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Abstract

Recently, the problem of inconsistency handling in de-
scription logics has attracted a lot of attention. Many ap-
proaches were proposed to deal with this problem based
on existing techniques for inconsistency management.
In this paper, we first define two revision operators in
description logics, one is called the weakening-based
revision operator and the other is its refinement. The
logical properties of the operators are analyzed. Based
on the revision operators, we then propose an algorithm
to handle inconsistency in astratifieddescription logic
knowledge base. We show that when the weakening-
based revision operator is chosen, the resulting knowl-
edge base of our algorithm is semantically equivalent to
the knowledge base obtained by applyingrefined con-
junctive maxi-adjustment(RCMA) which refines the
disjunctive maxi-adjusment (DMA), a good strategy for
inconsistency handling in classical logic.

Introduction
Ontologies play a crucial role for the success of the Seman-
tic Web (Berners-Lee, Hendler, and Lassila 2001). There
are many representation languages for ontologies, such as
description logics (or DLs for short) and F-logic (Staab
and Studer 2004). Recently, the problem of inconsistency
(or incoherence) handling in ontologies has attracted a lot
of attention and research addressing this problem has been
reported in many papers (Baader and Hollunder; Baader
and Hollunder 1995; Parsia, Sirin, and Kalyanpur 2005;
Haase et. al. 2005; Schlobach 2005; Schlobach and Cor-
net 2003; Flouris, Plexousakis and Antoniou 2005; Huang,
Harmelen, and Teije 2005; Meyer, Lee, and Booth 2005;
Friedrich and Shchekotykhin 2005). Inconsistency can oc-
cur due to several reasons, such as modelling errors, migra-
tion or merging ontologies, and ontology evolution. Cur-
rent DL reasoners, such as RACER (Haarslev and Möller
2005) and FaCT (Horrocks 1998), can detect logical incon-
sistency. However, they only provide lists of unsatisfiable
classes. The process ofresolving inconsistency is left to
the user or ontology engineers. The need to improve DL
reasoners to reason with inconsistency is becoming urgent
to make them more applicable.Many approaches were pro-
posed to handle inconsistency in ontologies based on exist-
ing techniques for inconsistency management in traditional

logics, such as propositional logic and nonmonotonic logics
(Schlobach and Cornet 2003; Parsia, Sirin, and Kalyanpur
2005; Huang, Harmelen, and Teije 2005).

It is well-known that priority or preference plays an im-
portant role in inconsistency handling (Baader and Hollun-
der; Benferhat and Baida 2004; Meyer, Lee, and Booth
2005). In (Baader and Hollunder), the authors introduced
priority to default terminological logic such that more spe-
cific defaults are preferred to more general ones. When con-
flicts occur in reasoning with defaults, defaults which are
more specific should be applied before more general ones.
In (Meyer, Lee, and Booth 2005), an algorithm, calledre-
fined conjunctive maxi-adjustment(RCMA for short) was
proposed to weaken conflicting information in astratified
DL knowledge base and some consistent DL knowledge
bases were obtained. To weaken a terminological axiom,
they introduced a DL expression, calledcardinality restric-
tions on concepts. However, to weaken an assertional ax-
iom, they simply delete it. An interesting problem is to ex-
plore other DL expressions to weaken aconflictingDL ax-
iom (both terminological and assertional).

In this paper, we first define two revision operators in de-
scription logics, one is called a weakening-based revision
operator and the other is its refinement. The revision opera-
tors are defined by introducing a DL constructor callednom-
inals. The idea is that when a terminology axiom or a value
restriction is in conflict, we simply add explicit exceptions to
weaken it and assume that the number of exceptions is min-
imal. Based on the revision operators, we then propose an
algorithm to handle inconsistency in astratifieddescription
logic knowledge base. We show that when the weakening-
based revision operator is chosen, the resulting knowledge
base of our algorithm is semantically equivalent to that of
the RCMA algorithm. However, their syntactical forms are
different.

This paper is organized as follows. Section 2 gives a brief
review of description logics. We then define two revision
operators in Section 3. The revision-based algorithm for in-
consistency handling is proposed in Section 4. Before con-
clusion, we have a brief discussion on related work.

Description logics
In this section, we introduce some basic notions of Descrip-
tion Logics (DLs), a family of well-known knowledge rep-



resentation formalisms (Baader et al. 2003). To make our
approach applicable to a family of interesting DLs, we con-
sider the well-known DLALC (Schmidt-Schaußand Smolka
1991), which is a simple yet relatively expressive DL. Let
NC andNR be pairwise disjoint and countably infinite sets
of concept namesandrole namesrespectively. We use the
lettersA and B for concept names, the letterR for role
names, and the lettersC and D for concept. The set of
ALC concepts is the smallest set such that: (1) every con-
cept name is a concept; (2) ifC andD are concepts,R is a
role name, then the following expressions are also concepts:
¬C, CuD, CtD, ∀R.C and∃R.C.

An interpretationI = (∆I , ·I) consists of a set∆I ,
called thedomainof I, and a function·I which maps ev-
ery conceptC to a subsetCI of ∆I and every roleR to a
subsetRI of ∆I ×∆I such that, for all conceptsC, D, role
R, the following properties are satisfied:

(1) (¬C)I = ∆I \ CI ,
(2) (CuD)I = CI∩DI , (CtD)I = CI∪DI ,
(3) (∃R.C)I = {x|∃y s.t.(x, y)∈RI andy∈CI},
(4) (∀R.C)I = {x|∀y(x, y)∈RI impliesy∈CI}.
We introduce an extra expression of DLs callednominals

(also calledindividual names) (Schaerf 1994). A nominal
has the form{a}, wherea is an individual name. It can be
viewed as a powerful generalization of DL Abox individu-
als. The semantics of{a} is defined by{a}I = {aI} for
an interpretationI. Nominals are included in many DLs,
such asSHOQ (Horrocks and Sattler 2001) andSHOIQ
(Horrocks and Sattler 2005).

