
Mu KD, Liu W, Jin Z et al. Managing software requirements changes based on negotiation-style revision. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 26(5): 890–907 Sept. 2011. DOI 10.1007/s11390-011-0187-y

Managing Software Requirements Changes Based on Negotiation-Style

Revision

Ke-Dian Mu1 (牟克典), Member, CCF, Weiru Liu2, Zhi Jin3 (金 芝), Senior Member, CCF, IEEE, Jun Hong2

and David Bell2

1School of Mathematical Sciences, Peking University, Beijing 100871, China
2School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, BT7 1NN, U.K.
3Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education

School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

E-mail: mukedian@math.pku.edu.cn; fw.liu@qub.ac.uk; zhijin@sei.pku.edu.cn; {j.hong, da.bellg}@qub.ac.uk

Received September 20, 2010; revised June 30, 2011.

Abstract For any proposed software project, when the software requirements specification has been established, require-
ments changes may result in not only a modification of the requirements specification but also a series of modifications of
all existing artifacts during the development. Then it is necessary to provide effective and flexible requirements changes
management. In this paper, we present an approach to managing requirements changes based on Booth’s negotiation-style
framework for belief revision. Informally, we consider the current requirements specification as a belief set about the system-
to-be. The request of requirements change is viewed as new information about the same system-to-be. Then the process
of executing the requirements change is a process of revising beliefs about the system-to-be. We design a family of belief
negotiation models appropriate for different processes of requirements revision, including the setting of the request of re-
quirements change being fully accepted, the setting of the current requirements specification being fully preserved, and that
of the current specification and the request of requirements change reaching a compromise. In particular, the prioritization
of requirements plays an important role in reaching an agreement in each belief negotiation model designed in this paper.

Keywords requirements change, non-prioritized belief revision, inconsistency handling, negotiation

1 Introduction

For any proposed software development project, it
seems to be inevitable to confront requirements changes
during the software development life cycle. Stakehol-
ders change their minds for many reasons, including
policies and legislation changes, commercial strategies
updating and marketplace changes, identifying a defect
in proposed requirements or missing a requirement, and
realizing that they misunderstood their actual demand.
Generally, the earlier the requirements are frozen (i.e.,
the software requirements specification has been estab-
lished), the more requirements changes would occur
later. Suitable requirements changes may boost sa-
tisfactions of some stakeholders to the system-to-be and
enhance the quality of software requirements specifica-
tion and subsequent artifacts.

But uncontrolled requirements changes must result
in many troublesome problems during the development,

especially when the software requirements specification
has been established[1]. Uncontrolled consumption of
development resources such as time, funds, and hu-
man resource for accommodating requirements changes
may result in delay of delivery of the software product,
overburden on developers, and difficulties in funds.
Moreover, uncontrolled requirements change may re-
sult in inconsistency and other indetectable defects in
the system-to-be, which will degrade the quality of soft-
ware product. On the other hand, to develop software
product which is both high-quality and high-value, it
is unadvisable to prohibit the requirements change du-
ring the development process, even if the software re-
quirements specification has been established. Conse-
quently, it is necessary to provide effective and flexible
approaches to managing requirements changes.

Logic-based techniques for managing requirements
change have drawn significant attention recently.
Garcez et al.[2-3] argued that the evolution of

Regular Paper
This work was partly supported by the National Natural Science Foundation of China under Grant No. 60703061, the National

Basic Research 973 Program of China under Grant No. 2009CB320701, the Key Project of National Natural Science Foundation of
China under Grant No. 90818026, and the NSFC & the British Royal Society China-UK Joint Project.

©2011 Springer Science +Business Media, LLC & Science Press, China

Ke-Dian Mu et al.: Managing Software Requirements Changes 891

requirements specifications can be supported by a cy-
cle composed of two phases: analysis and revision. The
analysis phase focuses on checking whether a number
of desirable properties of a system-to-be are satisfied
by its partial requirements specification based on ab-
ductive reasoning[4]. Some diagnostic information are
also provided when a certain property is violated by
the specification. Then inductive learning-based[5] re-
vision phase executes the change from the given spec-
ification into a new specification by making use of the
diagnostic information provided by the analysis phase.
Zowghi et al.[6-7] proposed belief revision for default
theories as a formal approach for resolving inconsisten-
cies caused by evolutionary changes of requirements.
They argued that the requirements specification can be
formulated as default theories where each requirement
may be firm, defeasible, or discarded. Inconsistencies
introduced by an evolutionary change are resolved by
performing a revision operation over the entire specifi-
cation. These approaches are appropriate to providing
support to managing requirements changes during the
requirements specification development, in which many
requirements are considered as imprecise, incomplete
and immature.

However, when the requirements specification has
been established, most requirements are considered as
reliable and relative complete. Compared to the con-
cerns of [2-3, 6-7], developers do not focus on finding
possible changes to evolve requirements at this stage.
The request of requirements change is always triggered
by some very particular or uncertain factors. Because
the current requirements specification is viewed as a
baseline for subsequent stages including design, coding
and testing, any modification of the current require-
ments specification may cause a series of changes at
each developed or developing stage in the software de-
velopment life cycle. Consequently, the request of re-
quirements change should be handled cautiously, more-
over, an acceptable requirements change to this stage
should not lead to a major modification to the current
requirements specification in general case.

The change control board (CCB for short) is re-
sponsible for considering the necessity of each change
request[1]. In particular, the CCB should also estimate
the impact that the requirements change has on the
current requirements specification. In other words, the
CCB should consider the possible result caused by the
requirements change. The process of change is not al-
ways an easy process of adding the new requirements
to the current requirements specification and giving up
the corresponding older requirements. Actually, the re-
quirements changes often result in conflicts between the
existing requirements and the new requirements. Thus,

the process of requirements change is associated with
resolving conflicts in many cases. For the CCB, the
possible accommodation caused by the requirements
change should be taken into account in decision ma-
king about the request of requirements change. There
are three possible ways to implement a given request of
requirements change as follows.

(a) The request of change is fully accepted. If the
request contradicts the current requirements specifica-
tion, then stakeholders should accommodate the cur-
rent requirements specification to the request. That is,
the current requirements specification needs to give up
some existing requirements. Generally, this kind of re-
quest is very necessary to software project, such as the
requests caused by policy and legislation change.

(b) If the request contradicts the current require-
ments specification, the CCB accommodate the request
to the current requirements specification. That is, the
request is partially accepted to augment the current re-
quirements specification.

(c) If the request contradicts the current require-
ments specification, the current requirements specifi-
cation and the new requirements accommodate them-
selves to each other. In other words, both the request
and the current requirements specification need to make
concessions.

Belief revision provides a promising way to manage
the requirements changes. Informally speaking, belief
revision is the process of changing the beliefs of an
agent in some world when new evidence (possibly in-
consistent with the existing beliefs) about that world is
given. The current software requirements specification
may be viewed as a set of beliefs of stakeholders in the
system-to-be. If we consider each request of require-
ments change as an evidence about the system-to-be,
then the process of sequential changes can be viewed
as a process of iterated belief revision, moreover, the
revised belief set can be viewed as the revised require-
ments specification by executing the change.

A belief revision operator is always characterized by
a number of rationality criteria (called postulates). The
AGM framework[8] and its most adaptations such as
DP framework[9] assume that the new information is
more reliable, then the new information should always
be fully accepted in the revision result. This is referred
to as the success postulate. In contrast, some so-called
non-prioritized belief revisions[10-13] do not think the
new information should be always fully accepted af-
ter revision. Evidently, non-prioritized belief revision
is more appropriate to managing requirements change.

In this paper, we present an approach to managing
the requirements changes based on the negotiation-style

892 J. Comput. Sci. & Technol., Sept. 2011, Vol.26, No.5

belief revision. In particular, the priority level of re-
quirements plays an important role in negotiation mod-
els. The negotiation-style revision presented by R.
Booth[12] is a kind of non-prioritized belief revision, in
which the result of revision is arrived at via a kind of
negotiation between the existing information and new
information. The belief negotiation model in [12] pro-
vides a more flexible framework to belief revision. We
consider the current requirements specification and the
request of requirements change as two negotiation par-
ties in belief revision. Then for different requests of
requirements change, we design different belief nego-
tiation models to execute the requirements changes.
Informally, we provide three belief negotiation models
for the following settings, i.e., the request is fully ac-
cepted, the current requirements specifications is fully
preserved, and the current requirements specification
and the requested changes accommodate themselves to
each other. The three possible results of revision may
help developers to make reasonable trade-off decisions
about the request of requirements change.

The rest of this paper is organized as follows. In
Section 2 we introduce the logical representation of re-
quirements specification and also give a brief overview
to negotiation-style framework for belief revision pre-
sented by Booth[12]. Then in Section 3 we provide the
negotiation-style revision-based approach to managing
requirements changes. Section 4 gives some comparison
between our approach and other related works. Finally,
we conclude this paper in Section 5.

2 Preliminaries

2.1 Logical Representation of Requirements
Specification

We consider the use of classical logic-based language
in representation of requirements specifications in this
paper. Although different software projects may use
different notations and tools to represent their require-
ments during the requirements stage, first order logic
is appealing for formal representation of requirements
statements since most tools and notations for repre-
senting requirements could be translated into formulas
of first order logic[14]. That is, first order logic may
be considered as a promising tool to represent require-
ments. Moreover, in a logic based framework for rep-
resenting requirements, reasoning about requirements
is always based on some facts that describe a certain
scenario[14]. It implies that checking the consistency of
a set of requirements only considers ground formulas①

rather than unground formulas. Furthermore, if we

restrict the first order language to propositional case, it
may render consistency checking decidable. This gives
some computational advantages. For these reasons, we
assume a classical first order language without func-
tion symbols and existential quantifiers. This classical
first order logic is the most convenient to illustrate our
approach, as will be shown in the rest of the paper.

