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Abstract. Hunter and Konieczny explored the relationships between measures of in-
consistency for a belief base and the minimal inconsistent subsets of that belief base
in several of their papers. In particular, an inconsistency value termed MIVC, defined
from minimal inconsistent subsets, can be considered as a Shapley Inconsistency Value.
Moreover, it can be axiomatized completely in terms of five simple axioms. MinInc, one
of the five axioms, states that each minimal inconsistent set has the same amount of
conflict. However, it conflicts with the intuition illustrated by the lottery paradox,
which states that as the size of a minimal inconsistent belief base increases, the degree
of inconsistency of that belief base becomes smaller. To address this, we present two
kinds of revised inconsistency measures for a belief base from its minimal inconsistent
subsets. Each of these measures considers the size of each minimal inconsistent subset
as well as the number of minimal inconsistent subsets of a belief base. More specifically,
we first present a vectorial measure to capture the inconsistency for a belief base, which
is more discriminative than MIVC. Then we present a family of weighted inconsistency
measures based on the vectorial inconsistency measure, which allow us to capture the
inconsistency for a belief base in terms of a single numerical value as usual. We also
show that each of the two kinds of revised inconsistency measures can be considered
as a particular Shapley Inconsistency Value, and can be axiomatically characterized by
the corresponding revised axioms presented in this paper.
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1. Introduction

The principle of explosion of classical logic states that anything follows from a
contradiction. It renders classical logic not appropriate to describe inconsistent
information. For example, all inconsistent sets of classical formulas are equally
bad under classical logic, but it is commonly believed that some inconsistent sets
are worse than others (Knight, 2002). Logic-based inconsistency management
therefore is increasingly recognized as a topic in computer science as well as
artificial intelligence (Bertossi et al, 2004; Mu et al, 2007; Bagheri et al, 2010; Fan
et al , 2009; Cristani et al, 2009; Resconi et al, 2009).

Measuring inconsistency is considered as a crucial part of an effective and
systemic management of inconsistency in many applications. For example, in
the field of belief revision and updating, measures of inconsistency for a belief
base can be used to guide characterization of belief change operators for be-
lief negotiation as well as for belief revision (Hunter et al, 2006). In the field of
software requirements engineering, measures of inconsistency in software require-
ments provide a good basis for making an useful trade-off decision on resolving
conflict among stakeholders (Mu et al, 2005; Mu et al, 2008).

Exploring techniques for measuring inconsistency has attracted significant
attention in many applications, such as knowledge merging (Qi et al, 2005),
ontology management (Ma et al, 2007), software engineering and requirements
negotiation (Mu et al, 2005; Mu et al, 2008; Barrangans-Martinez et al, 2008),
as well as in artificial intelligence in general, such as (Grant, 1978; Knight,
2002; Knight, 2003; Bertossi et al, 2004; Hunter et al, 2006; Hunter et al, 2008;
Grant et al, 2006; Grant and Hunter, 2008; Konieczny et al, 2003). Some recent
approaches for measuring inconsistent information have been reviewed in (Hunter
et al, 2004).

The overwhelming majority of the current proposals for measuring incon-
sistency are concentrated on measuring the degree of inconsistency for a whole
belief base. In contrast, there are relatively few techniques for identifying the
degree of blame/responsibility of each formula for the inconsistency of a belief
base (Hunter et al, 2006; Hunter et al, 2008). However, in many applications
such as requirements engineering, it is desirable to choose an appropriate action
for resolving the inconsistency of a set of formulas by measuring and identifying
the blame or responsibility of each formula for the inconsistency of that set.

Shapley Inconsistency Value presented in (Hunter et al, 2006; Hunter et
al, 2008) connected the degree of blame of each formula in a belief base and the
degree of inconsistency of that whole belief base together by using a cooperative
game theory–Shapley value. Informally, given a measure of inconsistency for
the whole belief base, we can apportion the blame for the inconsistency in the
belief base to the individual formula in a principled way by using the Shapley
value. On the other hand, since the minimal inconsistent subsets of a belief base
can be considered as the purest form of inconsistency of that belief base, it is
natural to develop measures of inconsistency for a belief base from the minimal
inconsistent subsets of that belief base (Hunter, 2004; Hunter et al, 2006; Hunter
et al, 2008). Actually, Hunter and Konieczny have already explored connections
between measures of inconsistency for a belief base and the minimal inconsistent
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subsets of that belief base to some extent (Hunter et al, 2008). Especially, an
inconsistency value MIVC defined from the minimal inconsistent subsets is used
to articulate the degree of blame of each formula for the inconsistency of the
base. Moreover, it has been shown that this value is the Shapley Inconsistency
Value of a coalitional game defined by a basic inconsistency measure, in which
the number of minimal inconsistent subsets of a belief base is considered as
the payoff available to the grand coalition (i.e. the base). Furthermore, they
stated in (Hunter et al, 2008) that this particular Shapley Inconsistency Value
can be completely axiomatized in terms of five simple axioms, i.e., Distribution,
Symmetry, Minimality, Decomposability and MinInc.

The axiom of MinInc states that each minimal inconsistent set has the same
amount of conflict. However, as the cardinality of a minimal inconsistent subset
increases, the inconsistency becomes more tolerable (Knight, 2002; Hunter et al,
2006; Hunter et al, 2008). That is, the bigger the size of the minimal inconsistent
subset, the smaller the degree of inconsistency is. To illustrate this, let us consider
the lottery paradox which motivated Knight to propose his approach (Knight,
2002). The lottery paradox presented in (Kyburg, 1961) considered an n-ticket
lottery known to be fair and to have exactly one winner. It is rational to accept
for any individual ticket i of the lottery that ticket i will not win, since the
probability of ticket i being the winner cannot exceed a high enough threshold
due to the fairness of the lottery. Then Kn = {¬w1, · · · ,¬wn, w1 ∨ · · · ∨ wn}
is a minimal inconsistent belief base about the lottery, where for each i, wi

asserts that ticket i will win the lottery. Intuitively, if there are a sufficiently
large number of tickets in the lottery, the belief base Kn is almost consistent,
whilst Kn is highly inconsistent if there are only two or three tickets. Evidently,
the axiom of MinInc conflicts with this intuition. Correspondingly, the number
of minimal inconsistent subsets cannot be considered as a fine-grained basic
measure to capture the inconsistency of a belief base.

To address this, in this paper, we give an analysis of this problem, and then
we present, as a solution, a more discriminative vectorial inconsistency value
defined from minimal inconsistent subsets of a belief base to capture the degree
of the blame of each formula in the inconsistency of that belief base. Following
that, we provide a family of weighted inconsistency values based on the vectorial
inconsistency value, which allow us to measure inconsistency for a belief base in
terms of a single numerical value as usual. Both the vectorial inconsistency value
and the weighted inconsistency values consider the size of each minimal inconsis-
tent subsets as well as the number of minimal inconsistent subsets. Moreover, we
show that each of the two kinds of revised inconsistency value can be considered
as a particular Shapley Inconsistency Value and we provide an axiomatic char-
acterization by using the axioms of Distribution, Symmetry, Minimality, and the
axioms of Revised Decomposability and Revised MinInc.

The rest of this paper is organized as follows. In the next section, we recall the
proposal presented in (Hunter et al, 2008) for measuring inconsistency through
minimal inconsistent sets. In Section 3, we analyze the problem of using the
axiom of MinInc to characterize inconsistency measurers, and then we provide
an alternative to the inconsistency measures presented in (Hunter et al, 2008)
in terms of vectors in Section 4. In Section 5, we present a family of weighted
inconsistency values from minimal inconsistent subsets. In Section 6, we compare
our revised measures with related work. Finally, we conclude this paper in Section
7.



4 K. Mu et al

2. Background

First, we give some mathematical notations which will be used later. We use u,
v, w, · · · to denote the vectors. The lexicographical ordering relation between
any two vectors with the same size is given as follows:

Definition 2.1 (Lexicographical ordering relation). Let u, v ∈ Rn be two
vectors. Suppose that u = (u1, u2 · · · , un) and v = (v1, v2, · · · , vn). Then the
lexicographical ordering relation ¹ is defined as u ¹ v iff

(1) u = v, or
(2) there exists k ≤ n s. t. uk < vk and ui = vi for each i < k.

Furthermore, u ≺ v iff u ¹ v and u 6= v.

We can then generalize the lexicographical ordering relation to any two vec-
tors with different sizes. Let u = (u1, u2, · · · , um) ∈ Rm and v = (v1, v2, · · · , vn) ∈
Rn. Suppose that m < n. A n-size extension of u is defined as u′ = (u′1, u

′
2, · · · , u′n)

such that u′i =
{

ui 1 ≤ i ≤ m
0, i > m

. Informally, we write u ¹ v (resp. v ¹ u )

if u′ ¹ v (resp. v ¹ u′). For example, (1, 0, 3, 5) ≺ (1, 1, 3) since (1, 0, 3, 5) ≺
(1, 1, 3, 0). Further, we write u + v and u − v instead of u′ + v and u′ − v,
respectively.

We use A⊕B to denote A ∪B for any two mutually exclusive sets A and B
( i.e. A ∩B = ∅ ).

Throughout this paper, we will use a finite propositional language. Let P be
a finite set of propositional symbols and L a propositional language built from
P. We use a, b, c, · · · to denote the propositional variables , and α, β, γ, · · · to
denote the propositional formulas.