A general concept inclusion axiom (GCI) orterminology
is of the formCvD, whereC andD are two (possibly com-
plex) ALC concepts. An interpretationI satisfies a GCI
CvD iff CI⊆DI . A finite set ofGCIs is called aTbox.
We can also formulate statements about individuals. We de-
note individual names asa, b, c. A concept(role) assertion
axiom has the formC(a) (R(a, b)), whereC is a concept
description,R is a role name, anda, b areindividual names.
To give a semantics to Aboxes, we need to extend interpre-
tations to individual names. For each individual namea, ·I

maps it to an elementaI ∈ ∆I . The mapping·I should
satisfy theunique name assumption(UNA)1, that is, ifa and
b are distinct names, thenaI 6=bI . An interpretationI sat-
isfies a concept axiomC(a) iff aI∈CI , it satisfies a role
axiom R(a, b) iff (aI , bI)∈RI . An Aboxcontains a finite
set of concept and role axioms. A DL knowledge baseK
consists of a Tbox and an Abox, i.e. it is a set of GCIs and
assertion axioms. An interpretationI is a modelof a DL
(Tbox or Abox) axiom iff it satisfies this axiom, and it is a
model of a DL knowledge baseK if it satisfies every axiom
in K. In the following, we useM(φ) (or M(K)) to de-
note the set of models of an axiomφ (or DL knowledge base
K). K is consistent iffM(K)6=∅. Let K be an inconsistent
DL knowledge base, a setK ′⊆K is aconflictof K if K ′ is
inconsistent, and any sub-knowledge baseK ′′⊂K ′ is con-

1In some very expressive DLs, such asSHOQ, this assump-
tion is dropped. Instead, they useinequality assertionsof the form
a 6

.
=b for individual namesa andb, with the semantics that an inter-

pretationI satisfiesa 6
.
=b iff a

I 6=b
I .

sistent. Given a DL knowledge baseK and a DL axiomφ,
we say Kentailsφ, denoted asK |= φ, iff M(K)⊆M(φ).

Revision Operators for DLs
Definition
Belief revision is a very important topic in knowledge repre-
sentation. It deals with the problem of consistently accom-
modating new information received by an existing knowl-
edge base. Recently, Flouris et al. discuss how to apply
the famous AGM theory (Gardenfors 1988) in belief revi-
sion to DLs and OWL (Flouris, Plexousakis and Antoniou
2005). However, they only evaluate the feasibility of apply
theAGM postulates for contractionin DLs. There is no ex-
plicit construction of a revision operator in their paper. In
this subsection, we propose a revision operator for DLs and
provide a semantic explanation of this operator.

We need some restrictions on the knowledge base to
be revised. First, the original DL knowledge base should
be consistent. Second, we only consider inconsistencies
arising due to objects explicitly introduced in the Abox.
That is, supposeK and K ′ are the original knowledge
base and the newly received knowledge base respectively,
then for each conflictKc of K∪K ′, Kc must contain an
Abox statement. For example, we exclude the following
case: > v ∃R.C ∈ K and> v ∀R.¬C ∈ K ′. The
handling of conflicting axioms in the Tbox has been dis-
cussed in much work recently (Schlobach and Cornet 2003;
Parsia, Sirin, and Kalyanpur 2005). In this section, we dis-
cuss the resolution of conflicting information which contains
assertional axioms in the context of knowledge revision.

We give a method to weaken a GCI first. To weaken a
GCI, we simply add some explicit exceptions, and the num-
ber of exceptions is called the degree of the weakened GCI.

Definition 1 Let CvD be a GCI. A weak-
ened GCI (CvD)weak of CvD has the form
(Cu¬{a1}u...u¬{an})vD, wheren is the number of indi-
viduals to be removed fromC. We used((CvD)weak) = n
to denote the degree of(CvD)weak.

It is clear that whend((CvD)weak) = 0, (CvD)weak =
CvD. The idea of weakening a GCI is similar to weaken
an uncertain rule in (Benferhat and Baida 2004). That is,
when a GCI is involved in conflict, instead of dropping it
completely, we remove those individuals which cause the
conflict.

The weakening of an assertion is simpler than that of a
GCI. The weakened assertionφweak of an Abox assertion
φ is of the form eitherφweak = > or φweak = φ. That
is, we either delete it or keep it intact. The degree ofφweak,
denoted asd(φweak), is defined asd(φweak) = 1 if φweak =
> and 0 otherwise.

Next, we consider the weakening of a DL knowledge
base.

Definition 2 LetK andK ′ be two consistent DL knowledge
bases. SupposeK∪K ′ is inconsistent. A DL knowledge
baseKweak,K′ is a weakened knowledge base ofK w.r.t
K ′ if it satisfies:

• Kweak,K′ ∪ K ′ is consistent, and



• There is a bijectionf from K to Kweak,K′ such that for
eachφ∈K, f(φ) is a weakening ofφ.

The set of all weakened base ofK w.r.t K ′ is denoted by
WeakK′(K).

In Definition 2, the first condition requires that the weakened
base should be consistent withK ′. The second condition
says that each element inKweak,K′ is uniquely weakened
from an element inK.

Example 1 Let K = {bird(tweety), birdvflies}
and K ′ = {¬flies(tweety)}, where bird and
flies are two concepts andtweety is an indi-
vidual name. It is easy to check thatK ∪ K ′

is inconsistent. Let K ′ = {>, birdvflies},
K ′′ = {bird(tweety), birdu¬{tweety}vflies}, then
bothK ′ andK ′′ are weakened bases ofK w.r.t K ′.

The degree of a weakened base is defined as the sum of
the degrees of its elements.
Definition 3 Let Kweak,K′ be a weakened base of a DL
knowledge baseK w.r.t K ′. The degree ofKweak is de-
fined as

d(Kweak,K′) = Σφ∈Kweak,K′
d(φ)

In Example 1, we haved(K ′) = d(K ′′) = 1.
We now define a revision operator.