Let LΦ0 be the language composed from a set of
classical atoms Φ0 and logical connectives {∨,∧,¬,→}
and let ` be the classical consequence relation. Let
α ∈ LΦ0 be a classical formula and ∆ ⊆ LΦ0 a fi-
nite set of formulas in LΦ0 . In this paper, we call ∆ a
requirements collection while each formula α ∈ ∆ rep-
resents a requirements statement. For example, given
a requirement of “if Alice requests to borrow the book
of Software Engineering and the book is available, then
Alice can borrow the book” in a certain scenario, we can
represent the requirement by

Require(Alice, S E) ∧ Available(S E)

→ Borrow(Alice, S E).

Let S be the current requirements specification. It con-
tains all the existing requirements statements.

Generally, prioritization over a requirements collec-
tion ∆ is just a strategy for differentiating requirements
of ∆ at a coarse granularity by its importance and ur-
gency from some perspectives. A common approach
to prioritizing requirements collection is to group re-
quirements statements into several priority categories,
such as the most frequent three-level scale of “High”,
“Medium”, “Low”[1,15] and the five-level scale of prio-
rities used in [16].

Another technique for prioritizing requirements
specifications is based on numerical estimations of
value, cost and risk of each requirements statements,
such as the cost-value approach[17] and the quality
function deployment (QFD for short)[18]. However,
K. Wiegers has pointed that few software organiza-
tions are willing to undertake the rigor of QFD in his
experience[15].

In this paper, we use a common prioritization scale
to group requirements into several priority categories.
Let m, a natural number, be the scale of the priority
level and Lm be {l1, . . . , lm}, a totally ordered finite
set of m symbolic values of the priorities, i.e., li < lj
iff i < j. Generally, li < lj means that requirements
with li are more preferable to requirements with lj . We
also say that requirements with li have a higher prio-
rity than that of requirements with lj . That is, a higher
value in Lm signifies a lower priority. Furthermore, each
symbolic value in Lm could associate with a linguistic

①There is no variable symbol appearing in the ground formula. For example, user(John) is a ground atom, and user(x) is not a
ground atom.

Ke-Dian Mu et al.: Managing Software Requirements Changes 893

value. For example, for a three-level priority set, we
have a totally ordered set L3 as L3 = {l1, l2, l3} where

l1 : High, l2 : Medium, l3 : Low.

For example, if we assign l1 to a requirements statement
α, it means that α is one of the most important require-
ments statements. In the rest of the paper, we adopt
this three-level priority set in most examples, though it
is not obligatory. From a particular perspective, priori-
tization over ∆ is in essence to establish a prioritization
function P : ∆ 7−→ Lm by balancing the business value
of requirements against its cost and risk. Actually, pri-
oritizing a set of requirements statements ∆ is to group
∆ into m priority categories. That is, for every ∆, pri-
oritization provides a partition of ∆, 〈∆1,∆2, . . . ,∆m〉,
where ∆k = {α|α ∈ ∆, P (α) = lk}, for k = 1, . . . , m.
We then use 〈∆1,∆2, . . . ,∆m〉 to denote a prioritized
requirements collection in this paper.

The term of inconsistency in requirements col-
lections has different definitions in requirements
engineering[19]. Most logic-based works such as [14, 19-
20] concentrated on a particular kind of inconsistency,
i.e., the logical contradiction: any situation in which
some fact α and its negation ¬α can be simultaneously
derived from the same requirements collection ∆. In
this paper, we shall be also concerned with the logical
contradiction. Let Cn(∆) = {α|∆ ` α}. It is the set
of all the consequences derivable from ∆. If there is a
formula α such that α ∈ Cn(∆) and ¬α ∈ Cn(∆), then
we consider ∆ to be inconsistent and abbreviate α∧¬α
by ⊥.

For the simplicity of discussions below, we use clas-
sical formulas such as α and β to stand for any unspe-
cified requirements statement in examples in subse-
quent sections.

2.2 Booth’s Negotiation-Style Framework for
Belief Revision

In this subsection, we give an overview of the
negotiation-style framework for belief revision pre-
sented by Booth[12].

The negotiation-style framework for belief revision
imagines the inconsistency between the current belief
set K and new information φ as a gap between K on
one side and φ on the other. Then the process of revi-
sion is thought to be the process of bridging this gap[12].

We adopt the following notations, abstractive func-
tions used in [12]. We use W and B to denote the set
of all possible propositional worlds and the set of all
non-empty subsets of W, respectively. For any set of
worlds U , we use Th(U) to denote the set of sentences
true in every world in U . Moreover, we interpret U as
information that the actual “true” world is one of the

worlds in U in the following negotiation models.
For any set of formulas I, [I] denotes the set of

worlds in which every sentence in I is true, i.e., [I] is
the set of models for sentences in I. If [I] 6= ∅ then I is
consistent. Especially, for φ ∈ LΦ0 we write [φ] rather
than [{φ}]. For any world w and any formula α, if α is
true in the world w, then we write w |= α. Obviously,
for each α ∈ I and w ∈ [I], w |= α.

A belief set K is a consistent and deductively closed
set of sentences, i.e., [K] 6= ∅ and K = Cn(K). We use
L∗Φ0

and K to denote the set of all consistent sentences
and the set of all belief sets, respectively.

Let s and t be two sources of information which pro-
vide information S and T respectively, where S and
T are two non-empty subsets of W. The intuitive
idea of negotiation-style merging S and T into a single
piece Merge(S, T) is to incrementally enlarge S or T or
both until their intersection is non-empty[12]. Consider
〈S0, T0〉 where S0 = S, T0 = T , if S0 ∩ T0 6= ∅, then we
just take Merge(S, T) = S0 ∩ T0. But if S0 ∩ T0 = ∅,
we start the first round of negotiation. After some con-
cessions are made by s or t or both, we arrive at the
pair 〈S1, T1〉, where S0 ⊆ S1, T0 ⊆ T1. If S1 ∩ T1 6= ∅,
then we just take Merge(S, T) = S1∩T1. Otherwise we
repeat this and do the next round of negotiation.

A possible stage in the negotiation process start-
ing with S0 and T0 can be represented by σ =
(〈S0, T0〉, . . . , 〈Sn, Tn〉), an increasing sequence of pairs
of elements of B, where Si ⊆ Si+1, Ti ⊆ Ti+1 for all
i = 0, 1, . . . , n − 1. Let Ω denote the set of all finite
sequences of pairs of elements of B. Then we define the
set of sequences Σ ⊆ Ω by

Σ = {σ = (〈S0, T0〉, · · · , 〈Sn, Tn〉) ∈ Ω |σ is

increasing, and Sn ∩ Tn = ∅}.

Note that a sequence σ ∈ Σ represents a possible stage
in the unfinished negotiation process starting with S0

and T0 since Sn ∩ Tn = ∅. Given a sequence σ, we
abbreviate (〈S0, T0〉, · · · , 〈Si, Ti〉) as σi for each i < n.

To assure that there is a mechanism to select which
of the two parties should make concession at each ne-
gotiation stage σ, Booth[12] assumes that there exists
an abstractive function g : Σ → 2B such that

(g0) ∀σ ∈ Σ , ∅ 6= g(σ) ⊆ {Sn, Tn}, where

σ = (〈S0, T0〉, . . . , 〈Sn, Tn〉).

In other words, the function g assures that there is at
least one party having to make concession at stage σ,
then the negotiation can proceed.

Moreover, for each σ = (〈S0, T0〉, · · · , 〈Sn, Tn〉),
Booth[12] also assumes that the weakening of Sn (resp.
Tn) is strict if Sn(resp. Tn) must be weakened at stage

894 J. Comput. Sci. & Technol., Sept. 2011, Vol.26, No.5

σ, i.e., there exists a function Hσ : {Sn, Tn} → B such
that:

(H0) Sn ⊆ Hσ(Sn) and Hσ(Sn) 6⊆ Sn;

Tn ⊆ Hσ(Tn) and Hσ(Tn) 6⊆ Tn.

Actually, Hσ(Sn) (resp. Hσ(Tn)) is the enlargement of
Sn (resp. Tn), i.e., Sn ⊆ Hσ(Sn) (resp. Tn ⊆ Hσ(Tn)).
To avoid deadlock (i.e., Si∩Ti = ∅ and Si = Si+k, Ti =
Ti+k, for all k > 0) in negotiations, this enlargement is
also required to be strict according to the condition of
(H0), i.e., Hσ(Sn) 6⊆ Sn (resp. Hσ(Tn) 6⊆ Tn).

However, (H0) can be weakened as:

(H0) Sn ⊆ Hσ(Sn), Tn ⊆ Hσ(Tn) and

Hσ(Sn) ∪ Hσ(Tn) 6⊆ Sn ∪ Tn.

That is to say, it is really only necessary that at least
one party make a strict concession to avoid a deadlock.

Then a belief negotiation model is defined as follows.
Definition 1 (Belief Negotiation Model[12]). A be-

lief negotiation model (relative to s and t) is a pair N =
〈g, {Hσ}σ∈Σ 〉, where g : Σ → 2B is a function which
satisfies (g0) and, for each σ = (〈S0, T0〉, · · · , 〈Sn, Tn〉),
Hσ : {Sn, Tn} → B is a function which satisfies (H0).

As stated in [12], given any S, T ∈ B, a belief nego-
tiation model N can uniquely determine the complete
process of negotiation between S and T , i.e., this pro-
cess can be returned by the function fN : B × B → Ω
given by

fN (S, T) = σ = (〈S0, T0〉, · · · , 〈Sn, Tn〉)

where
(a) S0 = S and T0 = T ,
(b) n is minimal such that Sn ∩ Tn 6= ∅,
(c) for each 0 6 i < n,

Si+1 =
{ Hσi

(Si), if Si ∈ g(σi),

Si, otherwise;

Ti+1 =
{ Hσi

(Ti), if Ti ∈ g(σi),

Ti, otherwise.

Then we may take Merge(S, T) = Sn ∩ Tn.
Based on fN , the following functions fN→ , fN← : B ×

B → B are defined as

fN→ (S, T) = Sn and fN← (S, T) = Tn.

Evidently, fN→ (S, T) (resp. fN← (S, T)) is the result of
weakening information S (resp. T) to accommodate
information T (resp. S)[12].

