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Abstract
It is increasingly recognized that identifying the degree of blame or responsibility of each formula for inconsistency of a
knowledge base (i.e. a set of formulas) is useful for making rational decisions to resolve inconsistency in that knowledge
base. Most current techniques for measuring the blame of each formula with regard to an inconsistent knowledge base focus
on classical knowledge bases only. Proposals for measuring the blames of formulas with regard to an inconsistent prioritized
knowledge base have not yet been given much consideration. However, the notion of priority is important in inconsistency-
tolerant reasoning. This article investigates this issue and presents a family of measurements for the degree of blame of each
formula in an inconsistent prioritized knowledge base by using the minimal inconsistent subsets of that knowledge base. First
of all, we present a set of intuitive postulates as general criteria to characterize rational measurements for the blames of formulas
of an inconsistent prioritized knowledge base. Then we present a family of measurements for the blame of each formula in an
inconsistent prioritized knowledge base under the guidance of the principle of proportionality, one of the intuitive postulates.
We also demonstrate that each of these measurements possesses the properties that it ought to have. Finally, we use a simple
but explanatory example in requirements engineering to illustrate the application of these measurements. Compared to the
related works, the postulates presented in this article consider the special characteristics of minimal inconsistent subsets as
well as the priority levels of formulas. This makes them more appropriate to characterizing the inconsistency measures defined
from minimal inconsistent subsets for prioritized knowledge bases as well as classical knowledge bases. Correspondingly,
the measures guided by these postulates can intuitively capture the inconsistency for prioritized knowledge bases.

Keywords: Inconsistency measures, prioritized knowledge base, minimal inconsistent subsets, blame of each formula in
inconsistency.

1 Introduction

Many (if not all) real-world applications are characterized by the presence of inconsistency. Research
in inconsistency handling has attracted significant attention in recent years because of the necessity for
dealing with inconsistency in applications. Increasingly, it is recognized that measuring inconsistency
is a crucial part of inconsistency handling in computer science as well as in artificial intelligence,
and their applications [2].

Vol. 22 No. 3, © The Author, 2011. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
Published online February 9, 2011 doi:10.1093/jigpal/exr002

 at Peking U
niversity on M

ay 27, 2012
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 

http://logcom.oxfordjournals.org/


[16:25 14/5/2012 exr002.tex] LogCom: Journal of Logic and Computation Page: 482 481–516

482 Measuring the blame of each formula for inconsistent prioritized knowledge bases

A growing number of techniques for measuring inconsistency have been explored under different
scenarios, such as knowledge merging [24], ontology management [23], software engineering
and requirements negotiation [3, 19, 20], as well as in artificial intelligence research in general
[2, 7–9, 11, 12, 14–16]. [10] provides a good review on some recent proposals for measuring
inconsistency.

The overwhelming majority of the current proposals for measuring inconsistency are concentrated
on the degree of inconsistency (or the amount of contradiction) for a whole knowledge base. In
contrast, there are relatively few techniques for measuring the degree of blame or responsibility
of each individual formula of a knowledge base for the inconsistency in that knowledge base.
However, in many applications, it is desirable to resolve inconsistency by measuring and identifying
the responsibility of each formula for that inconsistency. For example, in requirements engineering,
developers or requirement analysts need to know the responsibility of each requirement involved in
inconsistency to take an appropriate action for resolving the inconsistency.

The current proposals for measuring the blame of each formula for inconsistency of a knowledge
base can be classified into two categories. The first category focuses on the distribution of an
existing (syntax-based or model-based) measure of the degree of inconsistency of a knowledge
base among formulas belonging to that knowledge base by using a cooperative game theory
model [11]. The proportion of the existing measure distributed to an individual formula of a knowledge
base is considered as a measurement of the blame of that formula for the inconsistency of that
knowledge base. The Shapley inconsistency value presented by Hunter and Konieczny [11] is the
most representative work of the first category, in which the Shapley value [1, 26], the well-known
coalitional game model, has been used to distribute an existing measure of the overall inconsistency of
a knowledge base to each formula belonging to that knowledge base. In contrast, the second category
such as [12] argues that it is natural and intuitive to define syntactic measures of the blame of each
formula of a knowledge base for its inconsistency from minimal inconsistent subsets of the knowledge
base directly. Note that it follows the viewpoint that minimal inconsistent subsets of a knowledge
base could be considered as the purest form of inconsistency of the knowledge base [25]. Moreover,
Hunter and Konieczny argued that syntax sensitive measures are necessary for some applications
such as requirements engineering [12]. The MinInc inconsistency values presented in [12] and the
scoring function of singleton sets presented in [13] can be considered as the most representative
works of the second category. In particular, an interesting link between the two approaches is that
the MinInc inconsistency value MIVC is also a special Shapley inconsistency value [12].

Note that approaches in both the first and the second categories are concerned with classical
knowledge bases only. Proposals for measuring the blame of each formula belonging to a prioritized
knowledge base for the inconsistency of that base have not yet been given deserved attention. That
is, the current proposals for measuring the blames of formulas for inconsistency of a knowledge base
do not take the priority of each formula into account. However, as a description of the importance or
reliability of the corresponding knowledge, the priority of each formula always plays an important role
in inconsistency handling in artificial intelligence and many applications, such as belief revision [4],
knowledge base merging [6, 24] and inconsistency handling in requirements engineering [20, 21]. It
is natural to take the priority of each formula into account when identifying the blames of formulas
for inconsistency of a prioritized knowledge base.

The Shapley value model of the first category is not appropriate for characterizing the blame
of each prioritized formula for the inconsistency of a prioritized knowledge base, even if we
consider the priority of each formula when measuring the amount of inconsistency of that
prioritized knowledge base. To illustrate this, let us consider a scenario of two conflicting
witnesses. Suppose that Alice and Bob are witnesses about the case of John being accused
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of breaking the speeding limit in an traffic accident. Alice claims that John was breaking the
speeding limit when the traffic accident happened. But Bob claims that John wasn’t over the
speeding limit when the accident happened. Then we have an inconsistent knowledge base
from the two witnesses, i.e. K ={Break(John,speed_limit),¬Break(John,speed_limit)}. If we
know that Alice has a good reputation, but Bob is a drunken witness, we may consider that
Break(John,speed_limit) is much more reliable than ¬Break(John,speed_limit). Intuitively, the
degree of responsibility of ¬Break(John,speed_limit) for the inconsistency in K should be more than
that of Break(John,speed_limit). However, the Shapley inconsistency value cannot make a distinction
between the blames of Break

(
John, speed_limit

)
and ¬Break(John,speed_limit), since it assigns

half of the amount of inconsistency in K to Break(John,speed_limit) and ¬Break(John,speed_limit),
respectively.

As mentioned earlier, the fundamental viewpoint of the second category is that minimal inconsistent
subsets of a (classical or prioritized) knowledge base can be considered as the purest form of
inconsistency in that base. Following this viewpoint in the case of prioritized knowledge bases,
it is also natural to explore connections between the measures for the blame of each prioritized
formula for the inconsistency of the knowledge base the formula belongs to and the minimal
inconsistent subsets of that base. Our previous article [19] can be considered as an attempt to follow
this viewpoint for prioritized knowledge bases, in which we explored a possible combination of
the scoring function presented in [13] and the priority levels of formulas. However, as pointed
out in [12], the scoring function of a singleton set for a given knowledge base is very sketchy for
measuring the degree of blame of the corresponding formula for the inconsistency of the knowledge
base. With regard to another representative proposal of the second category, one of the fundamental
characteristics of the MinInc inconsistency value MIVC and some revised MinInc inconsistency
values presented in [22] is that each formula of a given minimal inconsistent knowledge base M
takes the same degree of responsibility (i.e. 1

|M| ) for the inconsistency of M. This is not always
satisfiable for prioritized knowledge bases such as the example of two conflicting witnesses mentioned
above.

In this article, we argue that it is desirable to have proportional distributions of the overall
inconsistency of a minimal inconsistent prioritized knowledge base among formulas belonging to
that base, according to severity of contribution of each formula to cause the inconsistency. That
is, a reasonable measurement of the blame of each formula of a prioritized knowledge base for
the inconsistency of that base should obey the so-called principle of proportionality. In order
to rationally justify any measures based on this principle, we first propose a set of properties to
characterize measures of the blames of formulas in the inconsistency of a prioritized knowledge
base, which accords with the principle as well as the view of minimal inconsistent subsets being the
purest form of inconsistency. In particular, these properties take the special characteristics of minimal
inconsistent subsets as well as the priorities of formulas into account. This makes the set of properties
more appropriate to capturing the most intuitive constraints in general such as most of properties
presented in [11] as well as special constraints presented in this article for inconsistency measures
based on minimal inconsistent subsets. We then define a family of measures of the blame of each
formula for the inconsistency of a prioritized knowledge base under the guidance of the principle
of proportionality. We finally show these measures satisfy these intuitive properties. Compared to
the current proposals, the measures guided by these properties are more succinct and intuitive to
capture the degree of blame of each formula for inconsistency in prioritized knowledge bases as
well as in classical knowledge bases. Especially, the corresponding measures in the case of classical
knowledge bases provide support for the intuition about the inconsistency of minimal inconsistent
subsets illustrated by the well known Lottery Paradox [15].
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The rest of this article is organized as follows. Some preliminaries are given in the next Section.
In Section 3, we provide some rational properties to characterize an intuitive and natural measure
of the blames for formulas. In Section 4, we define a family of natural measures of the blames of
formulas from minimal inconsistent subsets. In Section 5, we present a case study to illustrate the
application of our approach to requirements engineering. In Section 6, we compare our work with
related works. Finally, we conclude this article in Section 7.