2.1. Inconsistency Values Defined From Minimal Inconsistent
Subsets

A belief base K is a finite set of propositional formulas. We use KL to denote the
set of belief bases definable from formulas of the language L. A belief base K is
inconsistent if there is a formula α such that K ` α and K ` ¬α. We abbreviate
α ∧ ¬α as ⊥ if there is no confusion. Then an inconsistent knowledge base K is
denoted by K ` ⊥. Moreover, an inconsistent belief base K is called a minimal
inconsistent set (or minimal inconsistent belief base) if none of its proper subsets
is inconsistent. If K ′ ⊆ K and K ′ is a minimal inconsistent set, then we call K ′
a minimal inconsistent subset of K.

Let MI(K) be a set of the minimal inconsistent subsets of K, then

MI(K) = {K ′ ⊆ K|K ′ ` ⊥ and ∀K ′′ ⊂ K ′,K ′′ 6` ⊥}.
The minimal inconsistent subsets can be considered as the purest form of

inconsistency for syntax sensitive conflicts resolution, since one has just to remove
one formula from each minimal inconsistent subset in such cases (Reiter, 1987).
In contrast, we call a formula of K a free formula of K if this formula does not
belong to any minimal inconsistent subset of K. That is, the free formulas of K
are not involved in the inconsistency of K.

Hunter and Konieczny have argued that it is natural to define measures of
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inconsistency of each formula of a belief base using only minimal inconsistent
subsets of that base (Hunter et al, 2008). This motivates the definition of MinInc
Inconsistency Value in (Hunter et al, 2008) directly.

Definition 2.2 (MinInc Inconsistency Value). A MinInc Inconsistency Value
(MIV) is a function MIV: KL×L−→ R such that MIV(K, α) = f(α, MI(K)) where
f is a function of α and MI(K).

A family of instances of the MinInc Inconsistency Value were also presented
in (Hunter et al, 2008). Especially, MIVC, one of the simplest types of MIV, is
considered as an appealing and informative measure of inconsistency, since it
considers the number of minimal inconsistent subset of a formula belongs to as
well as their cardinalities.

Definition 2.3. MIVC is defined as follows:

MIVC(K,α) =
∑

M∈MI(K)s.t.α∈M

1
|M | .

Example 2.1. Let K1 = {a,¬a,¬a∧b, c∧¬c, d}. Then the minimal inconsistent
subsets of K1 are MI(K1) = {{c ∧ ¬c}, {a,¬a}, {a,¬a ∧ b}} and the MIVC value
is given as follows:

MIVC(K1, a) = 1
2 + 1

2 = 1 MIVC(K1,¬a) = 1
2

MIVC(K1,¬a ∧ b) = 1
2 MIVC(K1, c ∧ ¬c) = 1

MIVC(K1, d) = 0

It has been shown in (Hunter et al, 2008) that MIVC value is a particular Shapley
Inconsistency Value presented in (Hunter et al, 2006).

2.2. Shapley Inconsistency Value

The Shapley Inconsistency Value presented in (Hunter et al, 2006) seeks to define
a measure for the degree of blame of each formula in inconsistency from a measure
of inconsistency on belief bases, by using a cooperative game theory-the Shapley
Value.

We first recall the definitions of the Shapley Value (Aumann et al, 2002) and
the Shapley Inconsistency Value (Hunter et al, 2008), respectively .

Definition 2.4. Let N = {1, 2, · · · , n} be a set of n players. A game in coali-
tional form is given by a function v : 2N −→ R, with v(∅) = 0.

A coalition C is just a subset of N . The function v(C) gives the payoff which
can be achieved by each coalition in the game v when all its members of C act
together as a unit.

Definition 2.5. A value is a function that assigns to each game v a vector of
payoff S(v) = (S1, S2, · · · , Sn) in Rn, where Si is the payoff for player i.

The notation of value is referred to as the payoff that can be expected by
each player i for the game v.

Definition 2.6. Let i ∈ N be a player, and n be the number of players. The
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Shapley value of player i in the game v is defined as

Si(v) =
∑

C⊆N

(c− 1)!(n− c)!
n!

(v(C)− v(C \ {i}))

where c is the cardinality of C.

The Shapley value is the first value that gives the expected payoff of each
player for any game. Moreover, Shapley’s amazing result states that the Shapley
value can be characterized uniquely by the following four simple and intuitive
axioms (Shapley, 1953):

Proposition 2.1. The Shapley value is the only value that satisfies all of Effi-
ciency, Symmetry, Dummy and Additively.

–Efficiency:
∑

i∈N

Si(v) = v(N).

–Symmetry: If i and j are such that for all C s.t. i, j 6∈ C, v(C ∪ {i}) =
v(C ∪ {j}), then Si(v) = Sj(v).

–Dummy: If i is such that ∀C, v(C ∪ {i}) = v(C), then Si(v) = 0.
–Additivity: Si(v + w) = Si(v) + Si(w).

Note that Efficiency states that players precisely distribute among themselves
the payoff available to the grand coalition. Symmetry states symmetric players to
be paid equal shares. Dummy states that a player whose marginal contribution
with respect to any coalition is null, then zero payoffs is assigned to this player.
Additivity states that the value is an additive operator on the space of all games.

The Shapley Inconsistency Values combine the Shapley value and the mea-
sure of inconsistency for belief bases to identify the blame of each formula in
inconsistency. Informally, we first consider an inconsistency measure that allows
us to evaluate the inconsistency of a belief base as a game in coalitional form,
then compute the corresponding Shapley Value and consider it as the inconsis-
tency value of each formula (Hunter et al, 2006; Hunter et al, 2008).

Hunter and Konieczny in (Hunter et al, 2006; Hunter et al, 2008) provided
the following properties to characterize the underlying inconsistency measure.

Definition 2.7. An inconsistency measure I is called a basic inconsistency mea-
sure if it satisfies the following properties, ∀K, K ′ ∈ KL, ∀α, β ∈ L:

–Consistency: I(K) = 0 iff K is consistent.
–Monotony: I(K ∪K ′) ≥ I(K).
–Free Formula Independence: If α is a free formula of K ∪{α}, then I(K ∪
{α}) = I(K).

–Dominance: If α ` β and α 6` ⊥, then I(K ∪ {α}) ≥ I(K ∪ {β}).
The Consistency property requires that a desirable inconsistency measure

assigns null to a consistency base. The Monotony property states that as a belief
base expands, the amount of inconsistency cannot decrease. The Free Formula
Independence property requires that adding or deleting a free formula cannot
change the amount of inconsistency of the base. As explained in (Hunter et
al, 2006), the Dominance property states that logically stronger formulae bring
(potentially) more conflicts.
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Especially, a basic inconsistency measure, termed the MI inconsistency mea-
sure, is defined from the minimal inconsistent subsets of a belief base in (Hunter
et al, 2008).

Definition 2.8. The MI inconsistency measure is defined as the number of min-
imal inconsistent sets of K, i.e.:

IMI(K) = |MI(K)|.
Proposition 2.2. The MI inconsistency measure IMI is a basic inconsistency
measure.

The Shapley Inconsistency Value presented in (Hunter et al, 2006; Hunter
et al, 2008) was aimed to distribute a basic inconsistency measurev (a numerical
value) for a belief base among formulas belonging to that belief base by using
a coalitional game theory model, i.e., the Shapley Value. The proportion of the
basic inconsistency measure distributed to an individual formula of that belief
base is considered as a measurement of the responsibility of that formula for the
inconsistency of that base.

Definition 2.9 (Shapley Inconsistency Value). (Hunter et al, 2006; Hunter
et al, 2008) Let I be a basic inconsistency measure. The corresponding Shapley
Inconsistency Value (SIV), denoted SI , is defined as the Shapley value of the
coalitional game defined by the function I, i.e. let α ∈ K:

SI
α(K) =

∑

C⊆N

(c− 1)!(n− c)!
n!

(I(C)− I(C \ {α}))

where n is the cardinality of K and c is the cardinality of C.

The result shown in (Hunter et al, 2008) is that the MI Shapley Inconsistency
Value SIMI is exactly the value of MIVC, i.e.,

Proposition 2.3.
SIMI

α (K) = MIVC(K, α).

Moreover, Hunter and Konieczny stated in (Hunter et al, 2008) that this
value can be completely axiomatized in terms of five simple axioms, i.e., an
inconsistency value satisfies

– Distribution:
∑

α∈K

SI
α(K) = I(K).

– Symmetry: If ∃α, β ∈ K s.t. for all K ′ ⊆ K s.t. α, β 6∈ K ′, I(K ′ ∪ {α}) =
I(K ′ ∪ {β}), then SI

α(K) = SI
β(K).

– Minimality: If α is a free formula of K, then SI
α(K) = 0.

– Decomposability: If MI(K ∪ K ′) = MI(K) ⊕ MI(K ′), then SI
α(K ∪ K ′) =

SI
α(K) + SI

α(K ′).
– MinInc: If M ∈ MI(K), then I(M) = 1.

if and only if it is the MI Shapley Inconsistency Value SIMI
α .

This result was listed as the Proposition 5 in (Hunter et al, 2008). However,
there is a minor incorrectness about the proof of this proposition. In the proof of
the proposition presented in (Hunter et al, 2008), the role of Decomposability
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axiom, combined with Minimality axiom, is to deduce the following property:

SI
α(K) =

∑

M∈MI(K)

SI
α(M).

Suppose that MI(K) = {M1, · · · ,Mn}. Roughly speaking, if there exists a se-
quence M1, · · · ,Mn s.t.

