate BNs and IDs, and it also wraps up all
functionalities (e.g., inserting evidence and propagating uncertainty) as an API
for further development purposes. The implemented prototype can be considered
as a proof of concept of the feasibility of applying advanced MAS technology for
developing SCADA systems in the presence of uncertainty about the dynamic
environment.

5.1 Transit Scenario

There are two transit trains running in the same direction on a one directional
rectangle track that links two stations (as shown in Fig. 5). There are two train
stations and two signals. Each train starts moving and keeps checking the signal
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Fig. 4. The reasoning cycle of the hybrid BDI-PGM framework.

when it is within the sensing range. After a train sees a red signal, it stops
and keeps checking the signal. When a trains sees a green signal, it either keeps
moving if it is already moving or starts moving if it is still, and it keeps checking
the signal.

We assume that the weather is foggy, therefore the signal cannot be sensed
with certainty. The rest of this scenario is assumed to be certain (i.e., trains do
not fail and the agent always succeed in closing the door).

There is a PGM (specifically, the ID shown in Fig. 3) specified by Hugin,
including the graphical structure and the parameters, to represent the knowledge
about the noisy sensing situation.

5.2 MAS Implementation

Each agent’s belief base contains both static information (i.e., the location of
the stations and the signal) and dynamic information (i.e., the locations of both
trains). Here is a snapshot of the belief base of the train agent A.

– Train(B, 300): train B’s position;
– Signal(1, 500): the signal 1’s position;
– Moving: train A is moving;
– Sig(red): the signal ahead is red.

The train agents can perform the actions listed in Example 1. The goal of the
entire system is to run trains safely and smoothly. The two train agents require
communication with each other about their current positions.



As part of the infrastructure of the transit system, the environment class
in Jason is extended and customized to handle the action of each train agent.
The environment class revises an agent’s belief base as a consequence of an
action. The communication between train agents are also treated as actions by
the environment class.

The most part of this transit scenario is certain. With respect to sensing the
signal, we implemented the approach described in Section 4. Initially, the PGM
specified in the Hugin format is included into the train agent’s epistemic state,
and a uniform prior distribution on the S node is inserted. When the sensory
action ‘senseSignal’ is performed, an sensory observation is first sampled from the
probability distribution on the observations given the probability distribution
on the states of the signal, following the Monte Carlo principle. Afterwards,
the sensory observation is inserted into the O node of the PGM as evidence.
After propagating the uncertainty using the Hugin engine, a belief atom is
derived from the posterior probability distribution about the signal, and this
belief atom will be added into the train agent’s belief base. Furthermore, the
posterior probability distribution will serve as the prior probability distribution
on the state of the signal in the next step if required. As discussed in Section 4,
the original AgentSpeak plan selection procedure is still applicable.

When the train agent received the belief ‘Sig(T)’ for the ignorance about the
actual state of the signal, it will further consider the utilities of actions. Besides
the observation sampling and uncertainty propagation, the expected utility of
each action is calculated. In this case, the difference between two applicable
plans (P5 and P6) comes from their first actions. Other items in these plans are
ignored since they are not relevant to the actions in the PGM. The plan, which
has the action with the highest utility, will be selected.

In the customized environment class, there is also a visual panel showing the
entire scenario as shown in Fig. 5. All agents (the ones for the trains, the signal,
and the train stations) are located on a rectangular track. The belief base and
the information from the epistemic state of each train agent are listed in the
left bottom. The environment also receives input from the buttons on the right
bottom (e.g. switching the signals and informing that the passengers boarding is
complete). These buttons simulate the events generated by the agents for signals
and train stations. The probability distribution about the signals included in
agents’ epistemic states are shown near the track.

5.3 Testing Scenarios

Based on the defined actions, a rich class of behaviours of the transit scenario
can be specified. For example,

– When the train is approaching the train station, it stops first and opens its
doors for passenger boarding. Afterwards, the train keeps sensing whether
the boarding is complete. The train will then close its doors and start moving
again.

– The safe distance between trains is always kept.



Fig. 5. The transit train scenario.

With respect to the noisy sensing of the signal, we considered the following
two situations:

– When one train is entering the sensing range of a signal which is green, it
keeps sensing the signal and moving forward at a normal speed. Its epistemic
state about the actual state of the signal keeps changing until leaving the
sensing range.

– Assume the signal is initially green, and the train proceeds at a normal
speed. When the train is approaching the signal, we switch the signal to
red. The train’s epistemic state and its belief base will change after making
several observations. Additionally, since the train is close to the signal, the
belief is updated quickly since the noise is small (we implicitly encoded this
information into the conditional probability tables in the BNs). A sudden
break stops the train.

All these behaviours have been validated by the implemented prototype.

6 Conclusions

In this paper, we addressed the problem of handling uncertainty about a
stochastic environment in a BDI architecture by presenting a hybrid BDI-PGM
framework. In particular, we used PGMs to model the uncertainty about the
environment and their relationships. We further took into account the utilities



of actions and specified these utilities in PGMs. The PGMs are included in
the agents’ epistemic state, and corresponding belief sets can be derived from
epistemic states, so that the original AgentSpeak plan selection is still applicable.
When an agent has a special belief, e.g., ‘Sig(T)’, representing the ignorance
about the actual world, we integrate the decision making process into the plan
selection procedure. In order to test the proposed hybrid BDI-PGM framework,
we designed and implemented a simplified transit scenario. In this prototype, all
the required behaviours are validated.

It is possible that in a dynamically changing environment, the pre-specified
plans are not complete. As future work, algorithms for automatically building
plan libraries for the hybrid BDI-PGM framework are required. In a
multiagent setting, uncertainty about the environment can be complicated by
behaviours of other agents, which are subject to their relationships. These
cooperating/adversary behaviours of agents have not be discussed in this paper,
and deserve further investigation. For PGMs, setting reasonable parameters
(i.e., the numbers in conditional probability tables and utility tables) is always
challenging. There are sophisticated techniques in the literature that can
facilitate the parameter learning and the structure discovery for PGMs. Learning
from the log data of existing SCADA systems would be beneficial. Furthermore,
quantitative comparison study with other uncertain BDI architectures is also
necessary.
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