Definition 4 Let K be a consistent DL knowledge base.
K ′ is a newly received DL knowledge base. The result
of weakening-based revision ofK w.r.t K ′, denoted as
K◦wK ′, is defined as

K◦wK ′ = {K ′∪Ki : Ki∈WeakK′(K), and 6 ∃

Kj∈WeakK′(K), d(Kj) < d(Ki)}.

The result of revision ofK by K ′ is a set of DL knowledge
bases, each of which is the union ofK ′ and a weakened base
of K with the minimal degree.K◦wK ′ is adisjunctive DL
knowledge base2 defined in (Meyer, Lee, and Booth 2005).

We now consider the semantic aspect of our revision op-
erator.

In (Meyer, Lee, and Booth 2005), an ordering relation was
defined to compare interpretations. It was claimed that only
two interpretations having the same domain and mapping
the same individual names to the same element in the do-
main can be compared. Given a domain∆, a denotation
functiond is an injective mapping which maps every indi-
vidual a to a differentaI in ∆. Then apre-interpretation
was defined as an ordered pairπ = (∆π, dπ), where∆π is
a domain anddπ is a denotation function. For each inter-
pretationI = (∆I , ·I), its denotation function is denoted
asdI . Given a pre-interpretationπ = (∆π, dπ), I

π is used
to denote the class of interpretationsI with ∆I = ∆π and
dI = dπ. It is also assumed that a DL knowledge base is a
multi-set3 of GCIs and assertion axioms.We now introduce
the ordering between two interpretations defined in (Meyer,
Lee, and Booth 2005).

2A disjunctive DL knowledge (or DKB) is a set of DL knowl-
edge bases. A DKBK is satisfied by an interpretationI iff I is a
model of at least one of the elements ofK.

3A multi-set is a set in which an element can appear more than
once.

Definition 5 Let π be a pre-interpretation,I ∈ I
π, φ a DL

axiom, andK a multi-set of DL axioms. Ifφ is an assertion,
the number ofφ-exceptionseφ(I) is 0 if I satisfiesφ and 1
otherwise. Ifφ is a GCI of the formCvD, the number of
φ-exceptions forI is:

eφ(I) =

{

|CI∩(¬DI)| if CI∩(¬DI) is finite
∞ otherwise.

(1)

The number ofK-exceptions forI is eK(I) = Σφ∈Keφ(I).
The ordering¹π

K on I
π is: I ¹π

K I ′ iff eK(I)≤eK(I ′).

We give a proposition to show that our weakening-based
revision operator captures some kind of minimal change.

Proposition 1 Let K be a consistent DL knowledge base.
K ′ is a newly received DL knowledge base. LetΠ be the
class of all pre-interpretations.◦w is the weakening-based
revision operator. We then have

M(K◦wK ′) = ∪π∈Πmin(M(K ′),¹π
K).

Proposition 1 says that the models of the resulting knowl-
edge base of our revision operator are models ofK ′ which
are minimalw.r.t the ordering¹Π

K induced byK. The
proofs of proposition 2 and other propositions can be found
in the appendix.

Let us look at an example.

Example 2 Let K = {∀hasChild.RichHuman(Bob),
hasChild(Bob,Mary), RichHuman(Mary), hasChild
(Bob, Tom)}. Suppose we now receive new information
K ′ = {hasChild (Bob, John),¬RichHuman(John)}.
It is clear that K∪K ′ is inconsistent. Since
∀hasChild. RichHuman(Bob) is the only assertion
axiom involved in conflict withK ′, we only need to
delete it to restore consistency, that is,K◦wK ′ =
{hasChild(Bob,Mary), RichHuman(Mary), hasChild
(Bob, Tom), hasChild(Bob, John),¬RichHuman(John)}.

Refined weakening-based revision

In weakening-based revision, to weaken a conflicting
assertion axiom, we simply delete it. However, this
may result in counterintuitive conclusions. In Example
2, after revisingK by K ′ using the weakening-based
operator, we cannot infer thatRichHuman(Tom) be-
cause∀hasChild.RichHuman(Bob) is discarded, which
is counterintuitive. FromhasChild(Bob, Tom) and
∀hasChild.RichHuman(Bob) we should have known that
RichHuman(Tom) and this assertion is not in conflict
with information inK ′. The solution for this problem is to
treatJohnas anexceptionand that all children ofBobother
thanJohnare rich humans.

Next, we propose a new method for weakening Abox as-
sertions. For an Abox assertion of the form∀R.C(a), it is
weakened by dropping some individuals which are related
to the individuala by the relationR, i.e. its weakening has
the form∀R.(C t {b1, ..., bn})(a), wherebi (i = 1, n) are
individuals to be dropped. For other Abox assertionsφ, we
either keep them intact or replace them by>.



Definition 6 Letφ be an assertion in an Abox. A weakened
assertionφweak of φ is defined as:

φweak =

{

∀R.(C t {b1, ..., bn})(a) if φ = ∀R.C(a)
> or φ otherwise.

(2)
The degree ofφweak is d(φweak) = n if φ = ∀R.C
and φweak = ∀R.(C t {b1, ..., bn})(a), d(φweak) = 1 if
φ6=∀R.C andφweak = > andd(φweak) = 0 otherwise.

We call the weakened base obtained by applying weakening
of GCIs in Definition 1 and weakening of assertions in Def-
inition 6 as a refined weakened base. We then replace the
weakened base by the refined weakened base in Definition
4 and get a new revision operator, which we call a refined
weakening-based revision operator and is denoted as◦rw.

Let us have a look at Example 2 again.

Example 3 (Example 2 Continued) According to our
discussion before, ∀hasChild.RichHum- an(Bob)
is the only assertion axiom involved in conflict in
K and John is the only exception which makes
∀hasChild.RichHuman(Bob) conflicting, soK◦rwK ′ =
{∀hasChild.(RichHumant{John})(Bob), hasChild
(Bob,Mary), RichHuman(Mary), hasChild(Bob, Tom),
hasChild(Bob, John),¬RichHuman(John)}. We then
can infer that RichHuman(Tom) fromK◦rwK ′.