2 Preliminaries

Throughout this article, we will only consider a finite propositional language. Let P be a finite set of
propositional symbols and L a propositional language built from P under connectives {¬,∧,∨,→}.
We use a, b, c, ... to denote the propositional symbols, and α, β, γ , ... to denote the propositional
formulas.

A classical (or flat) knowledge base K̃ is a finite set of propositional formulas. We use K̃L to denote
the set of classical knowledge bases definable from the language L.

Compared to classical knowledge bases, prioritized knowledge bases take the priority level of each
formula into account. That is, each formula in a prioritized knowledge base is attached with a priority
level. In different applications, a priority level has different meanings. For example, the priority of a
requirement statement in Requirements Engineering characterizes how important the requirement is
for a computer system, while the priority level of a piece of belief describes how reliable this piece
of belief is. In this article, we interpret that the priority level of a formula in a given knowledge base
embodies how preferred the formula is with regard to other formulas in the knowledge base.

Definition 2.1 (Prioritized knowledge bases)
A prioritized knowledge base K is a finite set of propositional formulas, each being attached with its
priority level, i.e.

K ={(α1,P(α1)),...,(αn,P(αn))},
where P is a prioritization function from L to a set of priorities Pri.

For simplicity, we use αP to denote a prioritized formula (α,P(α)). Then a prioritized knowledge
base K can be represented as K ={αP

1 ,...,α
P
n }.

This definition of prioritized knowledge base shares the spirit of the definition of prioritized
observation base in [4] in which each formula is attached with a integer value indicating its priority.

Generally, there are two kinds of priorities used in most application domains, i.e. numerical
priorities and qualitative priorities.

• The first kind of priorities PriI is a set of numerical valuations (typically, [0,1], R+, etc). The
corresponding prioritization function PI :L �→PriI is a function that assigns a precise numerical
valuation to each formula such that the bigger the priority valuation of a formula, the more
preferred the formula is. For example, the necessity degree attached with each formula in
possibilistic knowledge base [6] may be considered as a priority of the first kind, in which
PriI is [0,1]. For convenience and simplicity and without losing generality, we assume that PriI
is [0,1] in the rest of the article. As mentioned above, the same value in [0,1] may have different
meanings in different applications. Therefore, the meaning of the most preferred level (e.g. 1)
and that of the lowest priority value (e.g. 0) depend on individual applications. For example, in
possibilistic logic, (α,1) is interpreted as α being definitely true.

• In contrast, the second kind of priorities PriII consists of finite ordered qualitative priority levels,
such as the 3-level priority set {High, Medium, Low} used in requirements engineering [19, 21].
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The corresponding prioritization function PII :L �→PriII assigns a qualitative level such as High
or Low instead of a precise numerical valuation to each propositional formula. As such, the
propositional formulas were grouped into |PriII| categories. More generally, if we use a natural
number i to denote the i-th priority level, then the corresponding prioritization function can be
restated as P′

II :L �→{1,2,...,|PriII|} such as any formula with a smaller value is more preferred
than formulas with a larger value. In particular, such a prioritized knowledge base

K ={(
α1,P

′
II(α1)

)
,...,(αn,P

′
II(αn))

}
can be alternatively expressed as a |PriII|-tuple of sets of formulas, i.e.

〈{αi|αP
i ∈K,P′

II(αi)=1},...,{αi|αP
i ∈K,P′

II(αi)=|PriII|}〉
Especially, ∅ can also be reexpressed as 〈∅,...,∅〉. Obviously, for each k, {αi|αP

i ∈K,P′
II(αi)=k}

is a set of all formulas at k-th priority level of K . From now on, we call this set of formulas
(possibly empty) the k-th stratum of K . Note again that if we interpret the k-th stratum of K
as the set of formulas of reliability level k, then K can be considered as a special prioritized
observations base defined in [4].

Generally, the relative priority of a prioritized knowledge base should depend on priority levels of
formulas belonging to that knowledge base. However, for qualitative prioritization, it is often hard to
use a single value to capture the relative priority of a knowledge base consisting of qualitatively
prioritized formulas, since it is very subtle to replace each qualitative level with a numerical
weight [21]. Correspondingly, the operator of comparison and integration should take the stratified
structure of such a knowledge base into account. To address this, we need two different approaches
to handling these two types of prioritized knowledge bases.

To distinguish these two types of prioritizes assigned to formulas, we call a prioritized knowledge
base a Type-I prioritized knowledge base if it adopts the first kind of prioritization function. Otherwise,
we call it a Type-II prioritized knowledge base. For example, a knowledge base in possibilistic logic
can be considered as a Type-I prioritized knowledge base, in which

(
α,PI(α)

)
is interpreted as

the degree of necessity of α is at least PI(α). To make a distinction, we use K̂ to denote a Type-I
prioritized knowledge base. Also, for convenience, we assume that the priority of each formula in a
Type-I prioritized knowledge base is non-zero. In contrast, we use K or 〈K(1),...,K(m)〉 to denote
a Type-II prioritized knowledge base, in which K(i) is the i-th stratum of K for each 1≤ i≤m. Note
that αP ∈K if and only if α∈K(P′

II(α)). So, K′ =〈K′(1),...,K′(m)〉 is a subset of K if and only if
K′(i)⊆K(i) for each i. Moreover, we abuse the notation and write α instead of αP for a prioritized
formula αP ∈K. We must point out that for Type-II prioritized knowledge bases, we assume that there
is no explicit or implicit numerical relation between these priority levels, except ordering relation.
So, the stratified structure is essential to describe the Type-II knowledge base. For example, we may
use {1,2,3} as the scale of priority levels. But we cannot consider the degree of preference of α at
level 1 is 3 times to that of β at level 3. It is the main difference between these two types knowledge
bases.

The classical knowledge base associated with a prioritized knowledge base K , denoted K∗, is
defined as K∗ ={α|(α,P(α))∈K}. On the other hand, a classical knowledge base K̃ ={α1,...,αn}
corresponds to a Type-I prioritized knowledge base K̂ ={(α1,1),...,(αn,1)}, or a Type-II prioritized
knowledge base K=〈K̃〉. Then we can take each classical knowledge base K̃ as a special kind of
prioritized knowledge base (i.e. K̂ or K), and we simply use K to denote either a prioritized or
a flat knowledge base if there is no confusion. Moreover, we use KL (respectively K̂L) and ML
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(respectively M̂L) to denote the set of (respectively Type-I) prioritized knowledge bases and minimal
inconsistent prioritized knowledge bases definable from formulas of the language L, respectively.
Evidently, ML ⊂KL.

A classical knowledge base K̃ is inconsistent if there is a formula α such that K̃ �α and K̃ �¬α.
We abbreviate α∧¬α as ⊥ if there is no confusion. Then an inconsistent K̃ is denoted by K̃ �⊥. A
prioritized knowledge base K is inconsistent if K∗ is inconsistent.

Moreover, an inconsistent (prioritized or classical) knowledge base K is called a minimal
inconsistent set if none of its proper subsets is inconsistent. If K ′ ⊆K and K ′ is a minimal inconsistent
set, then we call K ′ a minimal inconsistent subset of K .

Let MI(K) be the set of all the minimal inconsistent subsets of K , i.e.

MI(K)={K ′ ⊆K|K ′ �⊥ and ∀K ′′ ⊂K ′,K ′′ ��⊥}.

The minimal inconsistent subsets can be considered as the purest form of inconsistency for conflict
resolution where the syntactic representation of the information is important, since removing one
formula from each minimal inconsistent subset would be sufficient to resolve the inconsistency [25].
In contrast, a free formula of a knowledge base K is referred to as a formula of K that does not belong
to any minimal inconsistent subset of K . In this article, we use FREE(K) to denote the set of free
formulas of K .

Example 2.1
Consider K1 =〈{a,¬b},{c},{¬a,b,d}〉. Evidently, K1 is inconsistent. The set of minimal inconsistent
subsets of K1 is MI(K1)={M1,M2}, where

M1 =〈{a},∅,{¬a}〉, M2 =〈{¬b},∅,{b}〉.

In contrast, both c and d are free formulas of K1, i.e. FREE(K1)=〈∅,{c},{d}〉.
Let f and g be two functions of knowledge bases and minimal inconsistent knowledge bases,

respectively. From now on, just for simplicity for discussion, we abbreviate

∀K,f (K)=
⎧⎨⎩

∑
M∈MI(K)

g(M), if MI(K) �=∅,
0, if MI(K)=∅.

as
∀K,f (K)=

∑
M∈MI(K)

g(M).

Hunter et al. have argued that it is natural to explore links between measuring inconsistency for
a knowledge base and the minimal inconsistent subsets of that base in [12, 13]. They defined the
MI inconsistency measure for the amount of inconsistency for a classical knowledge base as well as
the MinInc Inconsistency Value for the blame of each formula for the inconsistency of a classical
knowledge base from minimal inconsistent subsets of that base [12].