MI(M1 ∪ . . . ∪Mi ∪Mi+1) = MI(M1 ∪ . . . ∪Mi)⊕MI(Mi+1)

holds for every i (1 ≤ i < n), then we can deduce the property stated above
by applying Minimality axiom and successive application of Decomposability
axiom. However, we cannot find such a sequence of minimal inconsistent subsets
for some belief bases. As a counterexample, consider K = {a,¬a ∧ b,¬a ∧ ¬b}.
Then MI(K) = {M1,M2,M3}, where

M1 = {a,¬a ∧ b}, M2 = {a,¬a ∧ ¬b}, M3 = {¬a ∧ b,¬a ∧ ¬b}.
Evidently,

MI(Mi ∪Mj) = MI(K) 6= MI(Mi)⊕MI(Mj)
for any i 6= j, 1 ≤ i, j ≤ 3. To address this, we propose the following axiom, called
Revised Decomposability, to replace the axiom of Decomposability to character-
ize SIMI

α in the proof presented in (Hunter et al, 2008):

– Revised Decomposability: SI
α(K) =

∑
M∈MI(K)

SI
α(M).

Then we can get the following revised proposition about the characterization of
SIMI

α in this paper:

Proposition 2.4. A Shapley Inconsistency Value satisfies Distribution, Sym-
metry, Minimality, Revised Decomposability, and MinInc if and only if it is the
MI Shapley Inconsistency Value SIMI

α .

3. The Problem of MinInc Axiom

Recall the axiom of MinInc used to characterize the SIMI ( or the value MIVC), it
states that each minimal inconsistent subset brings the same amount of conflict,
i.e.,

– If M ∈ MI(K), then I(M) = 1.

Under this assumption, the amount of inconsistency of each minimal inconsis-
tent subset of K is considered as a unit of inconsistency in K. Then the MI
inconsistency measure IMI(K) can be viewed as the total amount of the inconsis-
tency in K. Correspondingly, MIVC(K, α) measures the total blame of α for the
inconsistency of K.

However, it is not the case that any two minimal inconsistent subsets have
the same amount of inconsistency. As illustrated by the lottery paradox, the
amount of inconsistency of a minimal inconsistent subset becomes smaller when
the size of the minimal inconsistent subset increases. Increasingly, some pro-
posals for evaluating the inconsistency for a belief base seek to accord with
this intuition. For example, the notation of maximal η-consistency presented by
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Knight (Knight, 2002) supports the intuition illustrated by the lottery paradox
directly.

We first recall the definition of probability function in (Paris, 1994; Paris
et al, 1998), which is considered as a useful tool to formulate the idea of η-
consistency (Knight, 2002).

Definition 3.1. A probability function on L is a function P : P −→ [0, 1] s.t.:

–if |= α, then P (α) = 1,
–if |= ¬(α ∧ β), then P (α ∨ β) = P (α) + P (β).

Using the concept of probability function, Knight defined the η-consistency
for measuring the inconsistency of a belief base as follows (Knight, 2002):

Definition 3.2. Let K be a belief base.

–K is η-consistent (0 ≤ η ≤ 1) if there is a probability function P such that
P (α) ≥ η for all α ∈ K.

–K is maximally η-consistent if η is maximal (i.e., if γ > η then K is not
γ-consistent).

A lower bound of η for a belief base K is also given by the following proposition:

Proposition 3.1 (Corollary 4.12 in (Knight, 2002)). If K is finite and in-
consistent but contains no contradictions and K ′ ⊆ K is a smallest minimal
inconsistent subset of K, then K is |K′|−1

|K| -consistent.

Evidently, maximal 1-consistency corresponds to complete consistency. And
maximal 0-consistency corresponds to the explicit presence of a contradict, i.e.,
the explicit presence of a contradictory formula in a belief base. Especially, the
level of consistency of minimal inconsistent sets of formulas is characterized by
the following proposition:

Proposition 3.2 (Theorem 3.5 in (Knight, 2002)). If K ′ ∈ MI(K), then
K ′ is maximally (1− 1

|K′| )-consistent.

This proposition shows that the maximum level of consistency of a minimal
inconsistent set is directly related to its size. In other words, the smaller the size
of a minimal inconsistent set, the bigger inconsistency is. The lottery paradox
mentioned earlier illustrated the intuition of the maximal η-consistency (Knight,
2002; Hunter et al, 2008).

Example 3.1 (The Lottery Paradox). The n-ticket lottery paradox can be
represented by a minimal inconsistent set Kn = {¬w1,¬w2, · · · ,¬wn, w1 ∨w2 ∨
· · · ∨ wn}.

Then Kn is maximally n
n+1 - consistent. As n →∞, n

n+1 → 1. This explained
why Kn is highly inconsistent if there are three or two tickets in the lottery,
however, Kn is intuitively (nearly) consistent if there are millions of tickets.

In contrast, the inconsistency value IMI(Kn) cannot be used to explain why
Kn becomes less inconsistent as the size of Kn increases, since IMI(Kn) = 1 for
every n.

Although the impact of the size of the minimal inconsistent subset on the
evaluation of inconsistency has been mentioned in (Hunter et al, 2008), it was not
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addressed properly in the inconsistency values defined from minimal inconsistent
subsets. In detail, given a minimal inconsistent set M ,

∀α ∈ M, MIVC(M, α) =
1
|M | ,

then as the size of M increases, MIVC(M, α) decreases. Compared to the other
MIV values defined in (Hunter et al, 2008) such as MIV](K, α) = |{M ∈ MI(K)|α ∈
M}| (in this case MIV](M, α) = 1), MIVC(M, α) embodies the impact of the size
of the minimal inconsistent subset on the evaluation of inconsistency of each
formula partially. But consider the sum of the blames of each formula for the
inconsistency of M , i.e.,

∑

α∈M

MIVC(M, α) = 1 = IMI(M).

It signifies that all the minimal inconsistent sets have the same total amount
of inconsistency. As illustrated by the example of lottery paradox, this conflicts
with the intuition that the inconsistency of a minimal inconsistent subset shall
decrease as the size of the minimal inconsistent subset increases.

To address this problem, in next two sections, we will provide two kinds of
revised inconsistency measures from minimal inconsistent subsets.

4. Vectorial Inconsistency Measures

4.1. MI Inconsistency Vectorial Measure

How to characterize a basic inconsistency measurement has been addressed in
(Hunter et al, 2006; Hunter et al, 2008). However, none of these four properties
formulates inconsistency in terms of minimal inconsistent sets explicitly. That is,
these properties are too general to characterize an inconsistency measure defined
from minimal inconsistent subsets of a belief base. Therefore, there is a press-
ing need for specific properties for characterizing the inconsistency measures
defined from minimal inconsistent subsets. To be more intuitive and discrimina-
tive, a non-negative (vectorial) inconsistency measurement defined from minimal
inconsistent subsets, denoted I, should satisfy the following constraints:

(D1) Consistency: If MI(K) = ∅, then I(K) = 0.
(D2) Monotony w.r.t. MI: I(K1) ¹ I(K2) if MI(K1) ⊆ MI(K2).
(D3) Attenuation: For any two minimal inconsistent sets K1 and K2, I(K1) ≺

I(K2) if |K1| > |K2|.
(D4) Equal Conflict: For any two minimal inconsistent sets K1 and K2, I(K1) =

I(K2) if |K1| = |K2|.
(D5) Separability: I(K1∪K2) = I(K1)+I(K2) if MI(K1∪K2) = MI(K1)⊕MI(K2).

D1 describes the property of Consistency in terms of the minimal inconsistent
subsets of a belief base. D2 states that the amount of inconsistency in a belief
base increases as the number of its minimal inconsistent subsets increases. D3
requires that the amount of inconsistency in a minimal inconsistent set decreases
when the size of a minimal inconsistent set increases, i.e., the bigger the size of
a minimal inconsistent set, the smaller the amount of inconsistency it has. D4
states that minimal inconsistent sets with the same cardinality should have the
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same amount of inconsistency. D5 states that for any two belief bases K1 and
K2, the amount of inconsistency in K1 ∪K2 is equal to the sum of the amounts
of inconsistency in K1 and K2 if MI(K1 ∪K2) = MI(K1)⊕MI(K2).

Note that there is no significant difference between D1 and the property of
Consistency presented in (Hunter et al, 2006; Hunter et al, 2008). In contrast, D2
may be viewed as a more specific property to characterize the measures defined
from minimal inconsistent subsets than the corresponding property of Monotony
presented in (Hunter et al, 2006; Hunter et al, 2008). Evidently, if an inconsis-
tency measure satisfies D2, then it must satisfy the property of Dominance as
well as the property of Monotony. Moreover, the property of Free Formula Inde-
pendence can be derived from the combination of D1 and D5.

D3 and D4 are characteristics of the measures defined from minimal incon-
sistent subsets. In particular, D3 accords with the intuition illustrated by the
lottery paradox. These properties make fine-grained inspection of the set of min-
imal inconsistent subsets of a belief base more necessary. Then we give a partition
of minimal inconsistent subsets as follows.

Definition 4.1 (k-size Minimal Inconsistent Subsets). Let MI(K) be the
set of the minimal inconsistent subsets of K and B the size of the biggest minimal
inconsistent subsets of K, then for each k (1 ≤ k ≤ B), we define MI(k)(K) as
the set of k-size minimal inconsistent subsets of K, i.e.,

MI(k)(K) = {Γ ∈ MI(K)||Γ| = k}.
Evidently, MI(k1)(K) ∩MI(k2)(K) = ∅ for any k1 6= k2, and MI(1)(K)⊕ · · · ⊕

MI(B)(K) = MI(K). Then we call the B-tuple

〈MI(1)(K), · · · ,MI(B)(K)〉
a partition of the minimal inconsistent subsets. It provides a more fine-grained
picture of MI(K).

Definition 4.2 (MI Cardinality Vector). The MI cardinality vector for a
belief base K, denoted c(K), is defined as

c(K) = (|MI(1)(K)|, · · · , |MI(B)(K)|),
where 〈MI(1)(K), · · · ,MI(B)(K)〉 is the partition of the minimal inconsistent sub-
sets of K.