Definition 2 (Revision Operator ¢N [12]). Given a
belief negotiation model N . The revision operator ¢N

from N is defined by, for K ∈ K and φ ∈ L∗Φ0
,

K ¢N φ = Th(fN→ ([K], [φ]) ∩ fN← ([K], [φ])).

It has been shown in [12] that the revision operator
¢N satisfies the basic AGM postulates for revision in-
cluding Closure, Extensionality, Inclusion, Vacuity and
Consistency.

However, if Φ is a consistent set of sentences, then
we use

∧
Φ to denote the conjunction of all sentences

in Φ. Moreover, [
∧

Φ] = [Φ]. Thus, we can generalize
the revision operator ¢N as follows:

Definition 3 (Revision Operator ¢∗N). Given a be-
lief negotiation model N . The revision operator ¢∗N
from N is defined by, for K ∈ K and consistent
Φ ⊆ L∗Φ0

,

K ¢∗N Φ def= K ¢N (
∧

Φ)

=Th(fN→ ([K], [
∧

Φ]) ∩ fN← ([K], [
∧

Φ])).

If there is no confusion, we often write K ¢∗N Φ as
K ¢N Φ.

Now we give an example to illustrate the negotiation-
style revision.

Example. Consider S = [α,¬β, γ] and T =
[β,¬α,¬γ]. Suppose that information source s is more
reliable than t about the truth value of β. But t is
more reliable than s about the truth value of α and γ.
We start the process of negotiation-style belief revision
with

σ0 = (〈S0, T0〉).
Obviously, S0 ∪ T0 = ∅.

Suppose that g(σ0) = {T0}, T1 = Hσ0(T0) =
[¬α,¬γ] and S1 = S0. Then we get

σ1 = (〈S0, T0〉, 〈S1, T1〉) and S1 ∩ T1 = ∅.

Suppose that g(σ1) = {S1}, S2 = Hσ1(S1) = [¬β, γ]
and T2 = T1. Then we get

σ2 = (〈S0, T0〉, 〈S1, T1〉, 〈S2, T2〉) and S2 ∩ T2 = ∅.

Suppose that g(σ2) = {S2}, S3 = Hσ2(S2) = [¬β]
and T3 = T2. Then we get

σ3 = (〈S0, T0〉, 〈S1, T1〉, 〈S2, T2〉, 〈S3, T3〉)

and
S3 ∩ T3 = [¬β,¬α,¬γ].

Therefore, we get

{α,¬β, γ}¢N {β,¬α,¬γ} = Th([¬β,¬α,¬γ]).

Evidently, the revised belief set conforms to the intu-
ition.

Ke-Dian Mu et al.: Managing Software Requirements Changes 895

Note that the negotiation-style revision presented by
Booth[12] is only an abstractive framework. Then func-
tions g and {Hσ}σ∈Σ need to be instantiated based on
some domain knowledge from applications.

3 Handling Requirements Changes as
Negotiation-Style Revision

In this section, we will present a negotiation-style
revision-based approach to handling the requirements
changes when the requirements specification has been
established. We start with the formal representation of
requests of requirements changes.

Let S be the current software requirements specifi-
cation and [S] the set of worlds in which every require-
ments statements in S is true, i.e., the set of models of
S. There are three representative atomic requirements
changes in S as follows:

(a) add a new requirement α to the current require-
ments specification S;

(b) give up an existing requirement β in S;
(c) change an existing requirements γ in S into a

new requirement φ.
We use φ ‖ γ to denote an atomic request of chan-

ging γ into a new requirement φ. If Φ and Γ are two
sets of formulas, we also use Φ ‖ Γ to denote a request
of changing requirements Γ into Φ. By convention, (a)
and (b) can be denoted by {α} ‖ ∅ and ∅ ‖ {β}, re-
spectively. In particular, ∅ ‖ ∅ denotes there is no
change.

Definition 4 (Request of Requirements Change).
Let S be a requirements specification. A request of re-
quirements changes R with regard to S is defined as

R = {Φ1 ‖ Γ1, . . . ,Φn ‖ Γn},

where each Φi is a new requirements set (possibly
empty), and ∅ ⊆ ∪n

i=1Γi ⊂ S, Γi ∩ Γj = ∅, for all
i 6= j .

Without loss of generality, we assume that ∪n
i=1Φi

is consistent and (∪n
i=1Φi) ∩ (∪n

i=1Γi) = ∅. Moreover,
each of requirements in Φi is given a level of priority.
Let Φ = ∪n

i=1Φi and Γ = ∪n
i=1Γi, then we abbreviate a

request of requirements change as Φ ‖ Γ .
Let W be a set of all possible worlds. Let ∆ be a set

of formulas and 〈∆1, . . . ,∆m〉 the priority-based par-
tition or stratification of ∆. We may provide a total
pre-order relationship ¹∆ on W that is induced from
∆ by the leximin ordering strategy[21] as follows:
• Leximin Ordering [21]. For each i (1 6 i 6 m), let

κi(w) = {ϕ ∈ ∆i : w |= ϕ}, for w ∈ W. Then a leximin
ordering ¹∆ on W is defined as: w ¹∆ w′ iff

1) |κi(w)| = |κi(w′)| for all i, or
2) there is an i such that |κi(w)| > |κi(w′)|, and for

all j < i, |κj(w)| = |κj(w′)|, where |κi(·)| denotes the

cardinality of set κi(·).
For simplicity, we abbreviate (|κ1(w)|, . . . , |κm(w)|) as
|κ(w)|.

Note that the leximin ordering over W is based on
the lexicographical relation on κ(w) = {ϕ ∈ ∆ : w |=
ϕ} for each w ∈ W. As one of the widely used ordering
strategies, it considers the number of all formulas sa-
tisfied by a given interpretation w as well as the priority
of each formula satisfied by w.

From the pre-order relationship ¹∆ over W induced
from ∆, W can be stratified as

〈W1, . . . ,Wn(∆)〉,
where Wi contains all the minimal worlds of set
∪n(∆)

j=i Wj with regard to ¹∆, and n(∆) is a positive
number associated with ∆. Evidently, if ∆ is consis-
tent, then W1 = [∆].

Informally speaking, this stratification groups W
into several partitions so as to satisfy |κ(w)| = |κ(w′)|
for any two interpretations w and w′ in the same par-
tition.

In particular, let 〈S1, . . . ,Sm〉 be the priority-based
partition of S, then we can get a stratification of W as

〈Ws
1 , . . . ,Ws

n(S)〉
from the pre-order relation ¹S over W induced from S,
in which Ws

1 = [S].
Now we give an example to illustrate this stratifica-

tion of the set of worlds.
Example. Consider ∆ = 〈∆1,∆2,∆3〉, where ∆1 =

{α}, ∆2 = {β ∧ γ}, and ∆3 = {¬α ∨ γ}.
We denote each possible world by a bit vector con-

sisting of truth values of (α, β, γ), then

W =





w1 = 111, w2 = 110, w3 = 101,
w4 = 100, w5 = 011, w6 = 010,
w7 = 001, w8 = 000.





and

|κ(w1)| = (1, 1, 1), |κ(w2)| = (1, 0, 0),

|κ(w3)| = (1, 0, 1), |κ(w4)| = (1, 0, 0),

|κ(w5)| = (0, 1, 1), |κ(w6)| = (0, 0, 1),

|κ(w7)| = (0, 0, 1), |κ(w8)| = (0, 0, 1).

We can get the stratification of W from ¹∆ over W
induced from ∆ as follows:

〈W1,W2,W3,W4,W5〉,
where W1 = {w1} = [∆] and W2 = {w3}, W3 =
{w2,w4}, W4 = {w5}, W5 = {w6,w7,w8}.

Given a request of requirements change R = Φ ‖ Γ ,
we can also define a total pre-order relationship ¹Φ on

896 J. Comput. Sci. & Technol., Sept. 2011, Vol.26, No.5

W induced from Φ. We may write ¹Φ as ¹R if there
is no confusion.

As mentioned earlier, there are three possible ways
to execute a given request of requirements change. Intu-
itively, each of possible ways may be viewed as a special
kind of negotiation-style revision. That is, we need to
design different belief negotiation models for different
ways of executing the requirements change.

3.1 Fully Accepting the Request of
Requirements Change R

Given an obligatory request of requirements change
R = Φ ‖ Γ , it should be fully accepted by the current
requirements specification S. Then S need to

a) give up all the requirements in Γ ;
b) absorb all the new requirements in Φ;
c) give up some other requirements to keep consis-

tent with Φ if there exists inconsistency caused by ab-
sorbing Φ.

In such a process of revision, negotiation focuses on
the subprocess of (c). Let s and r stand for the current
requirements specification and the request of require-
ments change in the negotiation, respectively.

Let S0 = S\Γ . Suppose that the stratification of W
induced by S0 is

〈Ws0
1 , . . . ,Ws0

n(S0)
〉,

where Ws0
1 = [S0]. Then we design a belief negotiation

model appropriate to this kind of requirements change
as follows.

Definition 5. The belief negotiation model relative
to s and r, denoted as N 1 = 〈g1, {H1

σ}σ∈Σ 〉, is defined
by

S0 = [S0],

R0 = [Φ];

g1(σi) = {Si} if Si ∩Ri = ∅;

Si+1 =H1
σi

(Si) = Si ∪Ws0
i+2,

Ri+1 =H1
σi

(Ri) = Ri, for all i < n;

σ =(〈S0, R0〉, . . . , 〈Sn, Rn〉), where

n = min{i|Si ∩Ri 6= ∅};
σi =(〈S0, R0〉, . . . , 〈Si, Ri〉), for all i < n.

Furthermore, we define a revision operator ¢N 1 to
merge S0 and Φ as follows:

S0 ¢N 1 Φ = Th(Sn ∩Rn).

In this belief negotiation model, g1(σi) = {Si} im-
plies that the current requirements specification is a
loser of negotiation round at each stage σi. Note that

we weaken Si by Si ∪Ws0
i+2 at the i-th round of negoti-

ation in the belief negotiation model N 1. A problem is
whether the negotiation between s and r can end within
n(S0) steps. The answer is positive.

