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Abstract. In this paper, we compare merging operators in possibilis-
tic logic. We first propose an approach to evaluating the discriminating
power of a merging operator. After that, we analyze the computational
complexity of existing possibilistic merging operators. Finally, we con-
sider the compatibility of possibilistic merging operators with proposi-
tional merging operators.

1 Introduction

Fusion of information coming from different sources is crucial to build intelligent
systems. In classical logic, this problem is often called belief merging, which
defines the beliefs (resp. goals) of a group of agents from their individual be-
liefs (resp. goals). It is well-known that priorities or orderings (either implicit
or explicit) play an important role in belief merging [18,20,22]. The handling of
priorities has been shown to be completely in agreement with possibilistic logic
[13]. Possibilistic logic is a weighted logic which attaches to each first-order logic
formula a weight belonging to a totally ordered scale, such as (0, 1]. An order-
ing between two formulas is then obtained by comparing the weights attached
to them. Possibilistic logic is also known to be a good logical framework for
reasoning under inconsistency and uncertainty when only partial information is
available.

Many approaches have been proposed for merging uncertain information in
possibilistic logic. In the framework of possibilistic logic, each source of uncer-
tain information is represented as a possibilistic knowledge base, which is a set
of weighted formulas. A possibilistic knowledge base has a unique possibility
distribution associated with it. In [3,4], some semantic merging operators were
proposed to aggregate possibility distributions of original possibilistic knowledge
bases, the result is a new possibility distribution. Then the syntactical counter-
part of a semantic merging operator is applied to the possibilistic bases, and the
result of merging is a possibilistic knowledge base whose possibility distribution
is the one obtained by the semantic merging operator. There are two important
classes of merging operators, one class contains t-norm operators (for exam-
ple, the minimum operator) and the other consists of t-conorm operators (for
example, the maximum operator). Several adaptive merging rules have been pro-
posed to integrate both the conjunctive and disjunctive operators (e.g., [8,9,12]).
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In practice, an important problem is the choice of an appropriate merging ap-
proach. To facilitate the choice among different merging approaches, we need
some criteria to evaluate the merits and drawbacks of each approach.

In this paper, we propose three criteria to evaluate merging operators in pos-
sibilistic logic. The first criterion is to evaluate the discriminating power of a
merging operator, which is measured by the nonspecificity function. After that,
we analyze the computational complexity of existing possibilistic merging oper-
ators. Finally, we consider the compatibility of possibilistic merging operators
with propositional merging operators.

This paper is organized as follows. Section 2 introduces some basic notions of
possibilistic logic. We then give a brief overview of merging operators in possi-
bilistic logic in Section 3. In Section 4, we give three criteria to evaluate merging
operators in possibilistic logic. Finally, we conclude the paper in Section 5.

2 Preliminaries

In this paper, we consider a propositional language LPS from a finite set PS
of propositional symbols. The classical consequence relation is denoted as `.
An interpretation is a total function from PS to {true, false}. Ω is the set
of all possible interpretations. An interpretation ω is a model of a formula φ,
denoted ω |= φ, iff w(φ) = true. A classical knowledge base B is a finite set of
propositional formulas. B is consistent iff there exists an interpretation ω such
that ω(φ) = true for all φ∈B.
Possibilistic Logic: Possibilistic logic [13] is a weighted logic where each clas-
sical logic formula is associated with a number in (0, 1]. A possibilistic knowl-
edge base (or PKB for short) is the set of possibilistic formulas of the form
B = {(φi, ai) : i = 1, ..., n}. Possibilistic formula (φi, ai) means that the ne-
cessity degree of φi is at least equal to ai. A classical knowledge base B = {φi :
i = 1, ..., n} corresponds to a PKB B′ = {(φi, 1) : i = 1, ..., n}. A possibilistic
knowledge profile E is a multi-set of PKBs. In this paper, we consider only PKBs
where every formula φ is a classical propositional formula. The classical base
associated with B is denoted as B∗, namely B∗ = {φi|(φi, ai) ∈ B}. A PKB is
consistent iff its classical base is consistent.