In contrast to |MI(K)|, the element in k-th location of c(K) gives the number
of the k-size minimal inconsistent subsets of K. Then c(K) considers the size of
each minimal inconsistent subset as well as the number of minimal inconsistent
subsets with each size. Intuitively, it provides a finer-grained description for the
minimal inconsistent subsets of a belief base.

Example 4.1. Consider K2 = {a, a → b,¬b,¬a, c ∧ ¬c}. Then MI(K2) = {{c ∧
¬c}, {a,¬a}, {a, a → b,¬b}} and B = 3. Moreover,

MI(1)(K2) = {{c ∧ ¬c}}, MI(2)(K2) = {{a,¬a}}, MI(3)(K2) = {{a, a → b,¬b}}.
Therefore c(K) = (1, 1, 1).

The MI cardinality vector of K can be used to define an inconsistency measure
from the minimal inconsistent subsets of K. Then as a revised MI inconsistency
measure, MI inconsistency vectorial measure is defined as follows:
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Definition 4.3 (MI Inconsistency Vectorial Measure). The MI inconsis-
tency vectorial measure for a belief base K, denoted IR(K), is defined as

IR(K) = c(K),

where c(K) is the MI cardinality vector of K.

Example 4.2. Consider K2 = {a, a → b,¬b,¬a, c ∧ ¬c} again. Then IR values
for some subsets of K is given as follows:

IR(K2) = (1, 1, 1), IR({c ∧ ¬c}) = (1, 0, 0),
IR({a,¬a}) = (0, 1, 0), IR({a, a → b,¬b}) = (0, 0, 1),
IR({a, c ∧ ¬c}) = (1, 0, 0), IR({a,¬b}) = (0, 0, 0).

Proposition 4.1. The MI inconsistency vectorial measure IR satisfies (D1)-
(D5), i.e.,

(D1) Consistency: IR(K) = 0 iff MI(K) = ∅.
(D2) Monotony w.r.t. MI: IR(K1) ¹ IR(K2) if MI(K1) ⊆ MI(K2).
(D3) Attenuation: For any two minimal inconsistent sets K1 and K2, IR(K1) ≺

IR(K2) if |K1| > |K2|.
(D4) Equal Conflict: For any two minimal inconsistent sets K1 and K2, IR(K1) =

IR(K2) if |K1| = |K2|.
(D5) Separability: IR(K1 ∪K2) = IR(K1) + IR(K2) if MI(K1 ∪K2) = MI(K1) ⊕

MI(K2).

This proposition shows that the MI inconsistency vectorial measure IR is
an intuitive inconsistency measure. Moreover, we call a vectorial inconsistency
measure a basic vectorial inconsistency measure if it satisfies (D1)-(D5).

Note that the MI inconsistency vectorial measure IR is linearly homogeneous,
i.e.,

IR(K2) = tIR(K1) if c(K2) = tc(K1).

It signifies that the inconsistency increases in proportion to the MI cardinality
vector.

Evidently, IMI(K) = |MI(K)| =
B∑

i=1

|MI(i)(K)|. The following proposition

shows that the MI inconsistency vectorial measure IR is more discriminative
than the MI inconsistency measure IMI.

Proposition 4.2. Let IMI and IR be the MI inconsistency measure and the MI
inconsistency vectorial measure, respectively. Then ∀K, K ′ ∈ KL,

IR(K) = IR(K ′) =⇒ IMI(K) = IMI(K ′).

But the converse does not hold.

Example 4.3 (A Counterexample for the Converse). Consider K3 = {a, a →
b,¬b,¬a} and K4 = {a, a → b,¬b, b ∧ ¬b}. Then

MI(K3) = {{a, ¬a}, {a, a → b,¬b}},
MI(K4) = {{b ∧ ¬b}, {a, a → b,¬b}}.

So,

IMI(K3) = 2, IMI(K4) = 2;
IR(K3) = (0, 1, 1), IR(K4) = (1, 0, 1).
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Evidently,
IMI(K3) = IMI(K4).

But
IR(K3) ≺ IR(K4).

Note that {a, a → b,¬b} is a common minimal inconsistent subsets of K3 and
K4. Intuitively, the inconsistency level of {b∧¬b} is higher than that of {a,¬a}.
Actually, {a,¬a} is maximally 1

2 -consistent, in contrast, {b ∧ ¬b} is maximally
0-consistent. However, in such case, IMI does not consider the distinction between
the inconsistency level of {a,¬a} and that of {b ∧ ¬b}. Therefore, we can not
distinguish K3 from K4 using IMI. In contrast, IR takes the difference between
{a,¬a} and {b∧¬b} into account, and then can be used to distinguish K3 from
K4.

Recall the lower bounds of maximal η-consistency for a belief base given by
Proposition 3.1, if K contains a contradiction (i.e., 1-size minimal inconsis-
tent subset), then K is maximally 0-consistent, whilst K is S−1

|K| consistent if K

contains no contradiction, where S is the smallest size of minimal inconsistent
subsets of K. It signifies that a 1-size minimal inconsistent subset cannot be
replaced by a number of n-size minimal inconsistent subsets in measuring the
degree of inconsistency in K. However, for the MI inconsistency vectorial mea-
sure IR, the k-size minimal inconsistent sets and the l-size minimal inconsistent
sets are also not replaceable for any k 6= l. Suppose that k < l and M is a k-size
minimal inconsistent set, then IR(M) = (0, · · · , 0, 1) ∈ Rk , then for any l-size
minimal inconsistent set M ′, IR(M ′) = (0, · · · , 0, 1) ∈ Rl, so we cannot find
a number t s.t. tIR(M ′) = IR(M). That is, the contribution made by a k-size
minimal inconsistent subset to a belief base cannot be substituted by the contri-
bution made by any finite l-size minimal inconsistent subsets. Then IR is a kind
of inconsistency measure with Null Elasticity of Substitution.

4.2. MinInc Inconsistency Vectorial Value

We have presented properties (D1)-(D5) to characterize an intuitive and dis-
criminative inconsistency measurement for a belief base defined from its minimal
inconsistent subsets. Furthermore, to be an intuitive measurement for the blame
of each formula of a belief base for the inconsistency of that belief base, an in-
consistency (vectorial) value defined from minimal inconsistent subsets, denoted
MIV , should satisfy the following properties:

(P1) Innocence: ∀α ∈ K, ∀M ∈ MI(K), MIV(M, α) = 0 if α 6∈ M .
(P2) Fairness: ∀α ∈ K, ∀M ∈ MI(K), MIV(M, α) = 1

|M |I(M) if α ∈ M .

(P3) Cumulation: ∀α ∈ K, MIV(K, α) =
∑

M∈MI(K)

MIV(M, α).

The property of Innocence states that any formula not included in a mini-
mal inconsistent subset should not bear any responsibility for the inconsistency
of that minimal inconsistent subset. The property of Fairness requires that the
blame of each minimal inconsistent subset is shared equally among all the formu-
las belonging to that minimal inconsistent subset. The property of Cumulation
states that the blame of a formula in the inconsistency of a belief base is equal
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to the sum of the blames of this formula in the inconsistency of all the minimal
inconsistent subsets that this formula belongs to.

Note that the property of Innocence may be considered as a more specific
statement of the axiom of Minimality presented in (Hunter et al, 2008). Actually,
if an inconsistency measure defined from minimal inconsistent subsets accords
with the property of Innocence, it must satisfy the axiom of Minimality.

On the other hand, according to the property of Fairness, IR(M)
|M | could be

considered as a measure of the blame of each formula belonging to the mini-
mal inconsistent belief base M for the inconsistency of M . This motivates the
definition of the MinInc Inconsistency Vectorial Measure directly.

Definition 4.4 ( MinInc Inconsistency Vectorial Value ). Let K be a be-
lief base and B the size of the biggest minimal inconsistent subsets of K. Then
the MinInc inconsistency vectorial value MIVR is defined as follows:

∀α ∈ K, MIVR(K, α) = (r1, · · · , rB),

where

rk =





∑
M∈MI(k)(K)s.t.α∈M

1
|M | , ∃M ∈ MI(k)(K)s.t.α ∈ M ;

0, otherwise.

for each k (1 ≤ k ≤ B).

Note that MIVR(K,α) also assigns 1
|M | to each formula belonging to the

minimal inconsistent subset M as the blame of each formula for the inconsis-
tency of M . But the relative location of rk in the vector (r1, · · · , rB) implies the
distinction between the blames of the formula for the inconsistency of any two
minimal inconsistent subsets with different sizes.

Example 4.4. Consider K1 = {a,¬a,¬a∧b, c∧¬c, d} again. Then the minimal
inconsistent subsets of K1 are MI(K1) = 〈MI(1)(K1),MI(2)(K1)〉, where

MI(1)(K1) = {{c ∧ ¬c}}, MI(2)(K1) = {{a,¬a}, {a,¬a ∧ b}}.
So, the MIVR values are given as follows:

MIVR(K1, a) = (0, 1, 0) MIVR(K1,¬a) = (0, 1
2 , 0)

MIVR(K1,¬a ∧ b) = (0, 1
2 , 0) MIVR(K1, c ∧ ¬c) = (1, 0, 0)

MIVR(K1, d) = (0, 0, 0)

Moreover, MIVR(K1, a) 6= MIVR(K1, c ∧ ¬c). Note that we can not make a
distinction between the blame of a and the blame of c ∧ ¬c by using MIVC.

Proposition 4.3. The MinInc inconsistency vectorial value MIVR satisfies (P1),
(P2), and (P3), i.e.,

(P1) Innocence: ∀α ∈ K, ∀M ∈ MI(K), MIVR(M, α) = 0 if α 6∈ M .
(P2) Fairness: ∀α ∈ K, ∀M ∈ MI(K), MIVR(M, α) = 1

|M |IR(M) if α ∈ M .