To give a semantic explanation of the refined weakening-
based revision operator, we need to define a new ordering
between interpretations.

Definition 7 Let π be a pre-interpretation,I ∈ I
π, φ a DL

axiom, andK a multi-set of DL axioms. Ifφ is an assertion
of the form∀R.C(a), the number ofφ-exceptions forI is:

eφ
r (I) =

{

|RI(aI)∩(¬CI)| if RI(aI)∩(¬CI) is finite
∞ otherwise,

(3)
whereRI(aI) = {b∈∆I : (aI , b)∈RI}. If φ is an as-
sertion which is not of the form∀R.C(a), the number of
φ-exceptionseφ

r (I) is 0 if I satisfiesφ and 1 otherwise. Ifφ
is a GCI of the formCvD, the number ofφ-exceptions for
I is:

eφ
r (I) =

{

|CI∩(¬DI)| if CI∩(¬DI) is finite
∞ otherwise.

(4)

The number ofK-exceptions forI is eK
r (I) = Σφ∈Keφ

r (I).
The refined ordering¹π

r,K on I
π is: I ¹π

r,K I ′ iff
eK
r (I)≤eK

r (I ′).

We have the following propositions for the refined
weakening-based revision operator.

Proposition 2 Let K be a consistent DL knowledge base.
K ′ is a newly received DL knowledge base. LetΠ be the
class of all pre-interpretations.◦rw is the weakening-based
revision operator. We then have

M(K◦rwK ′) = ∪π∈Πmin(M(K ′),¹π
r,K).

Proposition 2 says that the refined weakening-based operator
can be accomplished with minimal change.

Proposition 3 Let K be a consistent DL knowledge base.
K ′ is a newly received DL knowledge base. We then have

K◦rwK ′ |= φ, ∀φ∈K◦wK ′.

By Example 3, the converse of Proposition 3 is false. Thus,
we have shown that the resulting knowledge base of the re-
fined weakening-based revision contains more important in-
formation than that of the weakening-based revision.

Logical properties of the revision operators
In belief revision theory, a set of postulates or logical prop-
erties are proposed to characterize a “rational” revision op-
erator. The most famous postulates are so-called AGM pos-
tulates (Gardenfors 1988) which were reformulated in (Kat-
suno and Mendelzon 1992). We now generalize AGM pos-
tulates for revision to DLs.

Definition 8 Given two DL knowledge basesK andK ′. A
revision operator◦ is said to be AGM-compliant if it satisfies
the following properties:
(R1) K◦K ′ |= φ for all φ ∈ K ′

(R2) If K∪K ′ is consistent, thenM(K◦K ′) = M(K∪K ′)
(R3) If K ′ is consistent, thenK◦K ′ is also consistent
(R4) If M(K) = M(K1) and M(K ′) = M(K2), then
M(K◦K ′) = M(K1◦K2)
(R5) M(K◦K ′)∩M(K ′′)⊆M(K◦(K ′∪K ′′))
(R6) If M(K◦K ′)∩M(K ′′) is not empty, then
M(K◦(K ′∪K ′′))⊆M(K◦K ′)∩M(K ′′)

(R1) says that the new information must be accepted. (R2)
requires that the result of revision be equivalent to the union
of the existing knowledge base and the newly arrived knowl-
edge base if this union is satisfiable. (R3) is devoted to the
satisfiability of the result of revision. (R4) is the syntax-
irrelevance condition. (R5) and (R6) together are used to
ensure minimal change. (R4) states that the operator is inde-
pendent of the syntactical form of both the original knowl-
edge base and the new knowledge base. The following prop-
erty is obviously weaker than (R4)
(R4′) If M(K1) = M(K2), then M(K◦K1) =
M(K◦K2).

Definition 9 A revision operator◦ is said to be quasi-AGM
compliant if it satisfies (R1)-(R3), (R4’), (R5-R6).

The following proposition tells us the logical properties
of our revision operators.

Proposition 4 Given two DL knowledge basesK and K ′.
Both the weakening-based revision operator and the refined
weakening-based revision operator are not AGM-compliant
but they satisfy postulates (R1), (R2), (R3), (R4’), (R5) and
(R6), that is, they are quasi-AGM compliant.

Proposition 4 is a positive result. Our revision operators sat-
isfy all the AGM postulates except (R4), i.e. the syntax-
irrelevant condition.

A Revision-based Algorithm
It is well-known that priorities or preferences play an impor-
tant role in inconsistency handling (Baader and Hollunder;
Benferhat and Baida 2004; Benferhat et al. 2004; Meyer,



Lee, and Booth 2005). In this section, we define an algo-
rithm for handling inconsistency in a stratified DL knowl-
edge base, i.e. each element of the base is assigned a
rank, based on the weakening-based revision operator. More
precisely, a stratified DL knowledge base is of the form
Σ = K1∪...∪Kn, where for eachi∈{1, ..., n}, Ki is a fi-
nite multi-set of DL sentences. Sentences in each stratum
Ki have the same rank or reliability, while sentences con-
tained inKj such thatj > i are seen as less reliable.

Revision-based algorithm
We first need to generalize the (refined) weakening-based
revision by allowing the newly received DL knowledge base
to be a disjunctive DL knowledge base. That is, we have the
following definition.

Definition 10 Let K be a consistent DL knowledge base.
K′ is a newly received disjunctive DL knowledge base. The
result of (refined) weakening-based revision ofK w.r.t K′,
denoted asK◦wK

′, is defined as

K◦wK
′ = {K ′∪Kweak,K′ : K ′∈K′, Kweak,K′∈

WeakK′(K) & 6 ∃Ki∈WeakK′(K),

d(Ki) < d(Kweak,K′)}.