Proposition 1. Let σ = (〈S0, R0〉, . . . , 〈Sn, Rn〉) be
the negotiation procedure in the belief negotiation model
N 1. Let 〈Ws0

1 , . . . ,Ws0
n(S0)

〉 be the stratification of W
induced by S0. Then n 6 n(S0)− 1.

Proof. [Φ] 6= ∅ since Φ is consistent. Then there
exists i (1 6 i 6 n(S0)) such that [Φ] ∩ Ws0

i 6= ∅.
Therefore, S0 ∩ R0 6= ∅ and σ = (〈S0, R0〉) if i = 1;
Si−1 ∩ Ti−1 6= ∅ and σ = (〈S0, R0〉, . . . , 〈Si−1, Ri−1〉),
i.e., n = i− 1 if i > 1. Therefore, n 6 n(S0)− 1. ¤

Evidently, we can also get the following property of
¢N 1 .

Proposition 2. Let S be the current requirements
specification and R = Φ ‖ Γ a request of requirements
change with regard to S. Then

Φ ⊆ S0 ¢N 1 Φ,

where S0 = S\Γ.
Proof. Let σ = (〈S0, R0〉, . . . , 〈Sn, Rn〉) be the nego-

tiation procedure in the belief negotiation model N 1,
then R0 = · · · = Rn = [Φ] and Sn ∩ [Φ] 6= ∅. Thus,

Φ ⊆ Th(Sn ∩ [Φ]) = S0 ¢N 1 Φ. ¤

According to this proposition, Φ is fully accepted by
the revised belief set.

In belief revision, S0 ¢N 1 Φ is a revised belief set.
However, in requirements engineering, we hope that
S0 ¢N 1 Φ is given in the form of subset(s) of S0 ∪ Φ
rather than Th(Sn ∩Rn).

Let 〈∆1, . . . ,∆m〉 and 〈Θ1, . . . ,Θm〉 be the priority-
based partitions of ∆ and Θ , respectively. We define
Θ v ∆ iff Θ i ⊆ ∆i for all i = 1, . . . , m.

Let 〈S1
0 , . . . ,Sm

0 〉 be the priority-based partition of
S0. We use 2S0 to denote the set of all the subsets of S0

in the sense of v. We provide the leximin order relation
≺leximin

[21-22] over 2S0 as follows:
• for S, S′ ∈ 2S0 , define S′ ≺leximin S iff ∃k such

that
(a) |Sk

0 ∩ S′k| > |Sk
0 ∩ Sk|, and

(b) for all i < k, |Si
0 ∩ S′i| = |Si

0 ∩ Si|.
Essentially, ≺leximin gives an ordering relationship

of relative importance of requirements sets.
Let Sub(S0) = {S v S0|[S] ∩ (Sn ∩ Rn) 6= ∅}, then

for Sub(S0) we denoted by Min(≺leximin ,Sub(S0)) the
set of undominated elements of Sub(S0) with respect to
≺leximin , i.e.,

Min(≺leximin ,Sub(S0)) = {S ∈ Sub(S0)| there

is no S′ ∈ Sub(S0) such that S′ ≺leximin S}.

Ke-Dian Mu et al.: Managing Software Requirements Changes 897

Furthermore, we define a change operator]N 1 induced
by ¢N 1 as follows.

Definition 6. (Change Operator]N 1). Let S be
the current requirements specification and R = Φ ‖ Γ a
request of requirements change with regard to S. Then
the change operator]N 1 induced by ¢N 1 is defined as

S]N 1 R = {Φ ∪ S|S ∈ Min(≺leximin ,Sub(S0))},

where S0 = S\Γ and Sub(S0) = {S v S0|[S] ∩ (Sn ∩
Rn) 6= ∅}.

Note that each Ψ ∈ S]N 1 R provides a possible re-
vised requirements specification according to the belief
negotiation model N 1. Moreover, these revised specifi-
cations are viewed as “equivalent” to each other in the
sense of ≺leximin .

Evidently, we get the following property of S]N 1R.
Proposition 3. Let S be the current requirements

specification and R = Φ ‖ Γ a request of requirements
change with regard to S. Then

∀γ ∈ Γ , ∀Ψ ∈ S]N 1 R, Φ v Ψ and γ 6∈ Ψ .

That is, the request R is fully accepted by S.
Now we give an example to illustrate this

negotiation-style change process.
Example. Consider S = 〈{α}, {β}, {γ, δ}〉. Suppose

that R = {〈∅, {¬β},∅〉 ‖ {δ}} is a request of require-
ments change with regard to S. Intuitively, the request
R means that the requirements δ should be changed
into the new requirements ¬β with priority of Medium.
If we fully accept this request, it will result in an incon-
sistency β ∧ ¬β. Now we adopt the belief negotiation
model N 1 to handle this request.

Let S0 = S\{δ} = 〈{α}, {β}, {γ}〉 and Φ =
〈∅, {¬β},∅〉. We denote each possible world by a bit
vector consisting of truth values of (α, β, γ, δ), then

W =





w1 = 1111, w2 = 1110, w3 = 1101,
w4 = 1100, w5 = 1011, w6 = 1010,
w7 = 1001, w8 = 1000, w9 = 0111,
w10 = 0110, w11 = 0101, w12 = 0100,
w13 = 0011, w14 = 0010, w15 = 0001,
w16 = 0000.





.

The stratification of W induced by S0 is given as fol-
lows:

〈Ws0
1 ,Ws0

2 , . . . ,Ws0
8 〉,

where

Ws0
1 = {w1,w2}, Ws0

2 = {w3,w4},
Ws0

3 = {w5,w6}, Ws0
4 = {w7,w8},

Ws0
5 = {w9,w10}, Ws0

6 = {w11,w12},
Ws0

7 = {w13,w14}, Ws0
8 = {w15,w16}.

Let S0 = [S0], R0 = [Φ] and σ0 = (〈S0, R0〉), where

[S0] = Ws0
1 = {w1,w2},

[Φ] = {w5,w6,w7,w8,w13,w14,w15,w16}.
Obviously,

S0 ∩R0 = ∅.

Then

g1(σ0) = {S0},
S1 = H1

σ0
(S0) = S0 ∪Ws0

2 = {w1,w2,w3,w4},
R1 = H1

σ0
(R0) = R0,

σ1 = (〈S0, R0〉, 〈S1, R1〉).
However, no agreement is reached, since

S1 ∩R1 = ∅.

Then

g1(σ1) = {S1},
S2 = H1

σ1
(S1) = S1 ∪Ws0

3

= {w1,w2,w3,w4,w5,w6},
R2 = H1

σ1
(R1) = R1,

σ2 = (〈S0, R0〉, 〈S1, R1〉, 〈S2, R2〉).
Now S2∩R2 = {w5,w6}, the agreement is reached. So,

σ = (〈S0, R0〉, 〈S1, R1〉, 〈S2, R2〉)
and

S]N 1 R = {〈{α}, {¬β}, {γ}〉}.
The revised requirements specification is

〈{α}, {¬β}, {γ}〉.
The request of requirements change R is fully accepted.

3.2 Augmenting the Current Requirements
Specification S

When the requirements specification has been estab-
lished, especially in the later stage of software deve-
lopment life cycle, abandoning some existing require-
ments means abandoning most the artifacts associated
with the requirements. In such cases, developers tend
to only accept the request of augmenting the require-
ments specification rather than the request of giving up
some existing requirements. Then we need to construct
a negotiation-style revision that preserves the current
requirements specification.

Suppose that there is a request of requirements
change R = {Φ1 ‖∅,∅ ‖Γ2,Φ3 ‖Γ3}, where
• Φ1 is the set of new requirements to be added to

the current specification S;

898 J. Comput. Sci. & Technol., Sept. 2011, Vol.26, No.5

• Γ2 is the set of requirements to be abandoned by
the current specification S;
• Φ3 ‖Γ3 means that the existing requirements in Γ3

should be changed into Φ3.
Evidently, given R, to preserve the current require-
ments specification S,

(a) the request of ∅ ‖Γ2 and Φ3 ‖Γ3 should be re-
jected;

(b) S absorbs the new requirements in Φ1;
(c) Φ1 gives up some new requirements to keep con-

sistent with S if there exists inconsistency caused by
absorbing Φ1.

In such a process of revision, negotiation focuses on
the subprocess of (c). Let s and r stand for the current
requirements specification and the request of require-
ments change in the negotiation, respectively.

Suppose that the stratification of W induced by Φ1

is
〈Wr

1 , . . . ,Wr
n(Φ1)

〉,
where Wr

1 = [Φ1]. Then we design a belief negotiation
model appropriate to this kind of requirements change
as follows.

Definition 7. The belief negotiation model relative
to s and r, denoted as N 2 = 〈g2, {H2

σ}σ∈Σ 〉, is defined
by

S0 = [S],

R0 = [Φ1];

g2(σi) = {Ri} if Si ∩Ri = ∅;

Si+1 =H2
σi

(Si) = Si,

Ri+1 =H2
σi

(Ri) = Ri ∪Wr
i+2, for all i < n;

σ =(〈S0, R0〉, . . . , 〈Sn, Rn〉), where

n = min{i|Si ∩Ri 6= ∅};
σi =(〈S0, R0〉, . . . , 〈Si, Ri〉), for all i < n.

Furthermore, we define a revision operator ¢N 2 to
merge S and Φ1 as follows:

S ¢N 2 Φ1 = Th(Sn ∩Rn).

In this belief negotiation model, g2(σi) = {Ri} im-
plies that the request of requirements change is a loser
of negotiation round at each stage σi. Note that we
weaken Ri by Ri ∪Wr

i+2 at the i-th round of negotia-
tion in the belief negotiation model N 2. Similar to N 1,
we can get the following propositions about N 2.

Proposition 4. Let σ = (〈S0, R0〉, . . . , 〈Sn, Rn〉) be
the negotiation procedure in the belief negotiation model
N 2. Let 〈Wr

1 , . . . ,Wr
n(Φ1)

〉 be the stratification of W in-
duced by Φ1. Then n 6 n(Φ1)− 1.

Proposition 5. Let S be the current requirements
specification and R = {Φ1 ‖∅,∅ ‖Γ2,Φ3 ‖Γ3} a re-

quest of requirements change with regard to S. Then

S ⊆ S ¢N 2 Φ1.