The semantics of possibilistic logic is based on the notion of a possibility
distribution π: Ω → [0, 1]. π(ω) represents the possibility degree of interpretation
ω with available beliefs. A possibility distribution π is normal iff there exists
ω ∈ Ω such that π(ω) = 1. Given a PKB B, a unique possibility distribution,
denoted by πB , can be obtained by the principle of minimum specificity [13]. For
all ω ∈ Ω,

πB(ω) =

{
1 if ∀(φi, ai) ∈ B,ω |= φi,
1−max{ai|ω 6|= φi, (φi, ai) ∈ B} otherwise.

(1)

It has been shown that a PKB B is consistent iff πB is normal.
Given a PKBB and a∈(0, 1], the a-cut ofB isB≥a = {φ∈B∗|(φ, b)∈B and b≥a}.

The inconsistency degree of B, denoted Inc(B), is defined as Inc(B) = max{ai :
B≥ai is inconsistent}.
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Definition 1. Let B be a PKB. A formula φ is said to be a possibilistic conse-
quence of B to degree a, denoted by B`π(φ, a), iff the following conditions hold:
(1) B≥a is consistent; (2) B≥a`φ; (3) ∀b>a, B≥b 6` φ.

3 Merging Approaches in Possibilistic Logic

According to [1], there are two different categories of approaches for merging
PKBs. The first category of approaches resolves inconsistency after merging and
result in a unique consistent base (e.g. [3, 4, 6, 25, 26]. By contrast, the second
category of approaches tolerates inconsistency and cope with them [1, 5, 24].
Because of page limit, we consider only some important merging approaches
belonging to the first category.

Given n PKBs B1,...,Bn, a semantic combination operator ⊕ maps possi-
bility distributions π1,...,πn into a new possibility distribution. The semantic
combination can be performed easily when ⊕ is associative. That is, we have
π⊕(ω) = (...((π1(ω)⊕ π2(ω))⊕ π3(ω))⊕ ...)⊕ πn(ω). When the operator is not
associative, it needs to be generalized as an unary operator defined on a vector
(π1, ..., πn) of possibility distributions such that:

1. ⊕(1, ..., 1) = 1, and
2. if ∀i = 1, ..., n, πi(ω)≥πi(ω′) then ⊕(π1(ω), ..., πn(ω))≥⊕(π1(ω′), ..., πn(ω′)).

Two classes of aggregation operator which are commonly used are t-norm
(denoted as tn) and t-conorm (denoted as ct). Examples of t-norms are the
minimum operator and the product operator and examples of t-conorms are
the maximum operator and the “probabilistic sum” operator defined by a⊕b =
a+ b− ab.

The merged possibility distribution of a t-norm operator may be not normal.
In that case, we may think of renormalizing πtn. Let π be a possibility distribu-
tion which is not normal, πN be the possibility distribution renormalized from
π. Then πN should satisfy the following conditions:

1. ∃ω, πN (ω) = 1,
2. if π is normal then πN = π,
3. ∀ω, ω′, π(ω) < π(ω′) if and only if πN (ω) < πN (ω′).

For example, let h(πtn) = maxω∈Ω{πtn(ω)}, the following equation provides
a normalization rule.

πN,tn(ω) =

{
1 if πtn(ω) = h(πtn),
πtn(ω) otherwise.

(2)

The normalization rule defined by Equation 2 resolves inconsistency because the
inconsistency degree of any PKB associated with πN,tn is zero. Other normal-
ization rules can be found in [3].

The syntactic generalization for a semantic operator can be carried out as
follows.