(P3) Cumulation: ∀α ∈ K, MIVR(K,α) =
∑

M∈MI(K)

MIVR(M, α).

Clearly, we can get the following results from the definitions of MIVR and
MIVC.



A General Framework for Measuring Inconsistency Through Minimal Inconsistent Sets 15

Proposition 4.4. Let MIVC and MIVR be the MinInc inconsistency value and
the MinInc inconsistency vectorial value, respectively. Then

∀α ∈ K, MIVC(K,α) = MIVR(K, α) · (1, 1, · · · , 1)τ ,

where (1, 1, · · · , 1) ∈ RB , and (1, 1, · · · , 1)τ is the transpose of (1, 1, · · · , 1).

Proposition 4.5. Let MIVC and MIVR be the MinInc inconsistency value and
the MinInc inconsistency vectorial value, respectively. Then ∀α, β ∈ K,

MIVR(K, α) = MIVR(K,β) =⇒ MIVC(K, α) = MIVC(K, β).

But the converse does not hold.

Example 4.5 (A Counterexample for the Converse). Consider K5 = {a,¬a,¬a∧
c, b ∧ ¬b}. Then MI(K5) = 〈MI(1)(K5),MI(2)(K5)〉, where

MI(1)(K5) = {{b ∧ ¬b}}; MI(2)(K5) = {{a,¬a}, {a,¬a ∧ c}}.
We can get

MIVC(K5, a) = 1, MIVC(K5, b ∧ ¬b) = 1,
MIVR(K5, a) = (0, 1, 0), MIVR(K5, b ∧ ¬b) = (1, 0, 0).

So,
MIVC(K5, a) = MIVC(K5, b ∧ ¬b),

but
MIVR(K5, a) ≺ MIVR(K5, b ∧ ¬b).

The last proposition shows that the MinInc inconsistency vectorial value
MIVR is more discriminative than the MinInc inconsistency value MIVC.

Compared to
∑

α∈M

MIVC(M, α) = 1 for a minimal inconsistent set M ,

∑

α∈M

MIVR(M, α) = IR(M).

It signifies that MIVR does take the size of M into account. Moreover, it could
be used to explain why MIVR is more discriminative than MIVC.

The MinInc inconsistency vectorial value MIVR also satisfies the following
logical properties presented in (Hunter et al, 2008):

Proposition 4.6. Let MIVR be the MinInc inconsistency vectorial value.

–If α is a free formula of K, then MIVR(K, α) = 0.
–MIVR(K, α) ¹ MIVR(K ∪K ′, α).
–If α ≡ ⊥, then MIVR(K, α) = (1, 0, · · · , 0).
–If φ ` ψ and φ 6` ⊥, then MIVR(K ∪ {ψ}, α) ¹ MIVR(K ∪ {φ}, α).

4.3. Shapley Inconsistency Vector Value

We have shown that the MI inconsistency vectorial measure and the MinInc
inconsistency vectorial value capture the nature of inconsistency and blame of
each formula in the inconsistency for a belief base, respectively. Furthermore, we
show that the MinInc inconsistency vectorial value is also a particular kind of
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Shapley Inconsistency Value. At first, we adapt the Shapley value to the vectorial
form.

Definition 4.5 (Vectorial Coalitional Game). Let N = {1, 2, · · · , n} be a
set of n players. Let m be a positive number. A vectorial game in coalitional
form is given by a function v : 2N −→ Rm, with v(∅) = 0.

Correspondingly, a value is a function that assigns to each game v a matrix
of payoff S(v) = (S1,S2, · · · ,Sn)τ in Rn×m, where Si is the payoff for player i.

Definition 4.6 (Shapley Vectorial Value). Let i ∈ N be a player, and n be
the number of players. The Shapley vectorial value of player i in the vectorial
game v is defined as

Si(v) =
∑

C⊆N

(c− 1)!(n− c)!
n!

(v(C)− v(C \ {i}))

where c is the cardinality of C.

Evidently, the Shapley vectorial value satisfies all of Efficiency, Symmetry,
Dummy and Additivity.

– Efficiency:
∑

i∈N

Si(v) = v(N).

– Symmetry: If i and j are such that for all C s.t. i, j 6∈ C, v(C ∪ {i}) =
v(C ∪ {j}), then Si(v) = Sj(v).

– Dummy: If i is such that ∀C,v(C ∪ {i}) = v(C), then Si(v) = 0.
– Additivity: Si(v + w) = Si(v) + Si(w).

On the other hand, for each k (1 ≤ k ≤ m), consider the vectorial game
vk : 2N −→ Rm such that for all C ⊆ N , vk(C) = (u1, · · · , um), where

ui =
{

vi if i = k
0 if i 6= k

and v(C) = (v1, v2, · · · , vm). Let Si(vk) be the Shap-

ley Vectorial Value for vk. Then Si(vk) is the only vectorial value that sat-
isfies all of Efficiency, Symmetry, Dummy and Additivity properties. Suppose
that there is another value S′i(vk) which also satisfies all of Efficiency, Symme-
try, Dummy and Additivity properties. Then both Si(vk) · (1, 1, · · · , 1)τ and
S′i(vk) · (1, 1, · · · , 1)τ are the only Shapley Value of the game vk such that
vk(C) = vk(C) · (1, 1, · · · , 1)τ for all C ⊆ N . Then Si(vk) = S′i(vk). Further-
more, Si(v) = Si(v1) + · · ·+ Si(vm). Then we can get the following proposition
to support for the Shapley vectorial value.

Proposition 4.7. The Shapley vectorial value is the only value satisfies all of
of Efficiency, Symmetry, Dummy and Additivity properties.

Correspondingly, we can define the Shapley Inconsistency Vectorial Value as
follows:

Definition 4.7 (Shapley Inconsistency Vectorial Value). Let I be a ba-
sic vectorial inconsistency measure. The corresponding Shapley Inconsistency
Vectorial Value (SIVV), denoted SI, is referred to as the Shapley value of the
coalitional game defined by the vectorial function I, i.e. let α ∈ K:

SI
α(K) =

∑

C⊆N

(c− 1)!(n− c)!
n!

(I(C)− I(C \ {α}))
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where n is the cardinality of K and c is the cardinality of C.

Example 4.6. Consider K6 = {a∧¬a, b,¬b, c}. Then MI(K6) = 〈MI(1)(K6),MI(2)(K6)〉,
where

MI(1)(K6) = {{a ∧ ¬a}}, MI(2)(K6) = {{b,¬b}}.
So, we can obtain the MinInc inconsistency vectorial values as follows:

MIVR(K6, a ∧ ¬a) = (1, 0), MIVR(K6, b) = (0,
1
2
),

MIVR(K6,¬b) = (0,
1
2
), MIVR(K6, c) = (0, 0).

Furthermore, we can get the Shapley inconsistency vectorial values as follows:

SIR
a∧¬a(K6) = (1, 0), SIR

b (K6) = (0,
1
2
),

SIR

¬b(K6) = (0,
1
2
), SIR

c (K6) = (0, 0).

Moreover,
∀α ∈ K6, SIR

α (K6) = MIVR(K6, α).

However, for any belief base, we can prove that the MinInc inconsistency
vectorial value MIVR is exactly the Shapley Inconsistency Vectorial Value of a
coalitional game defined by the MI inconsistency vectorial measure IR. Firstly,
we give the corresponding lemma for the Shapley Inconsistency Vectorial Value.

Lemma 4.1. If a simple vectorial game in coalitional form on a set of players
N = {1, 2, · · · , n} is defined by a single winning coalition C ′ ⊆ N , i.e.,

v(C) =
{

(u1, · · · , uN ) if C ′ ⊆ C
0 otherwise , where ui =

{
1 if i = |C ′|
0 if i 6= |C ′| .

Then the corresponding Shapley vectorial value is:

Sk(v) =
{

(s1, · · · , sN ) if k ∈ C ′
0 otherwise , where si =

{
1
|C′| i = |C ′|
0 i 6= |C ′| .

Based on the lemma above, we can get the following interesting result about
MIVR and IR.

Proposition 4.8.
SIR

α (K) = MIVR(K, α).

For characterizing the Shapley Inconsistency Vectorial Value, we provide the
axiom of Revised MinInc as follows:

– If M ∈ MI(K), I(M) = IR(M).

The axiom of revised MinInc accords with the principle of Attenuation under
the lexicographical ordering relation as well as the principle of Equal Conflict.

Further, we can get the following axiomatization of the Shapley Inconsistency
Vectorial Value.

Proposition 4.9. A Shapley inconsistency vectorial value satisfies Distribu-
tion, Symmetry, Minimality, Revised Decomposability and Revised MinInc if
and only if it is the MI Shapley Inconsistency vectorial Value SIR

α .
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This proposition shows that the Shapley Inconsistency Vectorial Value SIR
α (K)

can be axiomatically characterized by the five simple and intuitive properties.

5. Weighted Inconsistency Measures

As revised inconsistency measures, the MI inconsistency vectorial measure IR and
the MinInc inconsistency vectorial value MIVR could be used to measure the
inconsistency of a belief base and the blame of each formula in the inconsistency
of that belief base, respectively. However, human experts are accustomed to use
a single numerical valuation rather than a vector to capture the inconsistency
for a belief base in many applications. That is, the human experts are more
likely to adopt a weighted value rather than a vector of (0, · · · , 0, 1) ∈ Rk to
characterize the amount of inconsistency of a k-size minimal inconsistent set. To
address this, in this section, we provide a series of MinInc inconsistency measures
from minimal inconsistent subsets in terms of single numerical values.