Definition 2.2 (The MI inconsistency measure [12])
The MI inconsistency measure is defined as the number of minimal inconsistent subsets of a classical
knowledge base K̃ , i.e.:

IMI(K̃)=|MI(K̃)|.
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Definition 2.3 (The MinInc Inconsistency Value MIVC [12])
The MinInc Inconsistency Value MIVC is defined as follows:

MIVC(K̃,α)=
∑

M̃∈MI(K̃)s.t.α∈M̃

1

|M̃|

for any classical knowledge base K and propositional formula α.

The MinInc Inconsistency Value MIVC(K̃,α) gives the blame of α for the inconsistency of K̃ . It is
a particular type of Shapley inconsistency value defined by IMI, and can be completely characterized
in terms of five axioms defined in [12]. In particular, the MinInc axiom, one of the five axioms, states
that each minimal inconsistent subset brings the same amount of conflict:

• If M̃ ∈MI(K̃), then IMI(M̃)=1.

Evidently, the combination of MinInc axiom and the definition of MIVC signifies that the amount of
inconsistency of a minimal inconsistent knowledge base is shared equally among all the formulas
belonging to this base.

Some properties were also presented to characterize a basic inconsistency measure for classical
knowledge bases [11, 12].

Definition 2.4 (Basic Inconsistency Measure [12])
An inconsistency measure I is called a basic inconsistency measure if it satisfies the following
properties: ∀K̃,K̃ ′ ∈K̃L, ∀α,β∈L:

• Consistency: I(K̃)=0 if K̃ is consistent.
• Monotony: I(K̃ ∪K̃ ′)≥ I(K̃).
• Free Formula Independence: If α is a free formula of K̃ ∪{α}, then I(K̃ ∪{α})= I(K̃).
• Dominance: If α�β and α ��⊥, then I(K̃∪{α})≥ I(K̃∪{β}).

The consistency property requires that a desirable inconsistency measure assigns null to a consistency
base. The monotony property states that as the size of a knowledge base increases, the amount
of inconsistency cannot decrease. The free formula independence property requires that adding
or deleting a free formula cannot change the amount of inconsistency of the base. As explained
in [11], the dominance property states that logically stronger formulas bring (potentially) more
conflicts. However, the MI inconsistency measure IMI, considered as a basic inconsistency measure
in [12], does not satisfy the dominance property. To illustrate this, consider K̃ ={a,a∧c,¬b}. Suppose
that α=a∧c∧(¬a∨b) and β=¬a∨b. Then MI(K̃ ∪{β})={{a,¬a∨b,¬b},{a∧c,¬a∨b,¬b}} and
MI(K̃ ∪{α})={a∧c∧(¬a∨b),¬b}. So,

IMI(K̃ ∪{α})=1< IMI(K̃ ∪{β})=2.

Because the minimal inconsistent subset is syntax sensitive, if we replace β with α, some
inconsistencies in the form of distinctive minimal inconsistent subsets of K̃ ∪{β} will be expressed by
either the same minimal inconsistent subset in which β is replaced by α, or by a minimal inconsistent
subset with a smaller size of K̃ ∪{α}, as illustrated by the example above. If we consider the amount
of inconsistency of a knowledge base as the sum of the amounts of inconsistency of all minimal
inconsistent subsets, to satisfy the dominance property, the following condition must hold:

• for any two minimal inconsistent knowledge bases M̃1 and M̃2, I(M̃1)≥k ·I(M̃2) for any k if
|M̃1|< |M̃2|.
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It is difficult to satisfy this condition if we use a single value to measure a knowledge base. To
the best of our knowledge, the MI inconsistency vectorial measurer presented in [22] satisfies the
dominance property, though an inconsistency measure satisfies the properties presented in [22] does
not always satisfy the dominance property. On the other hand, the dominance property is inappropriate
to characterize the inconsistency measure for prioritized knowledge bases. To illustrate this, consider
K=〈{a},{¬a},∅〉 and K′ =〈∅,{¬a},{b∧(b→a)}〉. Intuitively, K is more inconsistent than K ′ since
a is more important than b∧(b→a), although b∧(b→a)�a. To address these, we do not consider
the dominance property as a mandatory property in this article.

3 Properties for characterizing inconsistency measures from minimal
inconsistent subsets

Contrary to the current proposals for discussing or analyzing the properties of a given measure for the
blames of formulas for the inconsistency in a knowledge base, in this section, first of all, we discuss
the intuitive properties for characterizing inconsistency measures for a prioritized knowledge base
defined from minimal inconsistent subsets of that base.

Recall the properties of a basic inconsistency measure for classical knowledge bases presented
in [11, 12], none of the four intuitive properties addresses the special characteristics of measures
defined from minimal inconsistent subsets explicitly. That is, these four properties describe some
common characteristics of syntactic inconsistency measures, but they are not specific enough to
characterize the inconsistency measures for a knowledge base defined from its minimal inconsistent
subsets. To illustrate, consider the MinInc axiom presented in [12], it states that each minimal
inconsistent classical knowledge base has the same amount of conflict.Although it does not contradict
the other properties, it contradicts the intuition illustrated by the lottery paradox [12, 15], which states
that the bigger the size of a minimal inconsistent set, the smaller the amount of inconsistency it has.

On the other hand, compared to measures for the classical knowledge bases, measures for the
inconsistency of prioritized knowledge bases should take the priority of each formula into account.
That is, we need to consider the strength of inconsistency of each minimal inconsistent subset as
well as the degree of inconsistency. However, the strength of inconsistency of a minimal inconsistent
subset should take into account the significance (i.e. globally relative priority) of that subset, which
is induced by the priority of each formula belonging to that subset. In other words, to measure the
amount of inconsistency of minimal inconsistent prioritized knowledge base, we need to measure the
significance of each minimal inconsistent subset based on the priority of each formula belonging to
that base as the starting point. Intuitively, a measure for the significance of a prioritized knowledge
base K , denoted as Sig(K), should be subject to the following assumptions:

(S1) Zero Significance: Sig(K)=0 iff K =∅.
(S2) Preference: Sig(K ∪{αP})≥Sig(K ∪{βP}) if αP,βP �∈K and α is more preferred than β.
(S3) Monotony: ∀K,K ′ ∈KL, Sig(K ∪K ′)≥Sig(K).
(S4) Upper Bound: ∀K ∈KL, Sig(K)≤Sig(K∗).

The assumption of Zero Significance states that an empty knowledge base has null significance. The
assumption of Preference states that more preferred formulas bring more significance. The Monotony
assumption states that as the size of a knowledge base increases, the significance of the base should not
be decreased. The Upper Bound assumption requires that any reasonable measure of significance of
a prioritized knowledge base cannot be greater than that of the classical knowledge base associated
with that base, since each formula of the classical knowledge base is not less preferred than the
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corresponding formula of the prioritized knowledge base. Roughly speaking, the upper bound states
that the classical knowledge base is the most preferred among all the prioritized knowledge bases
with the same classical formulas but different priorities.

The current approaches to measuring inconsistency of a knowledge base based on minimal
inconsistent subsets such as [12] and [13] consider the sum of the amount of inconsistency of
all the minimal inconsistent subsets of a knowledge base as the amount of inconsistency of that
base. To illustrate this, recall the MI inconsistency measure IMI defined in [12], it considers the
number of minimal inconsistent subsets of a classical knowledge base as a measure of the amount
of inconsistency of that base, while the MinInc property states that each minimal inconsistent subset
brings the same amount of conflict. In this article, we follow this viewpoint in the case of prioritized
knowledge bases. Then the characterization of measures of the amount of inconsistency for prioritized
knowledge bases should focus on the measures of the amount of inconsistency for the minimal
inconsistent knowledge bases. Intuitively, a desirable measure for the amount of inconsistency for
a prioritized knowledge base defined from minimal inconsistent subsets of that base, denoted Inc,
should satisfy the following properties:

(I1) MinInc Additivity: ∀K ∈KL, Inc(K)= ∑
M∈MI(K)

Inc(M).

(I2) Contradiction: ∀M ∈ML, Inc(M)>0.
(I3) Monotony w.r.t. Significance: ∀M1,M2 ∈ML, such that |M1|=|M2|, if Sig(M1)≤Sig(M2),

then Inc(M1)≤ Inc(M2).
(I4) Attenuation w.r.t. Size: ∀M1,M2 ∈ML s.t. ∀αP,βP ∈M1 ∪M2, P(α)=P(β), if |M1|< |M2|,

then Inc(M1)> Inc(M2).
(I5) Almost Consistency: lim|M|→+∞Inc(M)=0 for M ∈ML.