4 Lecture Notes in Computer Science: Authors’ Instructions

Proposition 1. [4] Let E = {B1, ...,Bn} be a set of n PKBs and (π1, ..., πn)
be their associated possibility distributions. Let πB⊕ be the result of combining
(π1, ..., πn) with ⊕. The PKB associated with πB⊕ is:

B⊕ = {(Dj , 1−⊕(x1, ..., xn)) : j = 1, ..., n}, (3)

where Dj are disjunctions of size j between formulas taken from different Bi’s
(i = 1, ..., n) and xi is equal to 1− ai if φi belongs to Dj and 1 if it does not.

By Equation 3, the PKBs, which are the syntactical counterparts of semantic
merging using a t-norm tn and a t-conorm ct are the following knowledge bases
respectively [3]:

Btn = B1 ∪B2 ∪ {(φi ∨ ψj , ct(ai, bj))|(φi, ai) ∈ B1

and (ψj , bj) ∈ B2}, (4)

Bct = {(φi ∨ ψj , tn(ai, bj))|(φi, ai) ∈ B1, (ψj , bj) ∈ B2}. (5)

By Equation 4, the PKB Btn may be inconsistent. Let πN,tn be the possibility
distribution obtained by Equation 2, then the PKB associated with it has the
following form:

BN,tn = {(φi, ai) : (φi, ai)∈Btn and ai > Inc(Btn)}. (6)

BN,tn restores consistency of Btn by dropping formulas whose weights are less
than or equal to the inconsistency degree of Btn. We call the merging operator
obtained by Equation 6 a normalized conjunctive merging operator. It is clear
that BN,tn may drop too much information from Btn if Inc(Btn) is large, for
example, 0.8. This is because possibilistic inference suffers from the drowning
problem [2].

Example 1. Let B1 = {(p, 0.9), (q, 0.7)} and B2 = {(¬p, 0.8), (r, 0.6), (p∨q, 0.5)}.
Suppose the operator is the maximum, then by Equation 5, we have Bmax =
{(p∨r, 0.6), (p∨q, 0.5), (¬p∨q, 0.7), (q∨r, 0.6)}. It is clear that the maximum based
merging operator is very cautious, that is, all the formulas are weakened as dis-
junctions. By constrast, if we choose the minimum, then by Equation 4, we have
Bmin = {(p, 0.9), (¬p, 0.8), (q, 0.7), (r, 0.6), (p∨q, 0.5)}. Bmin is inconsistent. Sup-
pose we apply the normalization rule (Equation 2) to the possibility distribution
associated with Bmin, then by Equation 6 the PKB associated with the normal-
ized possibility distribution is BN,min = {(p, 0.9)}. (q, 0.7) and (r, 0.6) are not
involved in conflict between B1 and B2, but they are deleted after merging.

Example 1 illustrates that the merging methods based on t-conorms are too
cautious when most of the formulas are not involved in conflict while the renor-
malization based merging method may delete too much original information from
the resulting knowledge base. According to [7], when knowledge bases are consis-
tent with each other, it is preferable to use a t-norm based merging method. The
maximum based merging method is preferable to the minimum based merging
method (or any other t-norm based merging method) only if the inconsistency
degree of B1∪...∪Bn is 1; that is, if there is a strong conflict among the sources
of information.



Lecture Notes in Computer Science: Authors’ Instructions 5

3.1 Adaptive Combination Rules

Because of the pros and cons of the t-norm and t-conorm operators, it is not
advisable to use only one of them when information sources partially agree with
each other and only some of them are reliable. Several adaptive merging rules
have been proposed to integrate both the t-norm and t-conorm operators.

Conflict-respectful combination rule: the normalization rules resolve
the conflict between sources. However, as pointed out in [8], they may be very
sensitive to rather small variations of possibility degrees around 0. In other word,
the rules are not continuous in the vicinity of the total conflict expressed by
h(π⊕) = 0. An adaptive combination rule was proposed in [Dubois and Prade
1994] to discount the result given by normalization rule by the inconsistency
degree of the conjunctively merged knowledge bases, i.e. 1−h(πB⊕). That is, we
have the following modified conjunctive combination rule: ∀ω,