We have argued that the MI cardinality vector of a belief base can be consid-
ered as a more fine-grained characterization of inconsistency in that belief base.
Then a numerical inconsistency measure for a belief base K should be a function
of c(K). Particularly, we focus on a series of linear functions of c(K), i.e., we
assign different weights to minimal inconsistent subsets with different sizes.

Suppose that W = {wn}+∞n=1 is a sequence of real numbers such that

(A1) ∀n ∈ N, wn > 0;
(A2) ∀n,m ∈ N, wn > wm if n < m;
(A3) lim

n→+∞
wn = 0.

Further, we use wn to denote a n-size vector (w1, · · · , wn) for each n ∈ N. Then
we define the weighted MI inconsistency measure as follows:

Definition 5.1 (Weighted MI inconsistency Measure). Let K be a belief
base and B the size of the largest minimal inconsistent subsets of K. Let IR

be the MI inconsistency vectorial measure. Then the weighted MI inconsistency
measure for K, denoted IW(K), is defined as follows:

IW(K) = IR(K) ·wτ
B ,

where wτ
B is the transpose of wB .

Note that ∀M ∈ MI(K), IW(M) = w|M |. This is the reason why we termed
IW the weighted MI inconsistency measure.

The weighted MI inconsistency measure satisfies all the constraints mentioned
above.

Proposition 5.1. Let IW be a weighted MI inconsistency measure. Then IW
satisfies the following desiderata:

(D1) Consistency: IW(K) = 0 iff MI(K) = ∅.
(D2) Monotony w.r.t. MI: IW(K1) ≤ IW(K2) if MI(K1) ⊆ MI(K2).
(D3) Attenuation: For any two minimal inconsistent sets M1 and M2, IW(M1) <

IW(M2) if |M1| > |M2|.
(D4) Equal Conflict: For any two minimal inconsistent sets M1 and M2, IW(M1) =

IW(M2) if |M1| = |M2|.
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(D5) Separability: IW(K1 ∪K2) = IW(K1) + IW(K2) if MI(K1 ∪K2) = MI(K1) ⊕
MI(K2).

Moreover, the weighted MI inconsistency measure satisfies some other intuitive
properties.

Proposition 5.2. The weighted MI inconsistency measure IW is linearly homo-
geneous:

IW(K2) = tIW(K1) if c(K2) = tc(K1).

Proposition 5.3. Let IW be a weighted MI inconsistency measure and M a
minimal inconsistent belief base. Then

–Inconsistency: IW(M) > 0;
–Maximal Contradiction: IW(M) = w1 if |M | = 1.
–Almost consistency: lim

|M |→+∞
IW(M) = 0.

The Inconsistency property states that any minimal inconsistent set has non-
zero amount of inconsistency. The Maximal Contradiction states that the in-
consistency of any minimal inconsistent belief base is no more than that of a
singleton set of a contradictory formula (i.e. w1). It accords with the property of
Attenuation. The Almost Consistency property states that as the size of minimal
inconsistent set increases, the amount of inconsistency tends to zero.

Correspondingly, we define the weighted MinInc inconsistency value as fol-
lows:

Definition 5.2 (Weighted MinInc inconsistency Value). Let K be a be-
lief base and B the size of the largest minimal inconsistent subsets of K. Let
MIVR be the MinInc inconsistency vectorial value. Then the weighted MinInc
inconsistency value for K, denoted MIVW, is defined as follows:

∀α ∈ K, MIVW(K,α) = MIVR(K, α) ·wτ
B .

where wτ
B is the transpose of wB .

Clearly, the weighted MinInc inconsistency value satisfies the basic properties
about measurements for the blame of each formula for the inconsistency of a
belief base.

Proposition 5.4. The weighted MinInc inconsistency value MIVW satisfies (P1),
(P2), and (P3), i.e.,

(P1) Innocence: ∀α ∈ K, ∀M ∈ MI(K), MIVW(M, α) = 0 if α 6∈ M .
(P2) Fairness: ∀α ∈ K, ∀M ∈ MI(K), MIVW(M, α) = 1

|M | IW(M) if α ∈ M .

(P3) Cumulation: MIVW(K,α) =
∑

M∈MI(K)

MIVW(M, α).

If a sequence W satisfies the property (A2), i.e., ∀n,m ∈ N, wn > wm

if n < m, then the weighted measures based on W support the property of
Attenuation about a revised MI inconsistency measure. Obviously, there is no
sequence W s.t. wn − wn+1 = c, where c is a constant and 0 < c < w1. That
is, the amount of inconsistency in a minimal inconsistent set cannot decrease by
deleting a constant increment as the size increases. Then we consider the ratio of
any two successive weights. For each weight sequence W , we define a proportion
function PW : N→ R such that PW (n) = wn+1

wn
for each n ∈ N.
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Definition 5.3 (Type-I Weight Sequence). A weight sequence W is called
a Type-I weight sequence if

∀n ∈ N, PW (n) = λ, where λ is a constant and 0 < λ < 1.

This implies that the amount of a minimal inconsistent set attenuates at a con-
stant proportion λ as the size of the minimal inconsistent set increases.

A Type-I weight sequence can be represented by W I = {aλn−1}+∞n=1, where
a ( i.e. wI

1 ) is a positive constant. Then a Type-I weighted MI inconsistency
measure and weighted MinInc inconsistency value can be defined as follows:

Definition 5.4 (Type-I Weighted MI Inconsistency Measure). Let K be
a belief base and B the size of the largest minimal inconsistent subsets of K.
Let IR be the MI inconsistency vectorial measure. Then the Type-I weighted MI
inconsistency measure for K, denoted IWI(K), is defined as follows:

IWI(K) = IR(K) · (wI
B)

τ
=

B∑
n=1

aλn−1|MI(n)(K)|

where constants a and λ satisfy a > 0 and 0 < λ < 1, respectively.

Definition 5.5 (Type-I Weighted MinInc Inconsistency Value). Let K be
a belief base and B the size of the largest minimal inconsistent subsets of K. Let
MIVR be the MinInc inconsistency vectorial value. Then the Type-I weighted
MinInc inconsistency value for K, denoted MIVWI , is defined as follows: ∀α ∈ K,

MIVWI(K, α) = MIVR(K, α) · (wI
B)τ =

∑

M∈MI(K)s.t.α∈M

aλ|M |−1

|M | .

where constants a and λ satisfy a > 0 and 0 < λ < 1, respectively.

Example 5.1. Consider K7 = {a ∧ ¬a, b,¬b, c ∧ ¬b, c} again. Then MI(K7) =
〈MI(1)(K7),MI(2)(K7)〉, where

MI(1)(K7) = {{a ∧ ¬a}},
MI(2)(K7) = {{b,¬b}, {b, c ∧ ¬b}}.

Suppose that we use a Type-I weight sequence W I, in which a = 1 and λ = 1
e .

So,

IWI(K7) = e+2
e , IWI({a ∧ ¬a}) = 1,

IWI({b,¬b}) = 1
e , IWI({b, c ∧ ¬b}) = 1

e .

We can obtain the Type-I weighted MinInc inconsistency values as follows:

MIVWI(K7, a ∧ ¬a) = 1, MIVWI(K7, b) = 1
e ,

MIVWI(K7,¬b) = 1
2e , MIVWI(K7, c ∧ ¬b) = 1

2e ,
MIVWI(K7, c) = 0.

Note that MIVC(K7, b) = MIVC(K7, a∧¬a). But MIVWλ(K7, b) < MIVWλ(K7, a∧
¬a). It signifies that MIVWλ can differentiate the blame of a∧¬a and the blame
of b in inconsistency of K7.

Definition 5.6 (Type-II Weight Sequence). A weight sequence W is called
a Type-II weight sequence if
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(1) ∀n ∈ N, PW (n) < PW (n + 1) ;
(2) lim

n→+∞
PW (n) = 1 .

Note that Condition (1) states that the ratio of two successive weights PW (n)
increases as n increases. Moreover, Condition (2) states that the ratio of two
successive weights tends to 1.

Definition 5.7. The weight sequence W (c) is defined as follows:

∀n ∈ N, w(c)
n =

1
n

.

Obviously, W (c) is a Type-II weight sequence. Correspondingly, we define a
Type-II weighted MI inconsistency measure and weighted MinInc inconsistency
value as follows:

Definition 5.8. Let K be a belief base and B the size of the largest minimal
inconsistent subsets of K. A Type-II weighted MI inconsistency measure based
on W (c) for K, denoted IW(c)(K), is defined as follows:

IW(c)(K) = IR(K) · (w(c)
B )τ =

B∑
n=1

|MI(n)(K)|
n

.

Definition 5.9. Let K be a belief base and B the size of the largest minimal
inconsistent subsets of K. A Type-II weighted MinInc inconsistency value based
on W (c) for K, denoted MIVW(c) , is defined as follows: ∀α ∈ K,

MIVW(c)(K, α) = MIVR(K, α) · (w(c)
B )τ =

∑

M∈MI(K)s.t.α∈M

1
|M |2 .

Example 5.2. Consider K2 = {a, a → b,¬b,¬a, c ∧ ¬c} again. Then B = 3.
Suppose we use a Type-II weight sequence W (c) = { 1

n}+∞n=1. We then get IW(c)

for K and minimal inconsistent subsets of K as follows:

IW(c)(K2) = 11
6 , IW(c)({c ∧ ¬c}) = 1,

IW(c)({a,¬a}) = 1
2 , IW(c)({a, a → b,¬b}) = 1

3 .