Note that the MinInc Additivity property requires that the amount of inconsistency in a knowledge
base is equal to the sum of the amounts of inconsistency in all the minimal inconsistent subsets of
that base. The Contradiction property states that each minimal inconsistent knowledge base should
contribute to a non-zero amount of contradiction. The Monotony w.r.t. Significance property states
that as the significance of a minimal inconsistent knowledge base with a given size increases, the
amount of inconsistency that it contributes cannot decrease. In contrast, the Attenuation w.r.t. Size
property states that as the size of a minimal inconsistent knowledge base consisting of formulas
with the same priority increases, the amount of inconsistency decreases. The Almost Consistency
property states that as the size of a minimal inconsistent set increases, the amount of inconsistency
that it contributes to gradually reduces to zero, i.e. the minimal inconsistent set becomes nearly
consistent if its size is large enough. Note that the Attenuation w.r.t. Size property and the Almost
consistency property are more intuitive than the MinInc property presented in [12] which states
that each minimal inconsistent subset brings the same amount of conflict in the case of classical
knowledge bases. To illustrate this, let us consider the lottery paradox which motivated Knight to
propose his approach [15]. The lottery paradox presented in [17] considered an n-ticket lottery known
to be fair and to have exactly one winner. It is rational to accept for any individual ticket i of the
lottery that ticket i will not win, since the probability of ticket i being the winner cannot exceed a
high enough threshold due to the fairness of the lottery. Then Kn ={¬w1,...,¬wn,w1 ∨···∨wn} is
a minimal inconsistent knowledge base about the lottery, where for each i, wi asserts that ticket i
will win the lottery. Intuitively, if there are a sufficiently large number of tickets in the lottery, the
knowledge base Kn is nearly consistent, whereas Kn is highly inconsistent if there are only two or
three tickets. Evidently, the MinInc property conflicts with this intuition. In contrast, the Attenuation
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w.r.t. Size property and the Almost Consistency property comply with the intuition that as the size
of minimal inconsistent subset increases, its inconsistency becomes more tolerable [12, 15].

On the other hand, as shown by the following lemma, in the case of classical knowledge bases, (I1)
and (I2) subsume the former three properties for a basic inconsistency measure presented in [12].

Lemma 3.1
If Inc satisfies (I1) and (I2), then Inc satisfies the properties of Consistency, Monotony, and Free

Formula Independence in the case of classical knowledge bases.

For readability, proofs for propositions, lemmas, and corollaries are given in the Appendix. Recall
the MinInc inconsistency value defined to measure the blame of each formula for the inconsistency of
a classical knowledge base, it essentially accords with the principle of equal share, i.e. the amount of
inconsistency of a minimal inconsistent subset should be shared equally among all the formulas
belonging to that subset. As illustrated earlier, the principle of equal share is inappropriate for
characterizing the measures for the blame of each formula for the inconsistency of a prioritized
knowledge base.

However, the principle of proportionality may be used to guide the characterization of the blame
of formulas for inconsistency in a prioritized knowledge base. This general principle argues that
a reasonable measurement of the blame of an individual formula for inconsistency in a minimal
inconsistent prioritized knowledge base should be proportionate to the gravity of its conduct in
causing the inconsistency in that knowledge base. To obey to the principle of proportionality, we need
to measure the severity of contribution of each formula to inconsistency of a prioritized knowledge
base first. We start with the definition of opposed formulas.

Definition 3.1 (Opposed formulas)
Let M be a minimal inconsistent prioritized knowledge base and αP a formula being attached with a
priority level. Then the set of opposed formulas to αP w.r.t. M, denoted Opp(M,αP), is defined as

Opp(M,αP)=
⎧⎨⎩

{αP}, if M={αP},
M −{αP}, if {αP}⊂M,
∅, if αP �∈M.

The opposed formulas to an individual formula in a minimal inconsistent knowledge base are
formulas that would be disengaged from inconsistency if that formula was removed from the base.
In particular, for a singleton set M ={αP}, the opposed formula to αP is αP, since α is a self-
contradictory formula. Intuitively, the relative importance of opposed formulas to a given formula
may be considered as a measure of severity of contribution of that formula to inconsistency in a
minimal inconsistent knowledge base.

Example 3.1
Consider K2 =〈{b},{¬b,c},{a∧¬a}〉. Then the set of minimal inconsistent subsets of K2 is MI(K2)=
{M1,M2}, where

M1 =〈∅,∅,{a∧¬a}〉, M2 =〈{b},{¬b},∅〉.

Then the set of opposed formulas to a∧¬a w.r.t. M1 is as follows:

Opp(M1,a∧¬a)=M1.
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The set of opposed formulas to each formula of K2 w.r.t M2 is given as follows:

Opp(M2,a∧¬a)=〈∅,∅,∅〉, Opp(M2,¬b)=〈{b},∅,∅〉.
Opp(M2,b)=〈∅,{¬b},∅〉, Opp(M2,c)=〈∅,∅,∅〉.

Combining the principle of proportionality and the view of minimal inconsistent subsets as the
purest form of inconsistency, a desirable measure for the blame of each formula belonging to a
prioritized knowledge base for the inconsistency of that base, denoted as Blame, should satisfy the
following properties:

(D1) Accumulation: ∀K ∈KL, ∀αP ∈K , Blame(K,αP)= ∑
M∈MI(K)

Blame(M,αP).

(D2) Innocence: ∀M ∈ML, ∀αP �∈M, Blame(M,αP)=0.
(D3) Necessity: ∀M ∈ML, ∀αP ∈M, Blame(M,αP)>0.
(D4) MinInc Distribution: ∀M ∈ML,

∑
αP∈M

Blame(M,αP)= Inc(M).

(D5) Proportionality: Given M ∈ML, ∀αP ∈M,

Blame(M,αP)=c(M)×Sig(Opp(M,αP)),

where c(M) is a constant with regard to M.

The Accumulation property requires that the blame of each formula for the inconsistency of a
prioritized knowledge base is the accumulation of the blames of that formula for the inconsistency
of each minimal inconsistent subset of that base. The Innocence property states that any formula
not belonging to a minimal inconsistent prioritized knowledge base dismisses any responsibility for
the inconsistency in that minimal inconsistent base. The Necessity property states that each formula
belonging to a minimal inconsistent prioritized knowledge base must bear some responsibility for
the inconsistency of that minimal inconsistent base. The MinInc Distribution property states that the
blame of a minimal inconsistent prioritized knowledge base is shared among the formulas belonging
to that minimal inconsistent base. The Proportionality property requires that the blame of each formula
in a minimal inconsistent prioritized knowledge base is proportionate in severity to the gravity of
the conduct of the formula in inconsistency of that minimal inconsistent knowledge base. Note that
(D1)–(D4) comply with the view that the minimal inconsistent subsets of a knowledge base are the
purest form of inconsistency of that base. (D5) requires that the degree of blame of each formula
must accord with the principle of proportionality, i.e. the more significant the opposed formulas to
the formula are, the more severe the deserved blame of the formula should be.

In the case of classical knowledge bases, the following properties for an expected measure Blame
were enumerated in [11, 12]:

• Distribution: ∀K̃ ∈K̃L,
∑
α∈K̃

Blame(K̃,α)= Inc(K̃).

• Symmetry: If ∃α,β∈ K̃ s.t. for all K̃ ′ ⊆ K̃ s.t. α,β �∈ K̃ ′, Inc(K̃ ′ ∪{α})= Inc(K̃ ′ ∪{β}), then
Blame(K̃,α)=Blame(K̃,β).

• Minimality: If α is a free formula of K̃ , then Blame(K̃,α)=0.
• Dominance: If α�β and α ��⊥, then Blame(K̃,α)≥Blame(K̃,β).
• Decomposability: If MI(K̃ ∪K̃ ′)=MI(K̃)

⊕
MI(K̃ ′), then

Blame(K̃ ∪K̃ ′,α)=Blame(K̃,α)+Blame(K̃ ′,α),
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where MI(K̃)
⊕

MI(K̃ ′) is referred to as MI(K̃)∪MI(K̃ ′) for two mutually exclusive sets MI(K̃)
and MI(K̃ ′).

However, the MinInc inconsistency value MIVC presented in [12] does not satisfy the Dominance
property. To illustrate this, consider K̃ ={a,a∧c,¬a∨b,a∧c∧(¬a∨b),¬b}, then MI(K̃)={{a,¬a∨
b,¬b},{a∧c,¬a∨b,¬b},{a∧c∧(¬a∨b),¬b}} and a∧c∧(¬a∨b)�¬a∨b. But MIVC(K̃,a∧c∧
(¬a∨b))= 1

2 <MIVC(K̃,¬a∨b)= 1
3 + 1

3 = 2
3 . So, the Dominance property is not considered as a

mandatory property to characterize the blame measure.
The other four properties can be derived from (D1)–(D5), as shown by the following lemmas.

Lemma 3.2
If Blame satisfies (D1–D5), and Inc satisfies (I1)–(I4), then

(1) Blame must satisfy Distribution, Minimality, and Decomposability.
(2) Blame must satisfy Symmetry in the case of classical knowledge bases.

Note that in [12], the Distribution and Minimality properties are given in terms of classical
knowledge bases while in this article the corresponding properties, Distribution (D4) and Innocence
(D2), are presented in terms of minimal inconsistent knowledge bases. There are no significant
differences between them in nature if Inc satisfies (I1). Because the principle of proportionality
proposed in this article focuses on the proportional distribution of the amount of inconsistency of a
minimal inconsistent knowledge base among all its formulas, we prefer to present these properties
in terms of minimal inconsistent knowledge bases.

On the other hand, Symmetry is a property derived from Shapley inconsistency value [11]. It does
not always hold in the case of prioritized knowledge bases intuitively. To illustrate this, consider
K3 =〈{a,¬b},{¬a,b}〉, then for all K′ ⊆K3 s.t. a,¬a �∈K′, MI(K′ ∪{a})=MI(K′ ∪{¬a}). However,
intuitively, Blame(K3,a) �=Blame(K3,¬a). To replace the Symmetry property, we propose the
Fairness property below for the prioritized knowledge bases as follows:

• Fairness: ∀K ∈KL, if Sig(Opp(M,αP))=Sig(Opp(M,βP) for each M ∈MI(K)), then
Blame(K,αP)=Blame(K,βP).