This proposition implies that the current require-
ments specification S is fully preserved during the revi-
sion process. Then the revised result can be viewed as
an augmentation of S.

Let Sub(Φ1) = {Θ v Φ1|[Θ]∩ (Sn ∩Rn) 6= ∅}, then
for Sub(Φ1) we denoted by Min(≺leximin ,Sub(Φ1)) the
set of undominated elements of Sub(Φ1) with respect
to ≺leximin , i.e.,

Min(≺leximin ,Sub(Φ1)) = {Θ ∈ Sub(Φ1)| there

is no Θ ′ ∈ Sub(Φ1) such that Θ ′ ≺leximin Θ}.

We define a change operator]N 2 induced by ¢N 2 as
follows.

Definition 8. (Change Operator]N 2). Let S
be the current requirements specification and R =
{Φ1 ‖∅,∅ ‖Γ2,Φ3 ‖Γ3} a request of requirements
change with regard to S. Then the change operator]N 2

induced by ¢N 2 is defined as

S]N 2 R =
{S ∪Θ |Θ ∈ Min(≺leximin ,Sub(Φ1))

}
,

where Sub(Φ1) = {Θ v Φ1|[Θ] ∩ (Sn ∩Rn) 6= ∅}.
Note that each Ψ ∈ S]N 2 R provides a possi-

ble revised requirements specification according to N 2.
Moreover, these revised specifications are viewed as
“equivalent” to each other in the sense of ≺leximin .

The following proposition shows that the change
operator]N 2 is appropriate to augmenting the current
requirements specification.

Proposition 6. Let S be the current requirements
specification and R = {Φ1 ‖∅,∅ ‖Γ2, Φ3 ‖Γ3} a re-
quest of requirements change with regard to S. Then

∀Ψ ∈ S]N 2 R, S v Ψ v S ∪ Φ1.

Now we give an example to illustrate the augmenta-
tion of the current requirements specification.

Example. Consider S = 〈{α}, {β}, {γ}〉. Suppose
that

R = {〈∅, {φ}, {¬γ}〉 ‖ ∅}
is a request of requirements change with regard to S.
Intuitively, according to the requestR, the new require-
ments φ with the priority of Medium and ¬γ with the
priority of Low should be added to the current require-
ments specification S. If we want to fully preserve the
current requirements, then we adopt the belief negoti-
ation model N 2 to handle this request.

Let Φ1 = 〈∅, {φ}, {¬γ}〉. We denote each possi-
ble world by a bit vector consisting of truth values of

Ke-Dian Mu et al.: Managing Software Requirements Changes 899

(α, β, γ, φ), then

W =





w1 = 1111, w2 = 1110, w3 = 1101,
w4 = 1100, w5 = 1011, w6 = 1010,
w7 = 1001, w8 = 1000, w9 = 0111,
w10 = 0110, w11 = 0101, w12 = 0100,
w13 = 0011, w14 = 0010, w15 = 0001,
w16 = 0000.





.

The stratification of W induced by Φ1 is given as fol-
lows:

〈Wr
1 ,Wr

2 ,Wr
3 ,Wr

4 〉,
where

Wr
1 = {w3,w7,w11,w15},

Wr
2 = {w1,w5,w9,w13},

Wr
3 = {w4,w8,w12,w16},

Wr
4 = {w2,w6,w10,w14}.

Let S0 = [S], R0 = [Φ1] and σ0 = (〈S0, R0〉), where

[S] = {w1,w2},
[Φ1] = Wr

1 = {w3,w7,w11,w15}.

We find that
S0 ∩R0 = ∅.

According to the belief negotiation model N 2,

g2(σ0) = {R0},
S1 = H2

σ0
(S0) = S0,

R1 = H2
σ0

(R0) = R0 ∪Wr
2

= {w3,w7,w11,w15,w1,w5,w9,w13},
σ1 = (〈S0, R0〉, 〈S1, R1〉).

An agreement has been reached, since

S1 ∩R1 = {w1}.

So,
σ = (〈S0, R0〉, 〈S1, R1〉)

and
S]N 2 R = {〈{α}, {β, φ}, {γ}〉}.

The revised requirements specification is

〈{α}, {β, φ}, {γ}〉.

Moreover,
S v 〈{α}, {β, φ}, {γ}〉.

Evidently, the requirements specification S is aug-
mented by adding φ, whilst the request of adding ¬γ is
rejected.

3.3 Reaching a Compromise Between S and R
The belief negotiation model N 1 forces the party of

the current requirements specification to make conces-
sions at each stage of the negotiation procedure over
executing the requirements change. In contrast, the
belief negotiation model N 2 forces the party of the re-
quest of requirements change to make concessions at
each stage of the negotiation process. However, it is
necessary to make some concessions for both the cur-
rent requirements specification and the request of re-
quirements change in many cases.

For a request of giving up some current requirements
R = {∅ ‖ Γ} with regard to S, there is no inconsis-
tency caused by fully or partially acceptance of the re-
quest. Thus, we focus on the typical kinds of request
of requirements change R = {Φ ‖ Γ}:

1) if Γ = ∅, R is to add the new requirements in Φ
to S;

2) if Γ 6= ∅, R is to change the existing requirements
in Γ into the new requirements in Φ.

Just for simplicity, we assume that S is willing to
abandon requirements in Γ . That is, S focuses on ne-
gotiation over abandoning some other requirements to
accommodate the requirements in Φ.

Let S0 = S\Γ . Suppose that the stratification of W
induced by S0 is

〈Ws0
1 , . . . ,Ws0

n(S0)
〉,

where Ws0
1 = [S0]. The stratification of W induced by

Φ is
〈Wr

1 , . . . ,Wr
n(Φ)〉,

where Wr
1 = [Φ].

Then we design a belief negotiation model appropri-
ate to partially accepting R = {Φ ‖ Γ} as follows.

Definition 9. The belief negotiation model relative
to s and r, denoted as N 3 = 〈g3, {H3

σ}σ∈Σ 〉, is defined
by

S0 = [S0],

R0 = [Φ];

g3(σi) = {Si, Ri} if Si ∩Ri = ∅;

Si+1 =H3
σi

(Si) = Si ∪Ws0
i+2,

Ri+1 =H3
σi

(Ri) = Ri ∪Wr
i+2, for all i < n;

σ =(〈S0, R0〉, · · · , 〈Sn, Rn〉), where

n = min{i|Si ∩Ri 6= ∅};
σi =(〈S0, R0〉, . . . , 〈Si, Ri〉), for all i < n.

Furthermore, we define a revision operator ¢N 3 to
merge S0 and Φ as follows:

S0 ¢N 3 Φ = Th(Sn ∩Rn).

900 J. Comput. Sci. & Technol., Sept. 2011, Vol.26, No.5

Compared to N 1 and N 2, g3(σi) = {Si, Ri} implies
that both the current requirements specification and
the request need to make concessions at each stage in
N 3 before reaching an agreement.

Proposition 7. Let σ = (〈S0, R0〉, . . . , 〈Sn, Rn〉) be
the negotiation procedure in the belief negotiation model
N 3. Let 〈Ws0

1 , . . . ,Ws0
n(S0)

〉 and 〈Wr
1 , . . . ,Wr

n(Φ)〉, be
the stratifications of W induced by S0 and Φ, respec-
tively. Then

n 6 min{n(S0)− 1, n(Φ)− 1}.

According to this proposition, the agreement will be
reached within min{n(S0)− 1, n(Φ)− 1} steps.

For each w ∈ Sn ∩ Rn, suppose that w ∈ Ws0
i and

w ∈ Wr
j , then we define s(w) and r(w) by

s(w) = i, r(w) = j.

Then we define

W1 = {w ∈ Sn ∩Rn|there is no w′ ∈ Sn ∩Rn

such that s(w′) < s(w)},
W2 = {w ∈ Sn ∩Rn|there is no w′ ∈ Sn ∩Rn

such that r(w′) < r(w)}.

Further, we define

Sub1(S0 ∪ Φ) = {Ψ v S0 ∪ Φ|[Ψ] ∩W1 6= ∅},
Sub2(S0 ∪ Φ) = {Ψ v S0 ∪ Φ|[Ψ] ∩W2 6= ∅},
Sub3(S0 ∪ Φ) = {Ψ v S0 ∪ Φ|[Ψ] ∩ (Sn ∩Rn) 6= ∅}.

If the developers tend to support the current require-
ments specification S, then we define a change operator
]N 3

1
as follows.

Definition 10 (Change Operator]N 3
1
). Let S be

the current requirements specification and R = {Φ ‖ Γ}
a request of requirements change with regard to S. Then
the change operator]N 3

1
induced by ¢N 3 is defined as

S]N 3
1
R = {Ψ |Ψ ∈ Min(≺leximin ,Sub1(S0 ∪ Φ))}.

If the developers tend to support the request of re-
quirements change R, then we define the change ope-
rator]N 3

2
as follows.

Definition 11 (Change Operator]N 3
2
). Let S be

the current requirements specification and R = {Φ ‖ Γ}
a request of requirements change with regard to S. Then
the change operator]N 3

2
induced by ¢N 3 is defined as

S]N 3
2
R = {Ψ |Ψ ∈ Min(≺leximin ,Sub2(S0 ∪ Φ))}.

If the developers tend to balance S against R, then
we define the change operator]N 3

3
as follows.

Definition 12 (Change Operator]N 3
3
). Let S be

the current requirements specification and R = {Φ ‖ Γ}
a request of requirements change with regard to S. Then
the change operator]N 3

3
induced by ¢N 3 is defined as

S]N 3
3
R = {Ψ |Ψ ∈ Min(≺leximin ,Sub3(S0 ∪ Φ))}.

These change operators are appropriate to reach-
ing different compromises between the current require-
ments specification and the request of requirements
change.

It is not hard to get the following property of the
three change operators.

Proposition 8. Let S be the current requirements
specification and R = {Φ ‖ Γ} a request of require-
ments change with regard to S. Let S0 = S\Γ. If
S0 ∪ Φ is consistent, then

S]N 3
i
R = {S0 ∪ Φ}, for i = 1, 2, 3.