Revision-based Algorithm (R-Algorithm)
Input: a stratified DL knowledge baseΣ = {K1, ...,Kn}, a
(refined) weakening-based revision operator◦ (i.e. ◦ = ◦w

or ◦rw), a new DL knowledge baseK
Result: a disjunctive DL knowledge baseK
begin
K←K1◦K;
for i = 2 to n do

K←Ki◦K;
return K

end
The idea originates from the revision-based algorithms

proposed in (Qi, Liu, and Bell 2005). That is, we start by
revising the set of sentences in the first stratum using the
new DL knowledge baseK, and the result of revision is a
disjunctive knowledge base. We then revise the set of sen-
tences in the second stratum using the disjunctive knowledge
base obtained by the first step, and so on.

Example 4 Let Σ = (K1,K2) and K = {>}, where
K1 = {W (t),¬F (t), B(c)} and K2 = {BvF,WvB}
(W , F , B, t and c abbreviate Wing, Flies,
Bird, Tweety and Chirpy). Let ◦ = ◦w in
R-Algorithm. Since K1 is consistent, we have
K = K1◦w{>} = {K1}. SinceK1∪K2 is inconsistent,
we need to weakenK2. Let K ′

2 = {Bu¬{t}vF,WvB}
andK ′′

2 = {BvF,Wu¬{t}vB}, soK ′
2, K ′′

2∈Weak(K2)
and d(K ′

2) = d(K ′′
2 ) = 1. It is easy to check that

K ′
2∪K1 and K ′′

2∪K1 are both consistent and they
are the only weakened bases ofK2 which are consis-
tent with K1. So K2◦wK = {K1∪K ′

2,K1∪K ′′
2 } =

{{W (t),¬F (t), B(c), Bu¬{t}vF,WvB},
{W (t),¬F (t), B(c), BvF,Wu¬{t}vB}}. It is easy
to check thatF (c) can be inferred fromK2◦wK.

Based on Proposition 3, it is easy to prove the following
proposition.

Proposition 5 Let Σ = {K1, ...,Kn} be a stratified DL
knowledge base andK be a DL knowledge base. Sup-
poseK1 andK2 are disjunctive DL knowledge bases result-
ing from R-Algorithm using the weakening-based operator
and refined weakening-based operator respectively. We then
have, for each DL axiomφ, if K1 |= φ thenK2 |= φ.

Proposition 5 shows that the resulting knowledge base of R-
Algorithm w.r.t the refined weakening-based operator con-
tains more important information than that of R-Algorithm
w.r.t the weakening-based operator.

In the following we show that if the weakening-based re-
vision operator is chosen, then our revision-based approach
is equivalent to the refined conjunctive maxi-adjustment
(RCMA) approach (Meyer, Lee, and Booth 2005). The
RCMA approach is defined in a model-theoretical way as
follows.

Definition 11 (Meyer, Lee, and Booth 2005) LetΣ =
(K1, ...,Kn) be a stratified DL knowledge base. LetΠ be
the class of all pre-interpretations. Letπ ∈ Π, I, I ′ ∈ I

π.
The lexicographically combined preference ordering¹π

lex is
defined asI¹π

lexI
′ iff ∀j∈{1, ..., n}, I¹π

Kj
I ′ or I≺π

Ki
I ′

for somei < j. Then the set of models of the consistent
DL knowledge base extracted fromΣ by means of¹π

lex is
∪π∈Πmin(Iπ,¹π

lex).

The following proposition shows that our revision-based
approach is equivalent to the RCMA approach when the
weakening-based revision operator is chosen.

Proposition 6 Let Σ = (K1, ...,Kn) be a stratified DL
knowledge base andK = {>}. LetK be the resulting DL
knowledge base of R-Algorithm. We then have

M(K) = ∪π∈Πmin(Iπ,¹π
lex).

In (Meyer, Lee, and Booth 2005), an algorithm was pro-
posed to compute the RCMA approach in a syntactical way.
The main difference between our algorithm and the RCMA
algorithm is that the strategies for resolving terminologi-
cal information are different. The RCMA algorithm uses
a preprocess to transform all the GCIsCivDi to cardinality
restrictions (Baader, Buchheit, and Hollander 1996) of the
form ≤0Ciu¬Di, i.e. the conceptsCiu¬Di do not have
any elements. Then those conflicting cardinality restric-
tions ≤0CiuDi are weakened by relaxing the restrictions
on the number of elementsC may have, i.e. a weakening of
≤0CiuDi is of the form≤nCiuDi wheren > 1. The re-
sulting knowledge base contains cardinality restrictionsand
assertions and is no longer a DL knowledge base in a strict
sense. By contrast, our algorithm weakens the GCIs by in-
troducingnominal and role constructors. So the resulting
DL knowledge base of our algorithm still contains GCIs and
assertions.

Application to revising a stratified DL knowledge
base
We can define two revision operators based on R-Algorithm.
Let Σ = (K1, ...,Kn) be a stratified knowledge base and



K be a new DL knowledge base. Let◦ be the (refined)
weakening-based revision operator. The prioritized (refined)
weakening-based revision operator, denoted as◦g, is defined
in a model-theoretic way as:M(Σ◦gK) = ∪π∈Πmin({I ∈
I
π : I |= K},¹π

lex). We now look at the logical properties
of the newly defined operator.

Proposition 7 Let Σ be a stratified DL knowledge base,K
andK ′ be two DL knowledge bases. The revision operator
◦g satisfies the following properties:

(P1) If K is satisfiable, thenΣ◦gK is satisfiable.
(P2) Σ◦gK |= φ, for all φ ∈ K.
(P3) If M(Σ)∩M(K) is not empty, then
M(Σ◦gK)=M(Σ)∩M(K).

(P4) Given a stratified DL knowledge baseK =
{S1, ..., Sn}, and two DL knowledge basesK and K ′, if
K≡K ′, thenMod(Σ◦gK) = Mod(Σ◦gK ′).

(P5) M(Σ◦gK ′)∩M(K ′′)⊆M(Σ◦g(K ′∪K ′′)).
(P6) If M(Σ◦gK ′)∩M(K ′′) is not empty, then
M(Σ◦g(K ′∪K ′′))⊆M(Σ◦gK ′)∩M(K ′′).