Evidently, the Fairness property can be derived from combination of (D1) and (D5).

Proposition 3.1
If Blame satisfies (D1) and (D5), then Blame satisfies Fairness.

Overall, Proportionality property (D5) essentially distinguishes the characterization of inconsis-
tency measures presented in this article from those presented in [11, 12].

More importantly, if a measure Blame satisfies (D1)–(D5), then Blame can be formally defined
with the following definition.

Definition 3.2 (The Blame of a Formula for Inconsistency)
Let K be a prioritized knowledge base and αP a formula belonging to K . Then the blame of αP for
the inconsistency of K , denoted BlameP(K,αP), is defined as follows:

BlameP(K,αP)=
∑

M∈MI(K)s.t.αP∈M

Sig(Opp(M,αP))∑
βP∈M

Sig(Opp(M,βP))
×Inc(M).
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Proposition 3.2
Blame(K,αP) satisfies (D1)−(D5) if and only if

Blame(K,αP)=BlameP(K,αP).

This proposition shows that the measure defined above can be completely characterized by
(D1)–(D5). Note that the instances of BlameP(K,αP) depend on the choice of Sig and Inc. For
different types of knowledge bases, we may choose appropriate definitions of Sig and Inc to reflect
the nature of the knowledge bases (i.e. classical, Type -I and Type-II prioritized etc).

4 Measuring the blame of each formula for the inconsistency of a knowledge
base

In this section, we provide a family of measures for the blame of each formula for the inconsistency
of classical knowledge bases, Type-I prioritized knowledge bases, and Type-II prioritized knowledge
bases, respectively.

4.1 The blame of each formula for the inconsistency of a classical knowledge base

Each formula of a classical knowledge base has the same priority level, so the number of formulas
belonging to a classical knowledge base may be considered as the significance of that base.

Definition 4.1 (Significance function Sigc)
The significance function for classical knowledge bases, denoted Sigc, is a function Sigc :K̃L �→N
such that ∀K̃ ∈K̃L,

Sigc(K̃)=|K̃|.
Proposition 4.1
The significance function Sigc satisfies the properties (S1)–(S4).

Recall the properties (I1)–(I5) for characterizing the measures for the amount of inconsistency of
a knowledge base. In the case of classical knowledge bases, (I3) can be ignored since |M̃1|=|M̃2|
iff Sigc(M̃1)=Sigc(M̃2) for any two minimal inconsistent classical knowledge bases M̃1 and M̃2.

The MI inconsistency measure IMI defined in [12], for measuring the amount of inconsistency of a
classical knowledge base, does not satisfy properties (I4) and (I5), since IMI(M̃)=1 for any minimal
inconsistent classical knowledge base M̃. To address this, we make use of the inconsistency measure
Incc as the measure for the amount of inconsistency for classical knowledge bases, which is one of
the particular weighted MI inconsistency measures for classical knowledge bases presented in our
previous article [22].

Definition 4.2 (The inconsistency measure Incc [22])
The inconsistency measure for classical knowledge bases, denoted as Incc, is a function Incc :K̃L �→
R such that ∀K̃ ∈K̃L,

Incc(K̃)=
∑

M̃∈MI(K̃)

Incc(M̃),

where Incc(M̃)= 1
|M̃| for each M̃ ∈MI(K̃).
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It has been shown in [22] that Incc satisfies the instance of (I2), (I4) and (I5) in the case of classical
knowledge bases. However, the following proposition shows Incc satisfies all of the five properties
for characterizing the measures for the amount of inconsistency of a prioritized knowledge base, if
we consider each classical knowledge base as a special kind of prioritized knowledge base.

Proposition 4.2
The inconsistency measure Incc satisfies the properties (I1), (I2), (I3), (I4) and (I5).

Based on the significance function Sigc and the inconsistency measure Incc, we can instantiate
BlameP in the case of classical knowledge bases as follows.

Definition 4.3 (The Blame of each formula for the Inconsistency Blamec)
The blame of each formula for the inconsistency of a classical knowledge base, denoted as Blamec,
is a function Blamec :K̃L×L �→R such that ∀K̃ ∈K̃L, ∀α∈ K̃ ,

Blamec(K̃,α)=
∑

M̃∈MI(K̃)

Blamec(M̃,α),

where

Blamec(M̃,α)= Sigc(Opp(M̃,α))∑
β∈M̃

Sigc(Opp(M̃,β))
×Incc(M̃)

for each minimal inconsistent subset M̃ of K̃ .

Evidently, ∀α∈ K̃ , Sigc(Opp(M̃,α))=|Opp(M̃,α)|=
⎧⎨⎩

|M̃|−1, if {α}⊂M̃
1, if {α}=M̃
0, if α �∈M̃

for each M̃ ∈MI(K̃), moreover,

∀α,β∈M̃, |Opp(M̃,α)|=|Opp(M̃,β)|=
{ |M̃|−1, if |M̃|>1

1, if |M̃|=1
,

then |Opp(M̃,α)|∑
β∈M

|Opp(M̃,β)| =
{

1
|M̃| , if α∈M̃

0, if α �∈M̃
.

Therefore,

Blamec(K̃,α)=
∑

M̃∈MI(K̃)s.t.α∈M̃

1

|M̃|2 .

Note that this measure for the blame of each formula guided by (D1)–(D5) is exactly the Type-
II weighted MinInc inconsistency value MIVWc presented in [22]. In some sense, this coincidence
illustrates that the proportionality is an underlying principle of measures for the blame of each formula
for inconsistency in the case of classical knowledge bases.

Example 4.1
Consider K̃4 ={a∧¬a,b,¬b,¬b∨c,¬c,d}. Then the set of minimal inconsistent subsets of K̃4 is
MI(K̃4)={M̃1,M̃2,M̃3}, where

M̃1 ={a∧¬a}, M̃2 ={b,¬b}, M̃3 ={b,¬b∨c,¬c}.
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So,

Blamec(K̃4,a∧¬a)=1, Blamec(K̃4,b)= 13

36

Blamec(K̃4,¬b)= 1

4
, Blamec(K̃4,¬b∨c)= 1

9

Blamec(K̃4,¬c)= 1

9
, Blamec(K̃4,d)=0.

Corollary 4.1
Blamec satisfies the properties (D1)–(D5).

It has been shown in [22] that the Type-II weighted MinInc inconsistency value MIVWc satisfies
the property of Symmetry, Minimality and Distribution, and so does Blamec. In addition, the
following corollary shows that Blamec satisfies the property of Decomposability. That is, Blamec
satisfies the most expected properties for a measure of the blame of each formula in inconsistency
presented in [12].

Corollary 4.2
Blamec satisfies the properties of Symmetry, Minimality, Distribution and Decomposability.

These two propositions show that Blamec is an anticipated measure for the blame of each formula
for the inconsistency of a classical knowledge base.

Note that if we need to consider the dominance property, we may adopt the vectorial measure
presented in [22] as Inc to define a blame measure in a similar way.

Compared to the MI inconsistency measure IMI, the inconsistency measure Incc satisfies (I4)
and (I5). This means that Incc supports the intuition illustrated by the Lottery Paradox. So, Incc is
more intuitive than IMI. On the other hand, as illustrated by Corollary 4.2, the blame measure Blamec
satisfies the four properties satisfied by the MinInc inconsistency value MIVC. But

∑
α∈M̃

MIVC(M̃,α)=
IMI(M̃)=1, it contradicts the intuition illustrated by the Lottery Paradox. Therefore, Blamec is more
intuitive than MIVC.

4.2 The blame of each formula for the inconsistency of type-I prioritized
knowledge bases

Each individual formula of a Type-I prioritized knowledge base is attached with a numerical valuation
in [0,1], which represents the relative importance or the reliability of the corresponding knowledge.
Intuitively, the priority levels of formulas of a Type-I prioritized knowledge base should be taken
into account in measuring the significance of that base.

Definition 4.4 (The max-significance function Sigmax )
The max-significance function for Type-I prioritized knowledge bases, denoted Sigmax, is a function
Sigmax :K̂L �→R such that ∀K̂ ∈K̂L,

Sigmax(K̂)=ηmax(K̂)×Sigc(K∗),

where ηmax(K̂)=max{PI(φ)|(φ,PI(φ)
)∈ K̂}.
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Definition 4.5 (The mean-significance function Sigmean )
The mean-significance function for Type-I prioritized knowledge bases, denoted Sigmean, is a
function Sigmean :K̂L �→R such that ∀K̂ ∈K̂L,

Sigmean(K̂)=ηmean(K̂)×Sigc(K∗),

where ηmean(K̂)= 1
|K̂|

∑
(φ,PI(φ))∈K̂

PI(φ).

The max-significance function insists on taking the priority level of the most preferred formula
of a prioritized knowledge base as the significance of that base. In contrast, the mean-significance
function emphasizes that the significance of a prioritized knowledge base depends on the average
value of the priority levels of the formulas of the base. Note that both Sigmax and Sigmean comply
with Sigc in the case of classical knowledge bases, i.e. if K̂ ={(α1,1),··· ,(αn,1)}, then Sigmax(K̂)=
Sigmean(K̂)=Sigc(K∗)=|K̂|.
Proposition 4.3
Both Sigmax and Sigmean satisfy the properties (S1)–(S4).