Example. Consider S = 〈{α}, {β}, {γ, δ}〉 and R =
{〈{¬γ},∅, {¬β}〉 ‖ {δ}}. Then S0 = 〈{α}, {β}, {γ}〉
and Φ = 〈{¬γ},∅, {¬β}〉. We denote each possi-
ble world by a bit vector consisting of truth values of
(α, β, γ), then

W =





w1 = 111, w2 = 110, w3 = 101,
w4 = 100, w5 = 011, w6 = 010,
w7 = 001, w8 = 000.



 .

Then the stratification of W induced by S0 is given as
follows:

〈{w1}, {w2}, {w3}, {w4}, {w5}, {w6}, {w7}, {w8}〉.

The stratification ofW induced by Φ is given as follows:

〈{w4,w8}, {w2,w6}, {w3,w7}, {w1,w5}〉.

Let S0 = [S0], R0 = [Φ] and σ0 = (〈S0, R0〉), where

[S0] = {w1},
[Φ] = {w4,w8}.

We find that
S0 ∩R0 = ∅.

According to the belief negotiation model N 3,

g3(σ0) = {S0, R0},
S1 = H3

σ0
(S0) = {w1,w2},

R1 = H3
σ0

(R0) = {w4,w8,w2,w6},
σ1 = (〈S0, R0〉, 〈S1, R1〉).

An agreement has been reached, since

S1 ∩R1 = {w2}.

Ke-Dian Mu et al.: Managing Software Requirements Changes 901

Further, the revised requirements specification is

S]N 3
i
R = 〈{α,¬γ}, {β},∅〉 for each i.

This result means that the original requirements specifi-
cation abandoned the requirement γ, and the request of
requirements change abandoned the new requirements
¬β. This compromise is intuitive.

Generally, when a request of requirements change is
submitted to the Change Control Board, the Change
Control Board may use different change operators to
simulate the different change processes. These possi-
ble results of revision can help developers and CCB to
make reasonable trade-off decisions about the request
of requirements change.

3.4 A Case Study

In order to illustrate the models for managing re-
quirements changes based on negotiation-style revision,
we have provided a series of small examples. Although
we do not expect our approach can be immediately
applied to scenarios in an industrial setting, we can
demonstrate how complexity can be reduced using our
approaches by restricting them to smaller partial spe-
cifications, and show its potential usefulness when con-
juncted with a host of other techniques in requirements
engineering. From this perspective, we provide a simple
but explanatory case study below.

As argued in [20], most of requirements specifica-
tions in industrial setting are expressed in natural lan-
guage rather than logical formulas directly. Therefore
we start our case study with requirements specification
in natural language. Then we formulate these require-
ments and the request of requirements change in logical
formulas. Following this, we illustrate how to negoti-
ate over requirements changes by use of appropriate
models. Finally, we discuss some potential supports for
application of our approaches to requirements engineer-
ing.

Example. Consider the following requirements spec-
ification of a computer-aided close residential area
management system, which is concentrated on manag-
ing the entrance of vehicles to the residential area.
• Requirements assigned to the priority level of High:
(h1) the vehicles without special authorization of the

Management Board of the residential area cannot be al-
lowed to enter the area;

(h2) the vehicles with a special authorization of the
Management Board of the residential area can enter the
area;

(h3) the system should trigger warning alarm if a
vehicle without authorization enters the area.
• Requirements assigned to the priority level of

Medium:

(m1) If the system trigger warning alarm, the vehicle
cannot push the button for entrance again.

At first, we translate these requirements into logical
formulas. Suppose that we use
• the predicate Aut(x) to denote that x is authorized

by the Management Board of the residential area;
• the predicate Ent(x) to denote that x can enter the

residential area;
• the predicate Ala(x) to denote that the system

triggers alarm if x enters the area;
• the predicate Pus(x, y) to denote that x pushes the

button y;
• the constant entr to denote the button of entrance.
Then we can use the following set of formulas to

represent the preliminary requirements specification:

S = 〈SHigh,SMedium,SLow〉,

where

SHigh =





(∀x)(¬Aut(x) → ¬Ent(x)),
(∀x)(Aut(x) → Ent(x)),
(∀x)(¬Aut(x) → Ala(x))



 ,

SMedium = {(∀x)(Ala(x) → ¬Pus(x, entr))},
SLow =∅.

During the development, the emergency manager
told the vehicles entrance manager that the system
should allow the vehicle of emergency such as fine en-
gines to enter the area. To guarantee this, they pro-
vided the following constraints that must be met:

(r1) The fire engine should be viewed as the vehicle
of emergency.

(r2) The vehicle of emergency can enter the area, and
need not to be authorized by the Management Board
of the residential area in advance.

(r3) The vehicles without authorization except that
for emergency cannot enter the area.

Suppose that we use
• the constant fire e to denote the fire engine;
• the predicate Eme(x) to denote that x is a vehicle

for emergency.
Then we can instantiate the requirements about the fire
engine as follows:

SF = 〈SF High,SF Medium,SF Low〉,

where

SF High =




¬Aut(fire e) → ¬Ent(fire e),
Aut(fire e) → Ent(fire e),
¬Aut(fire e) → Ala(fire e)



 ,

SF Medium = {Ala(fire e) → ¬Pus(fire e, entr)},
SF Low =∅.

902 J. Comput. Sci. & Technol., Sept. 2011, Vol.26, No.5

Correspondingly, the request for requirements
change can be formulated by

R1 = {Φ1 ‖ ∅},

where

Φ1 =

〈




Eme(fire e),
Eme(fire e)
→ Ent(fire e) ∧ ¬Aut(fire e),
¬Aut(fire e) ∧ ¬Eme(fire e)
→ ¬Ent(fire e)





,∅,∅

〉
.

Because this is an obligatory request of requirements
change, all the requirements belonging to Φ1 should be
added to the requirements specification SF . However,

SF ∪ Φ1 ` Ent(fire e),

and
SF ∪ Φ1 ` ¬Ent(fire e),

i.e., SF ∪ Φ1 is inconsistent.
To maintain consistency of requirements specifica-

tion after change, the original requirements specifica-
tion SF has to make concession. So, we adopt the belief
negotiation model N 1. We denote each possible world
by a bit vector consisting of truth values of

(Aut(fire e), Ent(fire e), Ala(fire e),

Eme(fire e), Pus(fire e, entr)),

then

W =



w1 = 11111, w2 = 11110, w3 = 11101,
w4 = 11100, w5 = 11011, w6 = 11010,
w7 = 11001, w8 = 11000, w9 = 10111,
w10 = 10110, w11 = 10101, w12 = 10100,
w13 = 10011, w14 = 10010, w15 = 10001,
w16 = 10000, w17 = 01111, w18 = 01110,
w19 = 01101, w20 = 01100, w21 = 01011,
w22 = 01010, w23 = 01001, w24 = 01000,
w25 = 00111, w26 = 00110, w27 = 00101,
w28 = 00100, w29 = 00011, w30 = 00010,
w31 = 00001, w32 = 00000





.

The stratification of W induced by SF is given as
follows:

〈WsF
1 ,WsF

2 , . . . ,WsF
5 〉,

where

WsF
1 = {w2,w4,w5,w6,w7,w8,w26,w28},

WsF
2 = {w1,w3,w25,w27},

WsF
3 = {w10,w12,w13,w14,w15,w16,w18,

w20,w29,w30,w31,w32},
WsF

4 = {w9,w11,w17,w19},
WsF

5 = {w21,w22,w23,w24}.

The detailed negotiation process is given as follows.
• Consider the initial stage:
Let S0 = [SF], R0 = [Φ1] and σ0 = (〈S0, R0〉), where

[SF] =WsF
1

= {w2,w4,w5,w6,w7,w8,w26,w28},
[Φ1] = {w17,w18,w21,w22}.

Obviously,
S0 ∩R0 = ∅.

• Then consider the first round of negotiation:

g1(σ0) = {S0}, i.e.,S0 is the party having

to make concession.

S1 =H1
σ0

(S0) = S0 ∪WsF
2

= {w2,w4,w5,w6,w7,w8,w26,w28,

w1,w3,w25,w27},
R1 =H1

σ0
(R0) = R0,

σ1 =(〈S0, R0〉, 〈S1, R1〉).

Obviously,
S1 ∩R1 = ∅.

• Then consider the second round of negotiation:

g1(σ1) = {S1}, i.e., S1 is the party having

to make concession.

S2 =H1
σ1

(S1) = S1 ∪WsF
3

=





w2,w4,w5,w6,w7,w8,
w26,w28,w1,w3,w25,
w27,w10,w12,w13,
w14,w15,w16,w18,
w20,w29,w30,w31,w32





,

R2 =H1
σ1

(R1) = R1,

σ2 =(〈S0, R0〉, 〈S1, R1〉, 〈S2, R2〉).

An agreement is reached, since

S2 ∩R2 = {w18}.

Then the process of negotiation over requirements
changes under this obligatory request is given as fol-
lows:

σ = σ2.

Moreover,

SF]N 1 R1 = {〈S1High ,S1Medium ,S1Low〉},

Ke-Dian Mu et al.: Managing Software Requirements Changes 903

where

S1High =





Aut(fire e) → Ent(fire e),
¬Aut(fire e) → Ala(fire e),
Eme(fire e),
Eme(fire e) →
Ent(fire e) ∧ ¬Aut(fire e),
¬Aut(fire e) ∧ ¬Eme(fire e)
→ ¬Ent(fire e)





,

S1Medium =SF Medium

= {Ala(fire e) → ¬Pus(fire e, entr)},
S1Low =SF Low = ∅.

Therefore, the revised instantiated requirements
specification is

SF 1 = 〈S1High ,S1Medium ,S1Low〉.

Compared to the original instantiated requirements
specification, the request of requirements change R1

is fully accepted. To maintain consistency of require-
ments specification, SF makes concession and abandons
the following requirement:

¬Aut(fire e) → ¬Ent(fire e).