(P1)-(P3) correspond to Conditions (R1)-(R3) in Definition
8. (P4) is a generalization of the weakening condition (R4’)
of the principle of irrelevance of syntax. (P5) and (P6) are
generalization of (R5) and (R6).

Related Work
This work is closely related to the work on inconsistency
handling in propositional and first-order knowledge bases
in (Benferhat et al. 2004; Benferhat and Baida 2004), the
work on knowledge integration in DLs in (Meyer, Lee, and
Booth 2005) and the work on revising-based inconsistency
handling approaches in (Qi, Liu, and Bell 2005). In (Ben-
ferhat et al. 2004), a very powerful approach, called dis-
junctive maxi-adjustment (DMA) approach, was proposed
for weakening conflicting information in a stratified propo-
sitional knowledge base. The basic idea of the DMA ap-
proach is that starting from the information with the lowest
stratum where formulae have highest level of priority, when
inconsistency is encountered in the knowledge base, it weak-
ens the conflicting information in those strata. When applied
to a first-order knowledge base directly, the DMA approach
is not satisfactory because some important information is
lost. A new approach was proposed in (Benferhat and Baida
2004). For a first-order formula, called anuncertain rule,
with the form∀xP (x) ⇒ Q(x), when it is involved in a con-
flict in the knowledge base, instead of deleting it completely,
the formula is weakened by dropping some of the instances
of this formula that are responsible for the conflict. The idea
of weakening GCIs in Definition 1 is similar to this idea. In
(Meyer, Lee, and Booth 2005), the authors proposed an algo-
rithm for inconsistency handling by transforming every GCI
in a DL knowledge base into a cardinality restriction, and a
cardinality restriction responsible for a conflict is weakened
by relaxing the restrictions on the number of elements it may
have. So their strategy of weakening GCIs is different from
ours. Furthermore, we proposed a refined revision operator
which not only weakens the GCIs but also assertions of the
form ∀R.A(a). The idea of applying revision operators to

deal with inconsistency in a stratified knowledge base was
proposed in (Qi, Liu, and Bell 2005). However, this work is
only applicable in propositional stratified knowledge bases.
The R-Algorithm is a successful application of the algorithm
to DL knowledge bases.

There are many other work on inconsistency handling in
DLs (Baader and Hollunder; Baader and Hollunder 1995;
Parsia, Sirin, and Kalyanpur 2005; Quantz and Royer 1992;
Haase et. al. 2005; Schlobach 2005; Schlobach and Cor-
net 2003; Flouris, Plexousakis and Antoniou 2005; Huang,
Harmelen, and Teije 2005; Friedrich and Shchekotykhin
2005). In (Baader and Hollunder 1995; Baader and Hol-
lunder), Reiter’s default logic (Reiter 1987) is embedded
into terminological representation formalisms, where con-
flicting information is treated asexceptions. To deal with
conflicting default rules, each rule is instantiated using in-
dividuals appearing in an Abox and two existing methods
are applied to compute all extensions. However, in prac-
tical applications, when there is a large number of indi-
vidual names, it is not advisable to instantiate the default
rules. Moreover, only conflicting default rules are dealt
with and it is assumed that information in the Abox is ab-
solutely true. This assumption is dropped in our algorithm,
that is, an assertion in an Abox may be weakened when it
is involved in a conflict. Another work on handling con-
flicting defaults can be found in (Quantz and Royer 1992).
The authors proposed a preference semantics for defaults in
terminological logics. As pointed out in (Meyer, Lee, and
Booth 2005), this method does not provide a weakening of
the original knowledge base and the formal semantics is not
cardinality-based. Furthermore, it is also assumed that in-
formation in the Abox was absolutely true. In recent years,
several methods have been proposed to debug erroneous ter-
minologies and have them repaired when inconsistencies
are detected (Schlobach and Cornet 2003; Schlobach 2005;
Parsia, Sirin, and Kalyanpur 2005; Friedrich and Shcheko-
tykhin 2005). A general framework for reasoning with in-
consistent ontologies based onconcept relevancewas pro-
posed in (Huang, Harmelen, and Teije 2005). The idea is
to select from an inconsistent ontology some consistent sub-
theories based on aselection function, which is defined on
the syntactic or semantic relevance. Then standard reason-
ing on the selected sub-theories is applied to findmeaningful
answers. A problem with debugging of erroneous terminolo-
gies methods in (Schlobach and Cornet 2003; Schlobach
2005; Parsia, Sirin, and Kalyanpur 2005; Friedrich and
Shchekotykhin 2005) and the reasoning method in (Huang,
Harmelen, and Teije 2005) is that both approaches delete
terminologies in a DL knowledge base to obtain consistent
subbases, thus the structure of DL language is not exploited.

Conclusions and Further Work
In this paper, we propose a revision-based algorithm for han-
dling inconsistency in description logics. We mainly consid-
ered the following issues:

1. A weakening-based revision operator was defined in both
syntactical and semantic ways. Since the weakening-
based revision operator may result in counter-intuitive



conclusions in some cases, we defined a refined version
of this operator by introducing additional expressions in
DLs.

2. The well-known AGM postulates are reformulated and we
showed that our operators satisfy most of the postulates.
Thus they have good logical properties.

3. A revision-based algorithm was presented to handle in-
consistency in a stratified knowledge base. When the
weakening-based revision operator is chosen, the result-
ing knowledge base of our algorithm is semantically
equivalent to that of the RCMA algorithm. The main dif-
ference between our algorithm and the RCMA algorithm
is that the strategies for resolving terminological informa-
tion are different.