The priority levels of formulas of a Type-I prioritized knowledge base should also be taken into
account in measuring the amount of inconsistency of that base. However, most techniques proposed
so far for measuring inconsistency focused on certain types of Type-I knowledge bases, such as
possiblistic knowledge bases. Roughly speaking, there are two representative kinds of inconsistency
measures for prioritized knowledge bases, i.e. model-based measures and syntax-based measures.
The model-based measures for a knowledge bases such as significance functions defined for quasi-
possibilistic logic [5] were often built upon some (e.g. possibilistic) distribution over models of that
base, which is always associated with the priority of levels of formulas in that base. In contrast,
the syntax-based measures such as the α-cut defined in possibilistic logic [6] were built upon the
formulas of that knowledge base directly. In this article, we focus on syntax-based measures since
the proposals based on minimal inconsistent subset are syntax sensitive.

Definition 4.6 (α-cut [6])
Let K̂ be a possibilistic knowledge base and α∈[0,1]. The α-cut of K̂ , denoted K̂≥α , is defined as

K̂≥α={(φ,PI(φ))∈ K̂|PI(φ)≥α}.
Definition 4.7 (The inconsistency degree [6])
The inconsistency degree of a possibilistic knowledge base K̂ , denoted Inc0(K̂), is defined as the
maximum value of α such that the α-cut of K̂ is inconsistent, i.e.

Inc0(K̂)=max{α|K̂≥α is inconsistent}.
Evidently, we can get

Inc0(K̂)=max{Inc0(M̂)|M̂ ∈MI(K̂)}.
Example 4.2
Consider K̂5 ={(a,0.8),(¬a∨b,0.6),(¬b,0.9),(c,0.5)}. Then

K̂5≥0.9 = {(¬b,0.9)},
K̂5≥0.6 = {(a,0.8),(¬a∨b,0.6),(¬b,0.9)},
K̂5≥0.5 = K̂5.
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So,
Inc0(K̂5)=0.6.

However, the inconsistency measure Inc0 does not satisfy the expected properties for a desirable
measure of the amount of inconsistency except property (I2). To illustrate this, let us consider
an inconsistent prioritized knowledge base corresponding to a classical knowledge base, K̂ =
{(α1,1),...,(αn,1)} s.t. |MI(K̂)|>1, then Inc0(K̂)=1<

∑
M̂∈MI(K̂)

Inc0(M̂). Moreover, ∀M̂ ∈MI(K̂),

Inc0(M̂)=1. It signifies that as the size of the minimal inconsistent subset increases, the amount of
inconsistency does not attenuate.

As argued earlier, the significance of a minimal inconsistent subset of a prioritized knowledge
base should be considered when measuring the amount of inconsistency of that minimal inconsistent
subset. Roughly speaking, (I3) (the property of Monotony w.r.t. Significance) requires that as the
significance of a minimal inconsistent knowledge base with a given size increases, the amount of
inconsistency cannot decrease. In this sense, we may consider Inc(M̂)= f (Sig(M̂)), where f is a
monotonic function. One of such simple functions is the linear function, i.e. Inc(M̂)=λ×Sig(M̂),
where λ is a constant related to the size of M̂. On the other hand, the classical minimal inconsistent
knowledge bases of a given size can be considered as the most preferred minimal inconsistent
knowledge bases with the size, i.e. the classical minimal inconsistent knowledge bases have the
maximal significance among the minimal inconsistent prioritized knowledge base with the same
size (as required by (S4)). Then Inc(M∗)=λ×|M̂|. Therefore, λ= Inc(M∗)

|M̂| . So, we may define an

inconsistency measure for minimal inconsistent knowledge bases as follows:

Inc(M̂)= Inc(M∗)

|M̂| ×Sig(M̂).

Under this guidance, corresponding to the two significance functions defined above, we define two
inconsistency measures for the amount of inconsistency of a prioritized knowledge base as follows.

Definition 4.8 (The max-inconsistency measure Incmax )
The max-inconsistency measure for Type-I prioritized knowledge bases, denoted Incmax, is a function
Incmax :K̂L �→R such that ∀K̂ ∈K̂L,

Incmax(K̂)=
∑

M̂∈MI(K̂)

Incmax(M̂),

where Incmax(M̂)= Sigmax(M̂)
|M̂| ×Incc(M∗) for each M̂ ∈MI(K̂).

Note that Incmax(M̂) is proportional to the significance of M̂. Moreover, Incmax(M̂) can be
simplified as a product of Incc(M∗) and a factor ηmax(M̂), i.e. Incmax(M̂)=ηmax(M̂)×Incc(M∗).
This also signifies that Incmax(M̂) considers the the priority level of the most preferred formulas as
well as the size of M̂.

Proposition 4.4
The inconsistency measure Incmax satisfies properties (I1)–(I5).
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Definition 4.9 (The mean-inconsistency measure Incmean )
The mean-inconsistency measure for Type-I prioritized knowledge bases, denoted as Incmean, is a
function Incmean :K̂L �→R such that ∀K̂ ∈K̂L,

Incmean(K̂)=
∑

M̂∈MI(K̂)

Incmean(M̂),

where Incmean(M̂)= Sigmean(M̂)
|M̂| ×Incc(M∗) for each M̂ ∈MI(K̂).

Similar to Incmax, Incmean(M̂) can be also simplified as a product of Incc(M∗) and a factor
ηmean(M̂). Compared to Incmax, Incmean(M̂) considers the average of the priority levels of all
formulas of M̂ as well as the size of M̂.

Proposition 4.5
The inconsistency measure Incmean satisfies properties (I1)–(I5).

Example 4.3
Consider K̂6 ={(a,0.7),(¬a,0.5),(¬b∨c,0.9),(b,0.5),(¬c,0.4),(d,0.9)}. Then MI(K̂6)={M̂1,M̂2},
where

M̂1 ={(a,0.7),(¬a,0.5)}, M̂2 ={(¬b∨c,0.9),(b,0.5),(¬c,0.4)}.
So,

Incmax(M̂1)=0.35, Incmax(M̂2)=0.3, Incmax(K̂6)=0.65.
Incmean(M̂1)=0.3, Incmean(M̂2)=0.2, Incmean(K̂6)=0.5.

Based on the two inconsistency measures, we can instantiate BlameP in the case of Type-I
prioritized knowledge bases as follows:

Definition 4.10 (The Blame of each formula for the Inconsistency Blamemax)
Let K̂ be a Type-I prioritized knowledge base. The blame of each formula belonging to K̂ for the
inconsistency of K̂ under Incmax, denoted Blamemax, is a function such that ∀αP ∈ K̂ ,

Blamemax(K̂,αP)=
∑

M̂∈MI(K̂)

Blamemax(M̂,αP),

where

Blamemax(M̂,αP)= Sigmax(Opp(M̂,αP))∑
βP∈M̂

Sigmax(Opp(M̂,βP))
×Incmax(M̂)

for each minimal inconsistent subset M̂ of K̂ .

Definition 4.11 (The Blame of each formula for the Inconsistency Blamemean)
Let K̂ be a Type-I prioritized knowledge base. The blame of each formula belonging to K̂ for the
inconsistency of K̂ under Incmean, denoted Blamemean, is a function such that ∀αP ∈ K̂ ,

Blamemean(K̂,αP)=
∑

M̂∈MI(K̂)

Blamemean(M̂,αP),
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where

Blamemean(M̂,αP)= Sigmean(Opp(M̂,αP))∑
βP∈M̂

Sigmean(Opp(M̂,βP))
×Incmean(M̂)

for each minimal inconsistent subset M̂ of K̂ .

Example 4.4
Consider K̂7 ={(a,0.6),(¬a,0.4),(¬a∨c,0.9),(b,0.5),(¬c,0.3),(d,0.9)}. Then MI(K̂7)={M̂1,M̂2},
where

M̂1 ={(a,0.6),(¬a,0.4)}, M̂2 ={(¬a∨c,0.9),(a,0.6),(¬c,0.3)}.
So,

Incmax(M̂1)=0.3, Incmax(M̂2)=0.3, Incmax(K̂6)=0.6.
Incmean(M̂1)=0.25, Incmean(M̂2)=0.2, Incmean(K̂6)=0.45.

Blamemax(K̂7,(a,0.6))=0.23 Blamemax(K̂7,(¬a,0.4))=0.18
Blamemax(K̂7,(¬c,0.3))=0.11 Blamemax(K̂7,(¬a∨c,0.9))=0.075
Blamemax(K̂7,(b,0.5))=0 Blamemax(K̂7,(d,0.9))=0
Blamemean(K̂7,(a,0.6))=0.17 Blamemean(K̂7,(¬a,0.4))=0.15
Blamemean(K̂7,(¬c,0.3))=0.08 Blamemean(K̂7,(¬a∨c,0.9))=0.05
Blamemean(K̂7,(b,0.5))=0 Blamemean(K̂7,(d,0.9))=0

Corollary 4.3
Both Blamemax and Blamemean satisfy properties (D1)–(D5).

This proposition shows that both Blamemax and Blamemean are reasonable measures of the blame
of each formula for the inconsistency of a Type-I prioritized knowledge base. It accords with the
principle of proportionality as well as the viewpoint of minimal inconsistent subset as the purest form
of inconsistency.