When the emergency manager verified the revised re-
quirements specification, he found the entrance of fine
engines can trigger warning alarm. So the emergency
manager and the emergency manager want to replace
the original requirement about triggering alarm by the
following requirements with High level to requirements
specification:

(r4) The vehicles without authorization except the
fine engine should trigger warning alarm.
Then we can formulate this request of requirements
change as follows:

R2 = {Φ2 ‖ Γ2},

where

Φ2 =
〈{¬Aut(fire e) ∧ ¬Eme(fire e)

→ Ala(fire e)

}
,∅,∅

〉
,

Γ2 = {¬Aut(fire e) → Ala(fire e)}.

Suppose that stakeholders want to reach a compro-
mise between SF 1 and R2. Then we adopt the belief
negotiation model N 3. Let S0 = SF 1 \Γ2. We consider
the following negotiation over requirements changes un-
der the request R2:
• The initial stage:
Let S0 = [S0], R0 = [Φ2] and σ0 = (〈S0, R0〉), where

[S0] = {w18},

[Φ2] = W \ {w23,w24,w31,w32}.
Obviously,

S0 ∩R0 = {w18}.
An agreement is reached.
Correspondingly,

SF 1]N 3
i
R2 = {S0 ∪ Φ2}.

The revised instantiated requirements specification is

SF 2 = 〈S2High ,S2Medium ,S2Low〉,
where

S2High =





Aut(fire e) → Ent(fire e),
¬Aut(fire e) ∧ ¬Ele(fire e) →
Ala(fire e),
Eme(fire e),
Eme(fire e) →
Ent(fire e) ∧ ¬Aut(fire e),
¬Aut(fire e) ∧ ¬Eme(fire e) →
¬Ent(fire e)





,

S2Medium =SR1Medium

= {Ala(fire e) → ¬Pus(fire e, entr)},
S2Low =SR1Low = ∅.

Evidently, the request of requirements change R2 is
fully accepted, i.e., SF 1 replaced

¬Aut(fire e) → Ala(fire e)

by

¬Aut(fire e) ∧ ¬Ele(fire e) → Ala(fire e).

Finally, based on the revised instantiated require-
ments specification SF 2, the revised preliminary re-
quirements specification can be formulated by

SR = 〈SRHigh,SRMedium,SRLow〉,
where

SRHigh =





∀x(¬Ele(x) → Ent(x) ∧ ¬Aut(x)),
∀x(Aut(x) → Ent(x)),
∀x(¬Aut(x) ∧ ¬Ele(x) → Ala(x)),
Ele(fire e)





,

SRMedium = {∀x(Ala(x) → ¬Pus(x, entr))},
SRLow =∅.

That is, after negotiation between original require-
ments specification and the request of requirements
change,
• the requirement (h1) was replaced by (r2) and (r3)

together;
• the requirement (h3) was replaced by (r4);

904 J. Comput. Sci. & Technol., Sept. 2011, Vol.26, No.5

• the new requirement (r1) was added to the require-
ments specification;
• requirements (h2) and (m1) remain unchanged.
This case study has illustrated how to use our mo-

dels in requirements engineering step by step. The ap-
proach presented in this paper is in the form of first
order logic. Actually, first order logic can be considered
as a preliminary of formal methods used in require-
ments engineering, such as in [14, 20]. Requirements
analysts with only preliminaries of first order logic are
able to use these approaches easily. On the other hand,
to further facilitate the application of our logic-based
approaches, we need consider some tools support for
translating requirements expressed in natural language
into formal logic as well as translating formal logic into
natural language sentences. As such, a prototype tool
termed CARL for this task has been presented in [20].
Then requirements analysts may combine or integrate
our models with available tools such as CARL flexibly
according to their needs in requirements management.

4 Discussion and Comparison

This paper focuses on management of software re-
quirements changes based on negotiation-style belief re-
vision. The negotiation-style framework presented by
Booth[12] does not emphasize the postulate of success.
It provides a more flexible way to revise the current
belief set when new information is given. The belief
negotiation model defined in [12] is still a general de-
scription except that the outcomes in abstractive nego-
tiation formalization are specified as the possible worlds
or models. Specifying the belief negotiation model pre-
sented in [12] needs to focus on the problem of how
to make concessions. Of course, it depends on the ap-
plication domain. However, it has been increasingly
recognized that the priority of requirements can help
requirements analysts resolve conflicts and make some
necessary trade-off decision[15-16]. Allowing for this, we
take the priority of requirements into account in ma-
king concessions, and then design a family of more spe-
cified belief negotiation models appropriate for different
processes of executing the requirements changes. It is
embodied by stratifying the set of possible worlds W
and adopting the strum Ws

i+2 (resp. Wr
i+2) to weaken

Si (resp. Ri) at stage σi during a negotiation process.
As mentioned earlier, viewing the evolution of re-

quirements specification as a process of revision has
been considered in [2-3, 6-7]. The analysis-revision cy-
cle presented in [2-3] aimed to evolve the unreliable and
imprecise requirements into a relative mature require-
ments specification. The analysis-revision cycle is in-
terested in finding requirements to be changed as well
as how to change them. Informally, the abductive rea-
soning is adopted to find the problematic requirements

to be changeable, moreover, the inductive learning is
adopted to look for the way to modify the current
problematic requirements. Generally, in this process,
the requirements change is fully accepted to revise the
current requirements. It agrees with the first model
of negotiation presented in this paper in acceptance of
the request of change. In contrast, our negotiation-
based models concentrate on managing the require-
ments changes at the development stages, in which
the requirements specification has been established. In
such cases, the request of requirements change is always
caused by very particular or uncertain factors. The ac-
ceptance of a request of requirements change may boost
the satisfactions of related stakeholders. But it must
result in a series of modifications at each existing de-
velopment stage. Then the current requirements spec-
ification and the request of requirements change need
to reach a compromise. So, requirement specification
is not always considered as the party having to make
concession to accommodate the newest requirements.
This makes our flexible models for formulating the re-
quirements change necessary when requirements speci-
fication has been established.

The logic framework for modeling the evolution
of requirements presented in [6-7] also concentrated
on evolving underdeveloped requirements specifications
into relative mature requirements specifications. At a
meta-level, the requirements model is viewed as a de-
fault theory. The belief revision formalized in the AGM
theory[8] is adopted to resolve inconsistencies caused
by evolutionary changes. The postulate of success al-
ways makes the new requirements prioritized when it
contradicts with the current requirements. Roughly
speaking, under guidance of this postulate, the cur-
rent requirements specification has to make concession
to accept the new requirements when the union of the
current requirements and the new requirements is in-
consistent. In this sense, the principle of handling the
request of requirement changes of this approach in ac-
cordance with that of our first negotiation model. It is
useful to improve the quality of requirements especially
at earlier requirements stage. But when requirements
specification has established, handling requests of re-
quirements changes often needs to balance the advan-
tage of the current requirements specification against
the disadvantage of the requirements change. Our flex-
ible models are more appropriate to managing the re-
quest of requirements change. To illustrate this, con-
sider S = {a, b, c} and R = {{¬b,¬c}||∅}. Suppose
that disadvantage caused by accepting {¬b,¬c} is more
than advantage caused by only accepting ¬b, an intu-
itive result should be {a,¬b, c}. Actually, it can be ob-
tained by using the third negotiation model presented
in this paper. But if we adopt the belief revision oper-
ators subject to the postulate of success such as [9, 23],

Ke-Dian Mu et al.: Managing Software Requirements Changes 905

the revision must result in fully acceptance of the re-
quirements change, i.e., the revised requirements is
{a,¬b,¬c} rather than {a,¬b, c}.

On the other hand, we do not claim that negotia-
tion should be considered as a silver bullet for mana-
ging requirements changes. Allowing for the complexity
of requirements changes, some other strategies such as
combinatorial vote[24] and game theory should be con-
sidered in resolving inconsistencies resulting from re-
quirements changes if the result of negotiation is unde-
sirable.

With regard to the computational issue about the
approach presented in this paper, it may be divided into
three sub-problems, i.e., the computation of the strat-
ification of W induced by the original requirements S,
the computation of the stratification of W induced by
the request of changeR, and the computation of a com-
promise between S and R. Evidently, the computation
of the stratification of W induced by S and the com-
putation of the stratification of W induced by R play a
dominant role in the whole computation process. That
is, the core of potential implementation or tool support
for the negotiation-based approach is to compute the
stratification of possible worlds induced by a set of pri-
oritized formulas, i.e., to find formulas satisfied by each
given interpretation. Additionally, to provide practical
tool support for the approach presented in this paper,
we need to integrate a tool for translating requirements
in natural language into logic formulas with the poten-
tial negotiation-based system. This will be the main
direction for future work.

Finally, we assume that there are three represen-
tative changes in this paper, including, adding a new
requirement, abandoning an existing requirement, and
changing an existing requirement into a new require-
ment. However, in practical software projects, the re-
quirements change may be more complex. For example,
consider S = {a,¬a ∨ b, c, b, d} and R = {{¬d} ‖ {b}}.
Suppose that we accept fully this request of change,
then the revised set S1 = S⊎

N 1 R = {a,¬a∨ b, c,¬d}.
Evidently, S1 is consistent and b ∈ Cn(S1). How to
modify the negotiation models for such cases will be
also left for future work.

5 Conclusion

When the requirements specification has been es-
tablished, the request of requirements change should
be handled cautiously. The acceptance of the request
of requirements change may boost the satisfactions of
stakeolders and enhance the quality of software pro-
duct. But it must also result in a series of modifica-
tions at each existing development stage. Generally, it
is really necessary to reach a compromise between the

current requirements specification and the request of
requirements change.

We have presented an approach to managing the re-
quirements changes based on negotiation-style belief re-
vision. Informally speaking, the current requirements
specification is viewed as an existing set of beliefs of
stakeholder about the system-to-be, whilst the request
of requirements change is viewed as new information
about the system-to-be. Then we consider the cur-
rent requirements specification and the request of re-
quirements change as two parties in negotiation over
revising the beliefs about the system-to-be. We de-
sign a family of belief negotiation models appropriate
to different processes of requirements revision, inclu-
ding the setting of the request being fully accepted, the
setting of the current requirements specification being
fully preserved, and that of the two parties reaching a
compromise. In particular, we consider the priority of
requirements in making concessions by stratifying the
possible worlds set and weakening the loser(s) of the
contest with a stratum of the possible worlds set at
each negotiation stage.