(CoR-N) π⊕,CoR−N (ω) = max(πN,⊕(ω), 1− h(π⊕)).
An adaptive rule in [8] was proposed which considered j sources out of

all the sources, where it was assumed that these j sources are reliable. Since it
was not known which j sources were reliable, all the subsets with cardinality j
were considered. The intermediary conjunctively merged results are then merged
disjunctively. Given a possibilistic profile E = {B1, ..., BN} with πi being the
possibility distribution of Bi, the adaptive rule is defined as

π(j)(ω) = maxJ⊆N,|J|=j{mini∈J{πi(ω)|ω∈Ω}}, (7)

where N = {1, ..., N}.
A method to decide the value of j was given in [12]: let

m = max{|T | : h(T ) = 1}, (8)

n = max{|T | : h(T ) > 0}, (9)

where T⊆E and h(T ) = maxωminBi∈Tπi(ω), then, j is defined as m and N is
defined as n, where n indicates that these n sources at least partically consistent
and among them j sources are completely consistent.

Another adaptive rule in [11]: the rule proposed in [11] utilizes the max-
imum and the minimum operators. This operator is extended to more than two
sources in [12] based on the adaptive rule in Equation 7. It is defined as follows:

πAD(ω) = max(
π(n)(ω)

h(n) ,min(π(m)(ω), 1− h(n))),

where h(n) = max{h(T )||T | = n} as defined previously. This operator uti-
lizes both π(n) and π(m). It first renormalizes π(n) which is the result of con-
junctive merge of n sources and then applies the maximum operator to the
conjunctively merged results of all subgroups with cadinality m, before com-
bines the two parts using the maximum operator. So it is more adaptive and
context dependent than adaptive rule in Equation 7.

MCS-based adaptive merging in [10]: an adaptive operator based on
maximal consistent subsets (MCS) of E was proposed in [10]. Suppose E1, ..., Ek
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are all the maximal consistent subsets of E , then the MCS-based operator is
defined as

πMCS(ω) = maxi=1,...,kminBj∈EiπBj
(ω)

Split-Combination merging approach in [26]: The general idea of the
Split-Combination (S-C) approach can be described as follows. Given a set of
PKBs Bi, where i = 1, ..., n, in the first step, we split them into Bi = 〈Ci, Di〉
with regard to a splitting method. In the second step, we combine all Ci by a t-
conorm operator (the result is a PKB C) and combine allDi by a t-norm operator
(the result is a PKB D). The final result of the S-C combination method, denoted
by BS−C , is C ∪ D. Different S-C methods can be developed by incorporating
different ways of splitting the knowledge bases, while retaining the general S-C
approach. Two different splitting methods have been given. One is called the
Incremental splitting (I-S) method and the other is called the free-formula based
splitting (F-S) method. The I-S method first searching for the splitting value
using an incremental algorithm and then splits each PKB Bi into two subbases
using the splitting value. The F-S method splits a PKB B into two subbases
such that one of them contains formulae which are not in conflict in B and
the other contains formulae which are in conflict. We call the merging operator
based on the I-S method as Incremental Split-Combination (I-S-C) merging
operator and the merging operator based on the free-formula based method as
free-formula based split-combination (F -S-C) merging operator. Note that the
F -S-C merging operator does not have a semantic counterpart.

In next section, we propose three evaluation criteria and compare existing
merging operators in possibilistic logic with respect to them. As for merging
operators in classical logic, we use ∆X to denote the merging operator X. For
example, ∆ct is the t-conorm based merging operator.

4 Evaluation Criteria

4.1 Discriminating Power

Information is generally hard to obtain. Therefore, a good merging operator
should preserve as much original information as possible. Inferential power is an
important factor for evaluating a merging operator. Given two merging opera-
tors, it is natural to prefer the one leading to a merged base which can non-
trivially infer more information. However, most merging operators can not be
compared with regard to it. Therefore, we propose another evaluation method
which is based on the measure of non-specificity.