4. Two revision operators were defined on stratified DL
knowledge bases and their logical properties were ana-
lyzed.

There are many problems worthy of further investigation.
Our R-Algorithm is based on two particular revision oper-
ators. Clearly, if a normative definition of revision opera-
tors in DLs is provided, then R-Algorithm can be easily ex-
tended. Unfortunately, such a definition does not exist now.
As far as we know, the first attempt to deal with this problem
can be found in (Flouris, Plexousakis and Antoniou 2005).
However, the authors only studied the feasibility of AGM’s
postulates for acontractionoperator and their results are not
so positive. That is, they showed that in many important
DLs, such asSHOIN (D) andSHIQ, it is impossible to
define a contraction operator that satisfies the AGM postu-
lates. Moreover, they didn’t apply AGM’s postulates for a
revision operator and explicit construction of a revision op-
erator was not considered in their paper. We generalized
AGM postulates for revision in Definition 8 and we showed
that our operators satisfied most of the generalized postu-
lates. An important future work is to construct a revision
operator in DLs which satisfies all the generalized AGM
postulates.

Proofs
Proof of Proposition 1: Before proving Proposition 1, we
need to prove two lemmas.

Lemma 1 Let K and K ′ be two consistent DL knowledge
bases andI be an interpretation such thatI |= K ′. Sup-
poseK ∪ K ′ is inconsistent. Letl = min(d(Kweak,K′) :
Kweak,K′∈WeakK′(K), I |= Kweak,K′). TheneK(I) =
l.

Proof: We only need to prove that for each
Kweak,K′∈WeakK′(K) such that I |= Kweak,K′

andd(Kweak,K′) = l, eK(I) = d(Kweak,K′).
(1) Letφ ∈ K be an assertion axiom. Supposeeφ(I) = 1,

then I 6|= φ. SinceI |= Kweak,K′ , φ 6∈ Kweak,K′ So
φweak = > and thend(φweak) = 1. Conversely, sup-
posed(φweak) = 1, then φweak = >. We must have
I 6|= φ. Otherwise, letK ′′

weak,K′ = (Kweak,K′\{>})∪{φ}.
SinceI |= φ, then K ′′

weak,K′ is consistent. It is clear

d(K ′′
weak,K′) < d(Kweak,K′), which is a contradiction. So

I 6|= φ, we then haveeφ(I) = 1. Thus,eφ = 1 iff d(φ) = 1.
(2) Let φ = CvD be a GCI axiom andφweak =

(CvD)weak∈Kweak,K′ . Supposed(φweak) = n. That
is, φweak = Cu¬{a1, ..., an}vD. SinceI |= Kweak,K′ ,
I |= φweak. Moreover, for any other weakeningφ′

weak

of φ, if d(φ′
weak) < n, thenI 6|= φ′

weak (because other-
wise, we find another weakeningK ′

weak,K′ = (Kweak,K′ \
{φweak})∪{φ

′
weak} such thatd(K ′

weak,K′) < d(Kweak,K′)

and I |= K ′
weak,K′). Since I |= φweak, CI \

{aI
1 , ..., aI

n} ⊆ DI . For eachai, we must haveai∈C
and ai 6∈D. Otherwise, we can delete suchai and obtain
φ′

weak = Cu{a1, ..., ai−1, ai+1, ..., an} v D such that
d(φ′

weak) < d(φweak) andI |= φ′
weak, which is a contra-

diction. So|CI∩¬DI |≤n. Since for eachai, let φ′
weak =

Cu{a1, ..., ai−1, ai+1, ..., an} v D, thenI 6|= φ′
weak, so

|CI∩¬DI |≥n. Therefore, we have|CI∩¬DI | = n =
d(φweak).

(1) and (2) together show thateK(I) = l.

Lemma 2 Let K and K ′ be two consistent knowledge
bases andI be an interpretation such thatI |=
K ′. SupposeK ∪ K ′ is inconsistent. Letdm =
min(d(Kweak,K′) : Kweak,K′∈WeakK′(K)). Then
I∈

⋃

π∈Π
min(M(K ′),¹π

K) iff eK(I) = dm.
Proof: “If Part”
SupposeeK(I) = dm. By Lemma 1, for eachI ′ such

that I ′ |= K ′, eK(I ′) = l, wherel = min(d(Kweak,K′) :
Kweak,K′∈WeakK′(K), I ′ |= Kweak,K′). That is, there
exitsKweak,K′ ∈ WeakK′(K) such thatI ′ |= Kweak,K′

and eK(I ′) = d(Kweak,K′). Sinced(Kweak,K′)≤dm, we
haveeK(I ′)≤eK(I). SoI∈

⋃

π∈Π
min(M(K ′),¹π

K).
“Only If Part”
SupposeI∈

⋃

π∈Π
min(M(K ′),¹π

K). We need to
prove that for all I ′ |= K ′, eK(I)≤eK(I ′). Suppose
I ∈ I

π for someπ = (∆π, dπ). It is clear that∀I ′∈I
π,

eK(I)≤eK(I ′). Now supposeI ′∈I
π′

for someπ′ 6= π

such that π′ = (∆π′

, dπ′

). We further assume that
eK(I ′)=min(eK(Ii) : Ii |= K ′). Let Ind(K) and
Ind(K ′) be sets of individual names appearing inK
and K ′ respectively. By unique name assumption, for
each individual namea in Ind(K)∪Ind(K ′), there is
a unique elementa1 in ∆I and a unique elementa2 in
∆I

′

such thataI = a1 and aI
′

= a2. For notational
simplicity, we assume thataI=aI

′

=a for every indi-
vidual namea. So Ind(K)∪Ind(K ′)⊆∆π∩∆π′

. We
take an I ′′ ∈ I

π which satisfies the following condi-
tions: 1) for each conceptC appearing inK, suppose
∆ = CI ∩ (Ind(K) ∪ Ind(K ′)), then ∆⊆CI

′′

; 2)
eK(I ′′) = min(eK(I) : I |= K ′ I ∈ I

π). We now prove
Σφ∈Keφ(I ′) = Σφ∈Keφ(I ′′). By 1) and 2), supposeφ is
an assertion of the formC(a), whereC is a concept, then
aI