Acknowledgment The authors are grateful to
anonymous reviewers for their valuable comments.

References

[1] Wiegers K E. Software Requirements, 2nd Ed. Portland: Mi-
crosoft Press, USA, 2003.

[2] Garcez A S, Russo A, Nuseibeh B, Kramer J. An analysis-
revision cycle to evolve requirements specifications. In Proc.
the 16th IEEE Conference on Automated Software Engineer-
ing (ASE2001), Coronado, USA, Nov. 26-29, 2001, pp.354-
358.

[3] Garcez A S, Russo A, Nuseibeh B, Kramer J. Combining ab-
ductive reasoning and inductive learning to evolve require-
ments specifications. IEE Proceedings of Software, 2003,
150(1): 25-38.

[4] Kakas A C, Kowalski R, Toni F. The Role of Abduction in
Logic Programming. Handbook of Logic in Artificial Intelli-
gence and Logic Programming, Gabbay Dov M, Hogger C J,
Robinson J A (eds.), Volume 5., 1998, pp.235-324.

[5] Mitchell T M. Machine Learning. New York: McGraw-Hill,
1997.

[6] Zowghi D, Offen R. A logical framework for modeling and
reasoning about the evolution of requirements. In Proc. the
3rd IEEE International Symposium on Requirements Engi-
neering (RE1997), Jan. 5-8, 1997, Annapolis, USA, 1997,
pp.247-257.

[7] Zowghi D. A requirements engineering process model based
on defaults and revisions. In Proc. the 11th International
Workshop on Database and Expert Systems Applications
(DEXA2000), Greenwich, UK, Sept. 6-8, 2000, pp.966-970.

[8] Alchourrón C, Gärdenfors P, Makinson D. On the logic of
theory change: Partial meeting contraction and revision func-
tions. Journal of Symbolic Logic, 1985, 50(2): 510-530.

[9] Darwiche A, Pearl J. On the logic of iterated belief revision.
Artificial Intelligence, 1997, 89(1/2): 1-29.

[10] Delgrande J, Dubois D, Lang J. Iterated revision as priorited
merging. In Proc. the 10th International Conference on

906 J. Comput. Sci. & Technol., Sept. 2011, Vol.26, No.5

Principles of Knowledge Representation and Reasoning, Lake
District, UK, Jun. 2-5, 2006, pp.210-220.

[11] Fermé E, Hansson S. Selective revision. Studia Logica, 1999,
63(3): 331-342.

[12] Booth R. A negotiation-style framework for non-prioritised re-
vision. In Proc. the 8th Conference on Theoretical Aspects of
Rationality and Knowledge (TARK2001), Siena, Italy, Jul. 8-
10, 2001, pp.137-150.

[13] Hansson S. A survey of non-prioritized belief revision. Erken-
ntnis, 1999, 50(2/3): 413-427.

[14] Hunter A, Nuseibeh B. Managing inconsistent specification:
Reasoning, analysis, and action. ACM Transactions on Soft-
ware Engineering and Methodology, 1998, 7(4): 335-367.

[15] Wiegers K. First things first: Prioritizing requirements. Soft-
ware Development, 1999, 7(9): 48-53.

[16] Davis A. Just Enough Requirements Management: Where
Software Development Meets Marking. New York: Dorset
House Publishing, 2005.

[17] Karlsson J, Ryan K. A cost-value approach for prioritizing
requirements. IEEE Software, 1997, 14 (5): 67-74.

[18] Pardee W J. To Satisfy and Delight Your Customer: How
to Manage for Customer Value. New York: Dorset House
Publishing, 1996.

[19] Zowghi D, Gervasi V. On the interplay between consistency,
completeness, and correctness in requirements evolution. In-
formation and Software Technology, 2003, 45(14): 993-1009.

[20] Gervasi V, Zowghi D. Reasoning about inconsistencies in nat-
ural language requirements. ACM Transaction on Software
Engineering and Methodologies, 2005, 14(3): 277-330.

[21] Benferhat S, Cayrol C, Dobois D, Lang J, Prade H. Inconsis-
tency management and prioritized syntax-based entailment.
In Proc. the 13th International Joint Conference on Artifi-
cial Intelligence, Chambèry, France, Aug. 28-Sept. 3, 1993,
pp.640-647.

[22] Lehmann D. Another perspective on default reasoning. An-
nals of Mathematics and Artificial Intelligence, 1995, 15(1):
61-82.

[23] Jin Y, Thielscher M. Iterated belief revision, revised. Artifi-
cial Intelligence, 2007, 171(1): 1-18.

[24] Mu K, Jin Z. Identifying acceptable common propos-
als for handling inconsistent software requirements. In
Proc. 27th IFIP WG 6.1 International Conference on
Formal Techniques for Networked and Distributed Systems
(FORTE2007), Tallinn, Estonia, Jun. 27-29, 2007, pp.296-
308.

Ke-Dian Mu received his B.Sc.
degree in applied mathematics from
Beijing Institute of Technology,
China, in 1997, his M.Sc. degree in
probability and mathematical statis-
tics from Beijing Institute of Tech-
nology, China, in 2000, and his Ph.D.
degree in applied mathematics from
Peking University, Beijing, China, in
2003. From 2003 to 2005, he was a

postdoctoral researcher at Institute of Computing Technol-
ogy, Chinese Academy of Sciences, China. He is currently
an associate professor at School of Mathematical Sciences,
Peking University, Beijing, China. His research interests
include uncertain reasoning in artificial intelligence, knowl-
edge engineering and science, and requirements engineering.

Weiru Liu is a professor at
the School of Electronics, Electrical
Engineering and Computer Science,
Queen’s University Belfast. She re-
ceived her B.Sc. and M.Sc. degrees
in computer science from Jilin Uni-
versity, China, and her Ph.D. degree
in artificial intelligence from the Uni-
versity of Edinburgh. Her main re-
search interests include reasoning un-

der uncertainty, uncertain and inconsistent knowledge and
information fusion, belief and epistemic revision, and knowl-
edge discovery in databases. She has published over 120
journal/conference papers in these areas.

Zhi Jin received the M.S. and
Ph.D. degrees in computer science
from Changsha Institute of Technol-
ogy, China, in 1987 and 1992, respec-
tively. She is currently a professor of
computer science at Peking Univer-
sity, Beijing, China. Before joined
Peking University, she has been a
professor at the Academy of Math-
ematics and System Science at the

Chinese Academy of Sciences since 2001. Her research inter-
ests include software requirements engineering and knowl-
edge engineering. She has published a coauthored mono-
graph by Kluwer Academic Publishers and more than 50
referred journal/conference papers in these areas. She has
won various nation-class awards/honors in China, mainly
including the Natural Science Foundation for Distinguished
Young Scholars of China (2006), the Award for Distin-
guished Women IT Researcher of China (2004), and the
Zhongchuang Software Talent Award (1997). She is the
leader of more than 10 national competitive grants, includ-
ing three China NSF grants, two China 973 program grants,
and two China 863 program grants. She is a standing se-
nior member of the China Computer Federation (CCF) and
a grant review panelist for China NSF (Information Science
Division). She is serving as an executive editor-in-chief for
the Journal of Software, an editorial board member for the
Expert Systems, and Chinese Journal of Computers; and
served as a PC co-chair, area chair, or PC member for var-
ious conferences. She is a senior member of the IEEE and
the IEEE Computer Society.

Ke-Dian Mu et al.: Managing Software Requirements Changes 907

Jun Hong is a senior lecturer of
computer science at Queen’s Univer-
sity Belfast in the UK. He received
his B.Sc. and M.Sc. degrees both
in computer science and Ph.D. in ar-
tificial intelligence. His research is
mainly in the area of artificial in-
telligence and its intersections with
databases and Web technology, with
a wide range of research interests in-

cluding AI planning, data integration, Web data extraction
and integration, Web mining, reasoning under uncertainty
and intelligent tutoring systems. He has published around
60 research papers, most of which are in top-quality, peer-
reviewed international journals, books, and international
conference proceedings published by ICDE, AAAI, ECAI,
IEEE, ACM, Springer, etc. He published some of the highly
prestigious papers, cited by some of the best known re-
searchers in AI and databases in the world. He has se-
cured 11 research grants as either the principal investigator
or investigator from the European Commission and other
funding bodies. He is on the Steering Committee of the
British National Conference on Databases (BNCOD), and
co-chaired BNCOD 2006. In addition, he has been PC mem-
bers of more than 30 international conferences, including
WWW2010. He is on the editorial boards of two interna-
tional journals. He has been regular reviewers of many top-
quality international journals and research funding bodies,
including IEEE Transactions, ACM Transactions, EPSRC,
and the Netherlands Organisation for Scientific Research.

David Bell graduated in 1969 in
Pure Mathematics, and has three re-
search degrees in computing topics.
He has been a full professor since
1986 at Queen’s University Belfast
since 2002, where he is now the di-
rector of research in knowledge and
data engineering. He has produced
several hundred publications, and su-
pervised about 35 Ph.D.s to comple-

tion. He was prime investigator on about 18 EU-funded
projects (eg MAP, ESPRIT, DELTA, COST, AIM, . . .) and
on many national projects in IT since 1981. His activities
have included: PC chairmanships (e.g., joint programme
committee chair of VLDB’93 and of ICDE’97), conference
PC memberships and journal editing/editorial board mem-
berships, e.g., for Computer Journal and North-Holland’s
Information Systems. He has been guest editor of well-
known journals such as IEEE Trans. KDE, on (e.g.,) Knowl-
edge Discovery, Data Driven Data Mining and Semantic
Web. He is author/editor of several books. He served on the
UK Technology Foresight Panel for several years, and was
member of a number of national and international advisory
and funding groups. His research interests are centred on
data and knowledge management — the linking of reason-
ing under uncertainty, machine learning, and other artificial
intelligence techniques with advances in database systems.
This involves the exploration of other aspects of computing,
including, at the present time, aspects of agent awareness
and innateness.