In [16], a measure of possibilistic uncertainty, called nonspecificity, was pro-
posed to generalize the Hartley measure of information [15]. Given a possi-
bility distribution π on Ω = {ω1, ...ωn}, π(ωi) (i = 1, ..., n) are reordered as
π1 = l≥π2≥...≥πn, where l may be less than 1 (in that case, π is not normal).
Let πi+1 = 0. The measure of nonspecificity of π is

H(π) =
1

l
Σn
j=1(πj − πj+1)log2j (10)
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Given two PKBs B1 and B2, we say the quality of B1 is better than that of B2

if H(πB1
) < H(πB2

), where πBi
(i = 1, 2) are possibility distributions of Bi.

Nonspecificity measures information carried by a possibility distribution.
Now an interesting question is whether a knowledge base with stronger infer-
ential power also has better quality. The answer is positive according to the
following proposition.

Proposition 2. 1 Given two consistent PKBs B1 and B2, πB1
and πB2

are
possibility distributions associated with them. If B1 `π (φ, a) for any (φ, a)∈B2,
then H(πB1)≤H(πB2).

Proposition 2 agrees with intuition that stronger inferential power means more
information. Therefore, nonspecificity measures the discriminating power of a
merging operator.

In the following, we define an ordering to compare two possibilistic merging
operators with respect to their discriminating power.

Definition 2. Let ∆1 and ∆2 be two merging operators in possibilistic logic. An
ordering between ∆1 and ∆2, denoted �DP , is defined as:

∆1�DP∆2 iff ∀E , H(π∆1(E))≤H(π∆2(E)),

where π∆i(E) (i = 1, 2) are the possibility distributions associated with ∆i(E).
It is clear that �DP is a partial preorder, i.e. it is reflective and transitive. As
usual, we define the strict order ∆1 ≺DP ∆2 iff ∆1 �DP ∆2 and ∆2 6�DP∆1. If
∆1 ≺DP ∆2, then we say that ∆1 is stronger than ∆2 w.r.t their discriminating
power.

We compare existing merging operators in possibilistic logic w.r.t their dis-
criminating power.

Proposition 3. When E is consistent, then ∆N,tn ≺DP ∆ct. However, this
relationship does not hold when E is inconsistent.

Proposition 4. The normalized conjunctive merging operator has stronger dis-
criminating power than the conflict-respectful merging operator, i.e., ∆N,tn≺DP∆CoR−N .

Proposition 5. Both the j-source and MCS based adaptive merging operators
have stronger discriminating power than the t-conorm based one. That is, ∆{j} ≺DP
∆ct and ∆MCS ≺DP ∆ct.

Proposition 6 (26). Let E = {B1, ..., Bn} be a set of n PKBs. Let ∆I−S−C ,
∆F−S−C and ∆ct be the I-S-C operator, F -S-C operator and t-conorm based
merging operator respectively. We have ∆I−S−C ≺DP ∆ct and ∆F−S−C ≺DP
∆ct.

It has been shown in [26] that I-S-C merging operator and normalized con-
junctive merging operator are not comparable w.r.t the discriminating power.
However, we have the following proposition.

1 All proofs of propositions can be found in a PhD thesis which is available at
http://gqi.limewebs.com/thesis.pdf.
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Proposition 7. [26] Let B1 and B2 be two PKBs. Suppose the t-norm tn and
t-conorm ct which are used to define the I-S-C operator is the minimum and
an arbitrary t-conorm respectively. Let γ be the splitting point for the I-S-C
operator which is obtained by the splitting algorithm. Suppose γ = Inc(B1∪B2),
then Bmin,N2⊆BI−S−C , but not vice versa.

4.2 Computational Complexity

Computational complexity has been adopted as an important criterion to evalu-
ate a solution in many AI problems, such as belief revision [14]. From an appli-
cation point of view, computational efficiency is an important requirement when
one selects a merging operator. It has been shown in [21] that in the proposi-
tional setting, merging is generally a hard task in the worst case. It is clear that
computationally more efficient operators are preferable to more complex ones.