The following corollary also illustrates that both Blamemax and Blamemean satisfy the most
properties presented in [11, 12] as well as the property of Fairness.

Corollary 4.4
Both Blamemax and Blamemean satisfy the properties of Distribution, Minimality, Decompos-

ability and Fairness.

4.3 The blame of each formula for the inconsistency of type-II prioritized
knowledge bases

As introduced earlier, a Type-II prioritized knowledge base K, with n levels of qualitative priorities,
is represented as a n-tuple of sets of formulas, i.e.

K=〈K(1),...,K(n)〉,
where each K(i) is a (possibly empty) set of formulas at the i-th qualitative priority level. Generally,
it is often hard to use a single value to measure the significance of such knowledge bases, since it
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is very subtle to replace each qualitative level with a numerical weight. Moreover, the weights may
not be explained intuitively in many cases [21]. For example, consider 〈{a},∅,{¬a}〉, if we assign
weight 9 to a (at a relatively high level) and 1 to ¬a (at a relatively low level), we do no think that the
degree of importance of a is exactly 9 times of that of ¬a. Intuitively, the significance of a Type-II
prioritized knowledge base K depends on the priority levels of its formulas as well as the number of
formulas at each priority level. In particular, the priority level of a formula of K is more of a relative
comparative value of the significance of this formula w.r.t. that of the other formulas in the same
base, therefore, this relative comparative value should be retained when defining the significance of
such a base. To address these, in this section, we use a vector to measure the significance of K instead
of a single value.

Definition 4.12 (The Significance Vector Sigv)
Let K=〈K(1),...,K(n)〉 be a Type-II prioritized knowledge base. The significance vector for K,
denoted Sigv(K), is defined as

Sigv(K)=(
Sigc(K(1)),...,Sigc(K(n))

)
.

Based on the lexicographical ordering relation (denoted as �),1 the position of each Sigc(K(i)) in
Sigv(K) embodies the priority level of formulas in K(i), while Sigc(K(i)) represents the cardinality
of set K(i). This way, we hope that Sigv(K) can indeed capture the significance of K. From now on,

we call Sigc(K(i)) the i-th level significance of K, and abbreviate it as Sig(i)
v (K).

On the other hand, Sigv(K∗)=
(

n∑
i=1

Sigc(K(i)),0,...,0

)
, since a classical knowledge base has

only one level, then we have Sigv(K)�Sigv(K∗). However, the following proposition illustrates that
Sigv satisfies the expected properties.

Proposition 4.6
Sigv satisfies properties (S1)–(S4).

Correspondingly, we also use a vector instead of a single value to measure the inconsistency of a
Type-II prioritized knowledge base.

Definition 4.13 (The inconsistency measure Incv)
Let K=〈K(1),··· ,K(n)〉 be a Type-II prioritized knowledge base. The inconsistency measure for K,
denoted as Incv(K), is defined as

Incv(K)=
∑

M∈MI(K)

Incv(M),

where Incv(M)= Sigv(M)
|M| ×Incc(M∗) for each M∈MI(K).

Especially, we call Sig(i)
v (M)
|M| ×Incc(M∗) the i-th level inconsistency amount of M, and abbreviate

it as Inc(i)
v (M).

1A lexicographical ordering relation between any two vectors with the same size is given as follows. Let u,v∈Rn be two
vectors. Suppose that u= (u1,...,un) and v= (v1,v2,...,vn). Then the lexicographical ordering relation � defines u�v iff

(1) u=v, or
(2) there exists k ≤n s. t. uk<vk and ui =vi for each i<k.

Furthermore, u≺v iff u�v and u �=v.
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Note that Incv(M) is the product of the significance of M and a factor Incc(M∗)
|M| . That is, the amount

of inconsistency of M is proportional to the significance of M.

Proposition 4.7
Incv satisfies properties (I1)–(I5).

Example 4.5
Consider K8 =〈{a,b,¬d∨¬c},{¬a,c},{d,¬b}〉. Then the minimal inconsistent subsets of K8 are

MI(K8)={M1,M2,M3},

where

M1 =〈{a},{¬a},∅〉, M2 =〈{b},∅,{¬b}〉, M3 =〈{¬d∨¬c},{c},{d}〉.

So,

Incv(M1)=
(

1
4 ,

1
4 ,0

)
, Incv(M2)=

(
1
4 ,0,

1
4

)
,

Incv(M3)=
(

1
9 ,

1
9 ,

1
9

)
, Incv(K8)=

(
11
18 ,

13
36 ,

13
36

)
.

To instantiate BlameP in the case of Type-II prioritized knowledge bases, we need to consider some
special features of Type-II prioritized knowledge bases. Note that we use a vector rather than a single
value to measure inconsistency for Type-II prioritized knowledge bases. This vectorial measurement
considers the qualitative information about priority of each formula involved in inconsistency as well
as the number of formulas at each priority level. In this sense, it is more appropriate to capture the
inconsistency than a single value. On the other hand, this vectorial measure also divides the whole
inconsistency of a prioritized knowledge base into n levels. Correspondingly, we need to focus on
the blame of each formula for each level inconsistency.

Definition 4.14 (The blame of each formula for the k-th level inconsistency)
Let K=〈K(1),...,K(n)〉 be a Type-II prioritized knowledge base. Then for each 1≤k ≤n, the

blame of each formula of K for the k-th level inconsistency of K, denoted Blame(k)
v , is defined

as follows:

∀α∈K, Blame(k)
v (K,α)=

∑
M∈MI(K)

Blame(k)
v (M,α),

where

Blame(k)
v (M,α)=

⎧⎪⎨⎪⎩
Sig(k)

v (Opp(M,α))∑
β∈M

Sig(k)
v (Opp(M,β))

×Inc(k)
v (M), if |M(k)|>0,

0, if |M(k)|=0.

for each M∈MI(K).

Essentially, for each 1≤k ≤n, Blame(k)
v (M,α) captures the contribution made by α through

involving the formulas at the k-level for the inconsistency of M.
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Example 4.6
Consider a minimal inconsistent knowledge base M9 =〈{a},{¬a∨b},{¬b}〉. Then Incv(M9)=(

1
9 ,

1
9 ,

1
9

)
. And the opposed formulas to each formula of M9 are

Opp(M9,a)=〈∅,{¬a∨b},{¬b}〉, Opp(M9,¬a∨b)=〈{a},∅,{¬b}〉,
Opp(M9,¬b)=〈{a},{¬a∨b},∅〉.

So,

Blame(1)
v (M9,a)=0, Blame(2)

v (M9,a)= 1
18 , Blame(3)

v (M9,a)= 1
18 .

Note that Blame(1)
v (M9,a)=0. It implies that formula a is not responsible for the first level

inconsistency, since formula a only involves one formula with the second level (¬a∨b) and another
formula with the third level (¬b) in inconsistency. This is consistent with our intuition.

Definition 4.15 (The Blame of each Formula for Inconsistency)
Let K=〈K(1),...,K(n)〉 be a Type-II prioritized knowledge base. The blame of each formula of K
for the inconsistency of K, denoted Blamev, is defined as follows:

∀α∈K, Blamev(K,α)= (Blame(1)
v (K,α),...,Blame(n)

v (K,α)),

where Blame(k)
v (K,α) is the blame of α to the k-th level inconsistency of K for each 1≤k ≤n.

Evidently, Blamev(K,α) captures globally the contribution made by α to the inconsistency of K.

Example 4.7
Consider K10 =〈{a,b,¬d∨¬a},{¬a,c},{d,¬b}〉. Then the set of minimal inconsistent subsets of
K10 is

MI(K10)={M1,M2,M3},
where

M1 =〈{a},{¬a},∅〉, M2 =〈{b},∅,{¬b}〉, M3 =〈{a,¬d∨¬a},∅,{d}〉.
The blame of each formula for the inconsistency of K10 is given as follows:

Blamev(K10,a)=
(

1
18 ,

1
4 ,

1
18

)
, Blamev(K10,¬a)=

(
1
4 ,0,0

)
,

Blamev(K10,b)=
(

0,0, 1
4

)
, Blamev(K10,¬b)=

(
1
4 ,0,0

)
,

Blamev(K10,¬d∨¬a)=
(

1
18 ,0,

1
18

)
, Blamev(K10,d)=

(
1
9 ,0,0

)
,

Blamev(K10,c)=(
0,0,0

)
.

The following proposition and the corresponding corollary show that Blamev is a desirable
measure for the blame of each formula of a Type-II prioritized knowledge base for the inconsistency
of that base.

Proposition 4.8
Blamev satisfies (D1)–(D5).

Note that if M(k)=∅, then Blame(k)
v (M,α)=Sig(k)

v (Opp(M,α))=0.
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Corollary 4.5
Blamev satisfies the properties of Distribution, Minimality, Decomposability and Fairness.

To compare the formulas of a given prioritized knowledge base in terms of their blames for the
inconsistency of that base, we define a relation over the prioritized knowledge base as follows.

Definition 4.16 (The relation of less blameful than, ≤B)
Let K be a Type-II prioritized knowledge base. A binary relation on K, denoted as ≤B, is defined as
follows: α≤Bβ if and only if

Blamev(K,α)�Blamev(K,β).