′

∈CI
′

iff aI
′′

∈CI
′′

, so eφ(I ′) = eφ(I ′′). Supposeφ
is a GCI of the formCvD and b∈CI

′

∩¬DI
′

. Then we
must haveb∈Ind(K)∪Ind(K ′). Otherwise, if we define
I ′′′ = (∆I

′

\ {b}, ·I
′′′

) such that for each concept nameC,



CI
′′′

= CI
′

\ {b} and for all R, RI
′′′

= RI
′

\ ({(b, ai) :

ai∈∆I
′

} ∪ {(ai, b) : ai∈∆I
′

}). It is easy to check that
I ′′′ |= K ′ and eK(I ′′′) < eK(I ′), which is a contra-
diction. So b∈CI

′

∩¬DI
′

∩(Ind(K)∪Ind(K ′)). Since
CI

′

∩(Ind(K)∪Ind(K ′)) = CI
′′

∩(Ind(K)∪Ind(K ′))

and DI
′

∩(Ind(K)∪Ind(K ′)) = DI
′′

∩(Ind(K)∪

Ind(K ′)), we haveCI
′

∩¬DI
′

∩(Ind(K)∪Ind(K ′)) =

CI
′′

∩¬DI
′′

∩(Ind(K)∪Ind(K ′)). It follows that
b∈CI

′′

∩¬DI
′′

∩(Ind(K)∪Ind(K ′)). We then have
CI

′

∩¬DI
′

⊆CI
′′

∩¬DI
′′

. Similarly, we can prove that
CI

′′

∩¬DI
′′

⊆CI
′

∩¬DI
′

. So CI
′′

∩¬DI
′′

=CI
′

∩¬DI
′

.
That is, eφ(I) = eφ(I ′′). Thus, we can conclude
that eK(I ′) = eK(I ′′). SinceeK(I ′′) = eK(I), we
have eK(I) = eK(I ′). Therefore, for allI ′ |= K ′,
eK(I)≤eK(I ′). It is clear that there exists anI ′ |= K ′

such thateI
′

= dm. SoeK(I) = dm.

We continue the proof of Proposition 1. Suppose
I |= K◦wK ′, then I |= K ′∪Kweak,K′ , for some
Kweak,K′∈WeakK′(K) such thatd(Kweak,K′) = dm (dm

is defined in Lemma 2). By Lemma 1,I |= K ′ and
eK(I) = dm. By Lemma 2,I∈

⋃

π∈Π
min(M(K ′),¹π

K

). Conversely, supposeI∈
⋃

π∈Π
min(M(K ′),¹π

K). By
Lemma 2,I |= K ′ andeK(I) = dm. By Lemma 1,I |=
K ′∪Kweak,K′ , for someKweak,K′∈WeakK′(K) such that
d(Kweak,K′) = dm. SoI |= K◦wK ′. This completes the
proof.
Proof of Proposition 2: The proof of Proposition 2 is simi-
lar to that of Proposition 1. The only problem is that we need
to extend the proofs of Lemma 1 and Lemma 2 by consider-
ing the weakening of assertion axioms of the form∀R.C(a),
which can be proved similar to the case of GCIs.
Proof of Proposition 3: We only need to prove that
M(K◦rwK ′)⊆M(K◦wK ′). SupposeI|=K◦rwK ′, then
by Proposition 2,I |= K ′ and eK

r (I) = min(eK
r (I ′) :

I ′ |= K ′). We now prove that for anyI ′ 6=I,
eK(I)≤eK(I ′). Supposeφ is an assertion of the form
∀R.C(a) andeφ

r (I)≥1, then there existsb such thatbI ∈
RI(aI)∩(¬DI). SinceI 6|= ∀R.C(a), we haveeφ(I) = 1.
Since eφ

r (I ′)≥eφ
r (I), we haveeφ

r (I ′)≥1. Similarly, we
haveeφ(I ′) = 1. So eφ(I)=eφ(I ′). Supposeeφ

r (I)=0
and eφ

r (I ′)≥1, then eφ(I) = 0 < 1 = eφ(I ′). Thus,
eφ(I)≤eφ(I ′). If φ is an assertion which is not of the
form ∀R.C(a) or a GCI, then it is easy to prove that
eφ(I)=eφ(I ′). Therefore,eK(I)≤eK(I ′). By Proposition
1, I∈M(K◦wK ′).
Proofs of Proposition 4 and Proposition 5:Proposition 4
and Proposition 5 are easily to be checked and we do not
provide their proofs here.
Proof of Proposition 6: Let Iπ

1 = min(Iπ,¹π
K1

), andIπ
i =

min(Iπ
i−1,¹

π
Ki

) for all i > 1. It is clear thatM(K) = I
π
n.

So we only need to prove thatIπ
n = min(Iπ,¹π

lex). Sup-
poseI∈I

π
n, then we must haveI∈min(Iπ,¹π

lex). Other-
wise, there existsI ′∈I

π such thatI ′≺lexI. That is, there
existsi such thatI ′≺π

Ki
I andI ′'π

Kj
I for all j < i, where

I ′'π
Kj

I meansI ′¹π
Kj

I andI¹π
Kj

I ′. SinceI ′'π
Kj

I, it is
clear thatI, I ′∈I

π
i−1 by the definition ofIπ

i−1. SinceI ∈ I
π
n,

we haveI ∈ I
π
i = min(Iπ

i−1,¹
π
Ki

), which is contradic-
tory to the assumption thatI ′≺π

Ki
I. Thus we prove that

I
π
n⊆min(Iπ,¹π

lex). Conversely, supposeI∈min(Iπ,¹π
lex

), then we must haveI∈I
π
n. Otherwise, there exists ani

such thatI6∈I
π
i andI∈I

π
j for all j < i. SupposeI ′∈I

π
i ,

thenI ′∈I
π
j for all j < i. We then haveI ′ 'π

Kj
I for all

j < i. SinceI ′∈I
π
i andI6∈I

π
i , it follows thatI ′≺π

Ki
I. That

is, I ′≺π
lexI, which is a contradiction. Thus we prove that

min(Iπ,¹π
lex)⊆I

π
n. This completes the proof.
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