We assume that the reader is familiar with computational complexity (more
details can be found in [17]) and we consider the following classes located at the
first or the second level of polynomial hierarchy.

– ∆p
2 = PNP is the class of decision problems solvable in polynomial time by

a deterministic Turing machine equipped with an NP oracle.
– Σp

2 is the class of decision problems solvable in polynomial time by a non-
deterministic Turing machine equipped with an NP oracle.

– Πp
2=co-Σp

2 , where co-Σp
2 is the class of problems whose answer is always the

complement of those in Σp
2 .

Note that the following relations have been conjectured in complexity theory:
P⊂NP, P⊂co-NP, NP6=co-NP, NP⊂∆p

2, co-NP⊂∆p
2, co-NP⊂Πp

2 , ∆p
2=PNP⊂

Σp
2

In this paper, we consider function problems, problems that require an answer
more elaborate than “yes” or “no”. Suppose X is a class of decision problems,
the function problem associated with X is denoted by FX. For example, F∆p

2

is the set of problems solvable in polynomial time by a machine with access to
an oracle for an NP problem.

In the following, we analyze the computational complexity of existing merging
operators.

Proposition 8. Generating a consistent PKB by a t-conorm based merging op-
erator is in FP and generating a consistent PKB by a normalized conjunctive
merging operator is in F∆p

2.

By Proposition 8, the t-conorm based merging operator is tractable. However,
since it is a cautious operator that may drop too much information, we do not
advocate using it unless the sources are strongly in conflict. Therefore, before
applying the t-conorm based merging operator, we should at least check the
consistency of the union of original sources, which is a NP-complete task.

The computational complexity of the conflict-respectful operator is not harder
than that of the normalized conjunctive merging operator.
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Proposition 9. Generating a consistent PKB by a conflict-respectful merging
operator is in F∆p

2.

Proposition 10. Suppose j = m, where m is defined by Equation (8), then
generating a consistent PKB by the j-source based merging operator is in F∆p

2.
Generating a consistent PKB by the adaptive merging operator ∆AD is in F∆p

2.

The MCS-based merging operator is computationally harder than other op-
erators because it needs to compute all the maximal consistent subbases.

Proposition 11. Generating a consistent PKB by the MCS-based adaptive merg-
ing operator is FΠp

2 -hard.

We now consider the computational complexity results given in [26]

Proposition 12. Generating a consistent PKB using the I-S-C operator and
F -S-C operator are in F∆p

2 (O(n)) and FΠp
2 respectively.

According to above propositions, the t-conorm based merging operator is
computationally easier than other merging operators. The computational com-
plexities of most of merging operators in possibilistic logic remain at the first
level of polynomial hierarchy, a low level of polynomial hierarchy. Finally, the
MCS-based merging operator and F -S-C merging operator are computationally
harder than other operators, i.e. their computational complexities are located at
leat at the second level of polynomial hierarchy.

4.3 Compatibility with Propositional Merging Operators

It has been pointed out in [13] that when the necessity degrees of all the pos-
sibilistic formulas are taken as 1, possibilistic logic is reduced to classical logic.
So classical logic is a special case of possibilistic logic in which all the formulas
have the same level of priority. Therefore, merging methods in possibilistic logic
can be directly applied to merge classical knowledge bases. When comparing two
different operators which are not comparable with regard to other criteria, we
prefer possibilistic merging operators which are well-behaved in classical logic to
those which are not. In classical logic, the main criterion for comparing merg-
ing operator is the rationality properties. In this section, we analyze the logical
properties of different possibilistic merging operators in the flat case.

We first introduce the postulates for characterizing a propositional merging
operator proposed in [18].