IW(c)({a, a → b,¬b}) < IW(c)({a,¬a}) < IW(c)({c ∧ ¬c}).
Furthermore, we get the MIVW(c) values for K as follows:

MIVW(c)(K2, c ∧ ¬c) = (1, 0, 0)(1,
1
2
,
1
3
)τ = 1,

MIVW(c)(K2, a) = (0,
1
2
,
1
3
)(1,

1
2
,
1
3
)τ =

13
36

,

MIVW(c)(K2,¬a) = (0,
1
2
, 0)(1,

1
2
,
1
3
)τ =

1
4
,

MIVW(c)(K2, a → b) = (0, 0,
1
3
)(1,

1
2
,
1
3
)τ =

1
9
,

MIVW(c)(K2,¬b) = (0, 0,
1
3
)(1,

1
2
,
1
3
)τ =

1
9
.

However, the MI inconsistency measure IMI can be considered as a particular
weighted MI inconsistency measure, in which the weight sequence is {wn =
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1}+∞n=1. Obviously, this weight sequence does not satisfy the following properties
of a required weight sequence,

(A2) wn > wm if n < m,
(A3) lim

n→+∞
wn = 0.

Then IMI cannot satisfy the Attenuation and Almost Consistency properties. This
distinguishes IMI from IW. Actually, the following proposition shows that IW is
more discriminative than IMI.

Proposition 5.5. Let M1 and M2 be two minimal inconsistent belief bases.
Then

IW(M1) = IW(M2) =⇒ IMI(M1) = IMI(M2).
But the converse does not hold.

Given a belief base K, ∀M ∈ MI(K), MIVW(M, α) = w|M |MIVC(M, α). Then∑
α∈M

MIVW(M, α) = w|M |. It means that the weighted MinInc inconsistency value

takes the attenuation of inconsistency into account.
One of the most significant results of our approach is that the weighted

MinInc inconsistency value MIVW is exactly the Shapley Inconsistency Value of
a coalitional game defined by the weighted MI inconsistency measure IW.

Proposition 5.6.

SIW
α (K) = MIVW(K, α).

S
IWI
α (K) = MIVWI(K, α).

S
I
W(c)

α (K) = MIVW(c)(K, α).

Furthermore, if we provide an axiom of Weighted MinInc as follows:

– If M ∈ MI(K), then I(M) = w|M |.

Then the Shapley Inconsistency Value SIW
α (K) can be axiomatically characterized

by the five simple and intuitive properties, as shown in Proposition 5.7.

Proposition 5.7. A Shapley inconsistency value satisfies Distribution, Sym-
metry, Minimality, Revised Decomposability and Weighted MinInc if and only if
it is SIW

α .

As mentioned above, both the MI inconsistency vectorial measure and the
MinInc inconsistency vectorial value are measures with null elasticity of substi-
tution. However, the null elasticity of substitution makes the MI inconsistency
vectorial measure and the MinInc inconsistency vectorial value more discrimi-
nating.

The weighted MI inconsistency measure and the weighted MinInc inconsis-
tency value are partially replaceable. For example, if we use the weight sequence
W (c) = { 1

n}+∞n=1, then w1 = n ·wn for each n ∈ N. It signifies that the amount of
inconsistency in a minimal inconsistent singleton set is equal to the total amount
of inconsistency in n minimal inconsistent subsets each with size n. That is, the
weighted measures weaken the distinction of minimal inconsistent subsets with
different sizes. Then the weighted measures may be less discriminating than the
vectorial measures. Actually, we have following results:
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Proposition 5.8. Let IW and IR be the weighted MI inconsistency measure and
the MI inconsistency vectorial measure, respectively. Then ∀K1,K2 ∈ KL,

IR(K1) = IR(K2) =⇒ IW(K1) = IW(K2).

But the converse does not hold for some W .

Example 5.3 (A Counterexample for the Converse). Consider K8 = {a∧
¬a} and K9 = {a,¬b, b,¬a}. Then

MI(K8) = MI(1)(K8) = {{a ∧ ¬a}},
MI(K9) = MI(2)(K9) = {{b,¬b}, {a,¬a}}.

So,

IW(c)(K8) = 1, IW(c)(K9) = 1;
IR(K8) = (1), IR(K9) = (0, 2).

Evidently,
IW(c)(K8) = IW(c)(K9).

But
IR(K9) ≺ IR(K8).

Proposition 5.9. Let MIVW and MIVR be the weighted MinInc inconsistency
value and the MinInc inconsistency vectorial value, respectively. Then ∀α, β ∈ K,

MIVR(K, α) = MIVR(K, β) =⇒ MIVW(K, α) = MIVW(K, β).

But the converse does not hold for some W .

Example 5.4 (A Counterexample for the Converse). Consider K10 = {a∧
¬a, b,¬b,¬b∧c,¬b∧d,¬b∧a}. Then MI(K10) = 〈MI(1)(K10),MI(2)(K10)〉, where

MI(1)(K10) = {{a ∧ ¬a}};
MI(2)(K10) = {{b,¬b}, {b,¬b ∧ c}, {b,¬b ∧ d}, {b,¬b ∧ a}}.

We can get

MIVW(c)(K10, a ∧ ¬a) = 1, MIVW(c)(K10, b) = 1,
MIVR(K10, a ∧ ¬a) = (1, 0), MIVR(K10, b) = (0, 2).

So,
MIVW(c)(K10, a ∧ ¬a) = MIVW(c)(K10, b),

but
MIVR(K10, b) ≺ MIVR(K10, a ∧ ¬a).

However, how to select an appropriate weight sequence to construct more
discriminating weighted inconsistency measures is really an important but open
issue. Generally, it depends on application domains. Moreover, a good weight
sequence should emphasize the distinction between minimal inconsistent subsets
with different sizes, i.e, it should help the corresponding weighted measures re-
taining discriminative characteristics of the MI inconsistency vectorial measure
as much as possible. For example, (0, 0, 1, 0) will never be equal to (0, 0, 0, n)
for any n, so we want (0, 0, 1, 0)(w1, · · · , w4)τ 6= (0, 0, 0, n)(w1, · · · , w4)τ being
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true if possible. In this sense, for example, W
1
e = {e1−n}+∞n=1 maybe better than

W
1
2 = {21−n}+∞n=1 for defining weighted MI inconsistency measure IW, since the

amount of inconsistency of a single n-size minimal inconsistent subset can be
replaced by that of two n + 1-size minimal inconsistent subsets if we use W

1
2 .

In contrast, if we use W
1
e , then the amount of inconsistency of a single n-size

minimal inconsistent subset cannot be replaced by that of a number of n+1-size
minimal inconsistent subsets.

6. Related Work

We have presented two kinds of revised inconsistency measure for a belief base by
using the minimal inconsistent subsets of that belief base. However, measuring
inconsistency has received considerable attention in computer science as well as
artificial intelligence recently. In this section, we compare the revised inconsis-
tency measure presented in this paper with some of closely related research.

A number of proposals for measuring the degree of inconsistency of a belief
base have been presented recently. These proposals for measuring inconsistency
have been classified into two approaches in (Hunter et al, 2006; Hunter et al,
2008). The proposals of the first approach always focus on counting the minimal
number of formulas needed to cause an inconsistency in a set of formulas, such
as the measurement of maximal |M |−1

|M | -consistency for a minimal inconsistent
set M presented in (Knight, 2002). This approach supports an intuition that the
more formulas needed (in a set) to cause an inconsistency, the less inconsistent
is the set (Knight, 2002). Evidently, the MI inconsistency vectorial measure and
the weighted MI inconsistency measure presented in this paper can be considered
as particular proposals of the first approach, and both the two revised measures
support this intuition. Note that the two kinds of revised inconsistency measures
presented in this paper are syntax sensitive. As argued in (Hunter et al, 2008),
the syntax sensitivity is necessary in some applications such as requirements
engineering.

The proposals of the second approach supports the intention of looking in-
side the formulas (Hunter et al, 2006; Hunter et al, 2008), such as model-based
proposals (Hunter, 2002; Konieczny et al, 2003; Grant et al, 2006; Grant and
Hunter, 2008). As pointed out in (Hunter et al, 2006; Hunter et al, 2008), the
first approach rejects the possibility of a finer-grained inspection of the formulas,
whilst the second approach does not consider the distribution of the contradic-
tion among the formulas because of lack of syntax sensitivity.

The Shapley inconsistency value presented in (Hunter et al, 2006) can be con-
sidered as the first attempt to build measures that allow us to take the best of the
two approaches. Roughly speaking, an inconsistency measure of the second ap-
proach is used to define a game in coalitional form firstly, then the contradictions
can be distributed to each formula by using Shapley value model. More impor-
tantly, the Shapley inconsistency value can be considered as an useful pattern
to link the inconsistency measures for subsets of a belief base and the inconsis-
tency measures for each formula in inconsistency of that belief base (Hunter
et al, 2008). In this paper, we also use the model of Shapley value to charac-
terize the MinInc inconsistency vectorial value as well as the weighted MinInc
inconsistency value. That is, the two kinds of revised MinInc inconsistency values
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presented in this paper have been shown to be particular Shapley inconsistency
values.

On the other hand, it is increasingly recognized that the minimal inconsistent
subsets of a belief base can be used to derive an intuitive evaluation of the
amount of inconsistency for the base. The scoring function presented in (Hunter,
2004) can be considered as an earlier representative measurement in terms of
minimal inconsistent subsets. Given a belief base K, for each subset K ′ of K,
the scoring function S(K ′), defined as |MI(K)| − |MI(K ′)|, gives the number of
minimal inconsistent subsets of K that would be eliminated if K ′ was removed
from K. Especially, for each singleton set {α}, S({α}) counts the number of
minimal inconsistent subsets that α belongs to. Then it may be considered as
a measurement for the blame of α in the inconsistency of K in some sense.
However, as pointed out in (Hunter et al, 2008), the idea is very sketchy, since it
does not consider the size of each minimal inconsistent subset α belongs to. For
example, α has the same contribution to {α,¬α} and {α, β → ¬α, β} according
to the scoring function.

To address this, the MinInc inconsistency value MIVC presented in (Hunter
et al, 2008) have taken the size of each minimal inconsistent subset into account
in order to evaluate the inconsistency value of each formula. In detail, for each
minimal inconsistent subset M that α belongs to, 1

|M | rather than 1 is consid-
ered as the evaluation of the blame of α in the inconsistency in M . On the other
hand,

∑
α∈M

MIVC(M, α) = 1 implies that each minimal inconsistent subset has the

same amount of inconsistency, which is termed as the axiom of MinInc (Hunter
et al, 2008). However, as illustrated by the lottery paradox, intuitively, as the
size of a minimal inconsistent subset increases, the amount of inconsistency at-
tenuates (Knight, 2002). The MinInc inconsistency value fails to support this
intuition. Furthermore, to characterize the MinInc inconsistency value by using
Shapley Value model, a basic inconsistency measure for a belief base, termed
the MI inconsistency measure IMI, has also been defined from minimal inconsis-
tent subsets. However, most properties used to characterize a basic inconsistency
measure are too general for measures defined from minimal inconsistent subsets.
That is, most properties do not take the characteristics of minimal inconsistent
subsets into account.

In contrast, we presented five properties (i.e., Consistency, Monotony w.r.t.
MI, Attenuation, Equal conflict, Separability) to characterize an intuitive incon-
sistency measure for belief bases defined from minimal inconsistent subsets. In
particular, Attenuation and Equal conflict describe the relation of the amount of
inconsistency in a minimal inconsistent subset and the size of that minimal in-
consistent subset. Moreover, we presented three properties (Innocence, Fairness,
Cumulation) to characterize an intuitive inconsistency measure for the blame of
each formula in the inconsistency of a belief base.

Then we provided two kinds of revised MI inconsistency measure and the cor-
responding revised MinInc inconsistency values for a belief base. Both of the two
kinds of the revised measures accord with the intuition illustrated by the lottery
paradox: the smaller the size of a minimal inconsistent subset, the bigger the in-
consistency is. In detail, we firstly present the MinInc inconsistency value MIVR,
in which a vector (0, · · · , 0, 1

|M | ) ∈ R|M | rather than 1
|M | is used to evaluate the

blame of each formula of M in the inconsistency. In this vector, as the MinInc
inconsistency value, the numerical value 1

|M | implies that each formula of M only
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accounts for 1
|M | of cause of the inconsistency in M . But the location of 1

|M | in the
vector implies that the total amount of inconsistency in M depends on the size of
M . That is,

∑
α∈M

MIVR(M, α) = IR(M) = (0, · · · , 0, 1) ∈ R|M |. It distinguishes

the MinInc inconsistency vectorial value from the MinInc inconsistency value.
Furthermore, we demonstrated that the MinInc inconsistency vectorial value is
more discriminative than the MinInc inconsistency value presented in (Hunter
et al, 2008).

We then presented the weighted MinInc inconsistency value MIVW to support
the demand for measuring the inconsistency of a belief base by using a single
numerical value. Given a minimal inconsistent belief base M , 1

|M | ·w|M | is used to
evaluate the blame of each formula in the inconsistency of M according to MIVW.
Note that the factor 1

|M | also signifies that each formula in M only accounts for
1
|M | of the cause of inconsistency in M . But the weight w|M | states that the
total amount of inconsistency in M is captured by w|M | rather than a vector.
Moreover, according to the property (A2) of the weight sequence, w|M | attenuates
as |M | increases. This means the weighted inconsistency measures IW and MIVW

also overcome the disadvantages of IMI and MIVC.

7. Conclusions

It is increasingly recognized that it is natural to explore relationships between
measures of inconsistency for a belief base and the minimal inconsistent subsets
of that belief base. A. Hunter and S. Konieczny have proposed an inconsistency
value termed MIVC from minimal inconsistent subsets, and have shown that
it can be axiomatized completely in terms of five simple axioms (Hunter et
al, 2008). However, as we pointed out in this paper, the axiom of MinInc used
to characterize the value MIVC does not support the intuition that as the size
of minimal inconsistent set increases, the degree of inconsistency becomes more
tolerable.

We presented two kinds of revised MinInc inconsistency value from the min-
imal inconsistent subsets, which consider the size of each minimal inconsistent
subset as well as the number of minimal inconsistent subsets. We first explored
the intuitive and simple properties to characterize inconsistency measures de-
fined from minimal inconsistent subsets. We then provided the first kind of re-
vised measures in terms of vector, i.e., the MI inconsistency vectorial measure
and the MinInc inconsistency vectorial value. We demonstrated that the two
revised measures are more discriminating than the corresponding measures de-
fined in (Hunter et al, 2008). Finally, based on the vectorial revised measures,
we provided the weighted MI inconsistency measure and the weighted MinInc
inconsistency value.

We have shown that both the two kinds of revised measures support the in-
tuition that the smaller the size of the minimal inconsistent subset, the bigger
the inconsistency is. More importantly, we have also proved that both of the two
kinds of revised MinInc inconsistency values are particular Shapley inconsistency
values with regard to corresponding revised MI inconsistency values, respectively.
Moreover, the two kinds of revised MinInc inconsistency values can be axiomati-
cally characterized by the revised Decomposability and MinInc axioms and three
other simple properties.
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We focused on the flat belief base in this paper. However, the reality is that
some beliefs are more important than others. How to measure the inconsistency
for a stratified belief base from minimal inconsistent subsets will be the main
direction for our future work.
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Appendix

The Proof of Proposition 4.8

Proof: First suppose that α is a free formula of K, then we get SIR
α (K) = 0 by

Dummy and Minimality. By the definition we know that MIVR(K, α) = 0. So
the proposition holds in this case.

Then suppose that α is not a free formula of K. Notice that IR(C) can be
decomposed in IR(C) =

∑
M∈MI(K)

vM (C) such that

vM (C) =
{

(u1, · · · , um) if M ⊆ C
0 otherwise , where ui =

{
1 if i = |M |
0 if i 6= |M | .

We use vM (K) to denote the vectorial game in coalitional form defined from
K and vM . Then by the Lemma we have

Sα(vM ) =
{

(s1, · · · , sm) if α ∈ M
0 if α 6∈ M

, where si =
{

1
|M | if i = |M |
0 if i 6= |M | .

And ∑

M∈MI(K)

Sα(vM ) = MIVR(K, α).
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So

SIR
α (K)

=
∑

C⊆N

(c− 1)!(n− c)!
n!

(IR(C)− IR(C \ {α}))

=
∑

C⊆N

(c− 1)!(n− c)!
n!

(
∑

M∈MI(K)

vM (C)−
∑

M∈MI(K)

vM (C \ {α}))

=
∑

C⊆N

(c− 1)!(n− c)!
n!

(
∑

M∈MI(K)

(vM (C)− vM (C \ {α})))

=
∑

C⊆N

(
∑

M∈MI(K)

(c− 1)!(n− c)!
n!

(vM (C)− vM (C \ {α})))

=
∑

M∈MI(K)

(
∑

C⊆N

(c− 1)!(n− c)!
n!

(vM (C)− vM (C \ {α})))

=
∑

M∈MI(K)

Sα(vM )

= MIVR(K, α).

Note that this proof is similar to the corresponding proposition in (Hunter
et al, 2008).

The Proof of Proposition 4.9

proof: Suppose that SI
α is an inconsistency value satisfies Distribution, Sym-

metry, Minimality, Revised Decomposability and Revised MinInc. Then

–
∑

α∈K

SI
α(K) = I(K) (Distribution)

– SI
α(K) = 0 if α is a free formula in K. (Minimality)

– SI
α(K) =

∑
M∈MI(K)

SI
α(M). (Revised Decomposability)

Then
SI

α(K) =
∑

M∈MI(K) s.t. α∈M,

SI
α(M)

By symmetry,

∀α, β ∈ M, SI
α(M) = SI

β(M)

Then

∀α ∈ M, SI
α(M) =

1
|M | · I(M).

So,

SI
α(K) =

∑

M∈MI(K) s.t. α∈M,

1
|M | · I(M)
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By Revised MinInc, We know that if M ∈ MI(K), then I(M) = IR(M).

SI
α(K) =

∑

M∈MI(K) s.t. α∈M,

1
|M | · IR(M)

=
∑

M∈MI(K)

MIVR(M, α)

= MIVR(K, α)

= SIR
α (K)

The Proof of Proposition 5.7

Proof: Suppose that SI
α is an inconsistency value satisfies Distribution, Sym-

metry, Minimality, Revised Decomposability and weighted MinInc. Then

–
∑

α∈K

SI
α(K) = I(K) (Distribution)

– SI
α(K) = 0 if α is a free formula in K. (Minimality)

– SI
α(K) =

∑
M∈MI(K)

SI
α(M). (Revised Decomposability)

Then
SI

α(K) =
∑

M∈MI(K) s.t. α∈M,

SI
α(M)

By symmetry,

∀α, β ∈ M, SI
α(M) = SI

β(M)

Then

∀α ∈ M, SI
α(M) =

1
|M | · I(M).

So,

SI
α(K) =

∑

M∈MI(K) s.t. α∈M,

1
|M | · I(M)

By Weighted MinInc, We know that if M ∈ MI(K), then I(M) = IW(M) = w|M |.

SI
α(K) =

∑

M∈MI(K) s.t. α∈M,

w|M |
|M |

=
∑

M∈MI(K)

MIVW(M, α)

= MIVW(K, α)

= SIW
α (K)
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