Definition 3. Let ∆ be a propositional operator which assigns to a set of knowl-
edge bases E a knowledge base ∆(E). Let E1 and E2 be two sets of knowledge
bases, K and K ′ be two knowledge bases. ∆ is a propositional merging operator
iff it satisfies the following postulates:

(A1) ∆(E) is consistent.
(A2) If E is consistent, then ∆(E)≡

∧
E, where

∧
E = ∧Ki∈EKi.
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(A3) If E1≡E2, then ∆(E1)≡∆(E2).
(A4) If K∧K ′ is not consistent, then ∆({K}t{K ′}) 6|= K.
(A5) ∆(E1)∧∆(E2) |= ∆(E1tE2).
(A6) If ∆(E1)∧∆(E2) is consistent, then ∆(E1tE2) |= ∆(E1)∧∆(E2).

Proposition 13. Let E = {K1, ...,Kn} be a set of knowledge bases. Let ∆ct(E)
be the resulting knowledge base of a t-conorm based operator. Then ∆ct(E) ≡
{∨ni=1φi : φi∈Ki, i = 1, ..., n}. Let ∆N,tn(E) be a normalized t-norm operator.
Then ∆N,tn(E) ≡ >.

According to Proposition 13, the normalized conjunctive operators cannot be
directly applied to merging classical knowledge bases because all the information
is deleted after merging, whilst the t-conorm based operators take the disjunction
of all the knowledge bases as the result of merging.

The logical properties of the operator ∆ct in the flat case are analyzed as
follows.

Proposition 14. The t-conorm based operator ∆ct satisfies (A1), (A3), (A4)
and (A5). It does not satisfy other postulates in general.

Next, we consider the adaptive merging operators.
First, the conflict-respectful merging operators are based on the normalized

conjunctive operators. So, they cannot be directly applied to merge classical
knowledge base.

The j-source based operator takes the disjunction of all the knowledge bases
which are conjunction of j original knowledge bases as the result of merging,
that is, we have ∆{j}(E) =

∨
J⊆N,|J|=j{∧i∈JKi}.

Proposition 15. When j = m, where m is defined by Equation (8), then the j-
source based operator ∆{j} satisfies (A1), (A2), (A3), (A4). It does not satisfies
(A5) and (A6) in general.

According to Proposition 15, when j = m, the j-source based operator has
good logical properties in the flat case.

The adaptive operator ∆AD is based on the j-source based operator. In
the flat case, it is equivalent to the m-source based operator according to the
following proposition:

Proposition 16. The merged result of the adaptive operator ∆AD is equivalent
to ∆{m}(E), i.e., ∆AD(E) ≡ ∆{m}(E).

The merged result of the MCS-based adaptive operator is the disjunctive of
those knowledge bases which are conjunctions of maximal consistent subsets of
E. That is, let MAXCONS(E) be the set of maximal consistent subsets of E, we
have

∆MCS(E) =
∨

Ei∈MAXCONS(E)

∧
Kij∈Ei

Kij .

The operator ∆MCS(E) is a commonly used syntax-based merging operator in
the propositional setting [19].



Lecture Notes in Computer Science: Authors’ Instructions 11

Proposition 17. The MCS-based adaptive operator ∆MCS satisfies (A1), (A2),
(A3), (A4), (A5). It does not satisfy (A6) in general.

In [26], tt has been shown that, in the flat case, the I-S-C operator is reduced
to the t-conorm based operator. We also have the following results for F -S-C
operator [26].

Proposition 18. The F -S-C merging operator ∆F−S−C satisfies (A1), (A2),
(A4) and (A5). However, it does not satisfy (A3) and (A6) in general.

According to the above propositions, the operators ∆N,tn and ∆CoR−N can-
not be applied to merging classical knowledge bases. The operator ∆AD and the
operator ∆{m} are equivalent in the flat case. The MCS-based adaptive operator
satisfies more postulates than all the other operators in possibilistic logic in the
flat case.

5 Conclusions

In this paper, we first gave a belief survey of two kinds of merging operators in
possibilistic logic: semantic merging operators and adaptive merging operators.
We then proposed several evaluation criteria to compare these merging operators.
The comparison results will be useful for users to select appropriate merging
operator(s) for specific applications.
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