Further, α<Bβ if α≤Bβ and β �≤Bα. α�Bβ if α≤Bβ and β≤Bα. We say that α is less blameful
for the inconsistency in K than β if α<Bβ.

Note that the relation ≤B is a total ordering on K.

Example 4.8
Consider K10 again. Then

c <B b <B ¬d∨¬a <B a <B d <B ¬a �B ¬b.

According to this ordering relation, b is less blameful for the inconsistency in K than ¬b. Generally,
we may change ¬b rather than b to resolve the inconsistency b∧¬b based on this relation.

Note that a prioritized knowledge base mentioned in this article is associated with a prioritization
function, i.e. each formula is attached with a numerical or qualitative priority level. However, in
some applications, the prioritization over a knowledge base is given by a binary preference relation
between formulas in the base. Moreover, a relational preference is considered as one of the two main
families of mathematical models describing the preference over a set of candidates [18].

A stratified knowledge base can be considered as a representative of such kind of prioritized
knowledge base. Roughly speaking, a stratified knowledge base is a classical knowledge base K̃
coupled with a total pre-order relation � on K̃ . From the given pre-order relation �, its corresponding
classical knowledge base can be stratified as K̃ = (S1,...,Sn), where Si contains all the minimal

formulas of set
n⋃

j=i
Sj w.r.t. �. Each Si is called a stratum of K and is non-empty.

The measure Blamev for the blame of each formula for the inconsistency of a Type-II prioritized
knowledge base can be extended to the stratified knowledge bases as discussed above, because
Blamev only concerns with the relative preference among formulas in the context of a given
knowledge base. In a given stratified knowledge base K = (S1,...,Sn), we may consider Si as a
set of formulas at the i-th qualitative priority level in the context of K , i.e. we may use 〈S1,...,Sn〉
instead of (S1,...,Sn).

5 An application in requirements engineering

Here we use an example on analyzing the requirements for updating an existing software system
to illustrate the application of the approach to measuring the blames of formulas in inconsistency
presented in this article.
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Example 5.1
Consider a scenario for eliciting requirements for updating an existing software system.

(a) StakeholderA: the delegate of the seller of the new system, provides the following requirements:
(a1) The system-to-be should be open, that is, the system-to-be could be extended easily;
(a2) The user interface of the system-to-be should be fashionably designed;
(a3) The system-to-be should be developed based on the newest development techniques.

(b) Stakeholder B: the delegate of the users of the existing system, provides the following
requirements:

(b1) The system-to-be should be developed based on the techniques used in the existing system;
(b2) The user interface of the system-to-be should maintain the style of the existing system;
(b3) The system-to-be should be secure.

(c) Constraint:
(c1) To guarantee the security of the system-to-be, its openness should not be considered.

After balancing the requirements of Stakeholder A against that of Stakeholder B, the requirements
analysts assign the priority levels High to (a3) and (b3), Medium to (a2) and (b1) and Low to (a1)
and (b2), respectively. On the other hand, the requirements analysts assign the level of High to the
constraint.

Suppose that we

• use the predicate Fash(int_f ) to denote that the interface is fashionable;
• use the predicate Open(sys) to denote that the system is open;
• use the predicate New(sys) to denote that the system will be developed based on the newest

techniques;
• use the predicate Secu(sys) to denote that the system is secure.

Then we use a Type-II knowledge base

KR =〈{New(sys),Secu(sys),Secu(sys)→¬Open(sys)},
{Fash(int_f ),¬New(sys)},{Open(sys),¬Fash(int_f )}〉

to represent the requirements above. Evidently, we draw the following inconsistences from these
requirements:

KR � New(sys)∧¬New(sys),

KR � Fash(int_f )∧¬Fash(int_f ),

KR � Open(sys)∧¬Open(sys).

To resolve the inconsistencies in KR, some requirements need to be abandoned or to be changed.
However, neither Stakeholder A nor Stakeholder B is willing to make some concessions. Therefore,
it becomes necessary first to identify the blame of each requirement involving in the inconsistencies
of KR.

The set of all the minimal inconsistent subsets of KR is MI(KR)={M1,M2,M3}, where

M1 = 〈{New(sys)},{¬New(sys)},∅〉,
M2 = 〈{Secu(sys),Secu(sys)→¬Open(sys)},∅,{Open(sys)}〉,
M3 = 〈∅,{Fash(int_f )},{¬Fash(int_f )}〉.
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Then the blame of each requirement for the inconsistency of KR is calculated as follows:

Blamev(KR,New(sys))=
(

0, 1
4 ,0

)
Blamev(KR,¬New(sys))=

(
1
4 ,0,0

)
Blamev(KR,Secu(sys))=

(
1
18 ,0,

1
18

)
Blamev(KR,Open(sys))=

(
1
9 ,0,0

)
Blamev(KR,Fash(int_f ))=

(
0,0, 1

4

)
Blamev(KR,¬Fash(int_f ))=

(
0, 1

4 ,0
)

Blamev(KR,Secu(sys)→¬Open(sys))=
(

1

18
,0,

1

18

)
Following this, we obtain the following ordering:

Fash(int_f )<B ¬Fash(int_f )�B New(sys)<B Secu(sys)�B

Secu(sys)→¬Open(sys)<B Open(sys)<B ¬New(sys)

In particular, for each inconsistency, we have

Secu(sys)�B Secu(sys)→¬Open(sys) <B Open(sys)

Fash(int_f ) <B ¬Fash(int_f )

New(sys) <B ¬New(sys).

Based on this result, requirements analysts may persuade Stakeholder B to change (b1) and (b2). At
the same time, as a concession, Stakeholder A should change (a1) if Stakeholder B is willing to go
with requirements analysts’s suggestion.

In contrast, assume that the developers do not take the priority of each requirement into account
in identifying the blame of each requirement for the inconsistency of the requirements set, instead
they use a classical knowledge base

K̃R = {Open(sys),Fash(int_f ),New(sys),¬New(sys),

¬Fash(int_f ),Secu(sys),Secu(sys)→¬Open(sys)}

to represent the requirements set above. Then it is very difficult to make a distinction between the
blames of two formulas contradicting each other by using the MinInc inconsistency values presented
in [12], since for each minimal inconsistent subset, its formulas have the same value of blame, i.e.

MIVC(K̃R,New(sys))= 1
2 , MIVC(K̃R,¬New(sys))= 1

2 ,

MIVC(K̃R,Secu(sys))= 1
3 , MIVC(K̃R,Open(sys))= 1

3 ,

MIVC(K̃R,Secu(sys)→¬Open(sys))= 1
3 ,

MIVC(K̃R,Fash(int_f ))= 1
2 , MIVC(K̃R,¬Fash(int_f ))= 1

2 .

To conclude, the measures we proposed in this article are better suited to identify blames of
formulas involved in inconsistency than existing measures.
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6 Related work

Measuring inconsistency in knowledge bases has received considerable attention in computer science
as well as in artificial intelligence recently. Many approaches have been proposed accordingly. In
this article, we concentrated on prioritized knowledge bases and presented a family of measures
for the blames of formulas in inconsistency of a prioritized knowledge base by using the minimal
inconsistent subsets of the base. In the following, we compare our measures with some of closely
related approaches.

Most of the approaches proposed so far are mainly concerned with measuring inconsistencies
in knowledge bases [10]. There are relative few techniques for identifying the degree of blame or
responsibility of each formula for the inconsistency of a knowledge base. Hunter and Konieczny
presented two approaches to measuring the degree of blame of individual formulas in inconsistency
of a classical knowledge base in [11] and [12], respectively. The first approach focuses on the
distribution of the measures of inconsistency for a whole knowledge base among formulas by using
a cooperative game theory model, i.e. Shapley inconsistency value [11]. However, we have argued
that Shapley value is inappropriate for modeling the blame of each formula for the inconsistency of a
prioritized knowledge base. Moreover, the symmetry property, one of the four properties completely
characterizing the Shapley value, does not hold in the case of prioritized knowledge bases.

The second approach presented in [12, 13] emphasizes the importance of defining the measure
of the blames of formulas of a knowledge base from the minimal inconsistent subsets of that base
directly. The MinInc inconsistency values [12] and the scoring function [13] can be considered as
the most representative work of the second approach. However, as pointed out in [12], the scoring
function is very sketchy for measuring the blame of each formula, since it does not consider the size
of each minimal inconsistent subset.

The MinInc inconsistency value presented in [12] can be considered as one of the most
representative proposals of the second approach. Our measures presented in this article comply with
the second approach in upholding the viewpoint of minimal inconsistent subsets of a knowledge
base as the purest form of inconsistency in that base. In this sense, these approaches presented in this
article may be considered as an extension of the second approach.

However, the following aspects distinguish our measures from the MinInc inconsistency value.
First of all, the MinInc inconsistency value focuses on classical knowledge bases. In contrast, the
family of measures presented in this article focuses on prioritized knowledge bases as well as
classical knowledge bases. Second, the MinInc inconsistency value MIVC insists that the amount of
inconsistency in a minimal inconsistent knowledge base is shared equally among all the formulas
of that base. It distributes 1

|M| to each formula of a minimal inconsistent subset M. In contrast,
we combined the principle of proportionality and the view of minimal inconsistent subsets of a
knowledge base as the purest form of inconsistency of that base [25]. The principle of proportional
is central to characterize the blame of each formula for the inconsistency of a prioritized knowledge
base. Roughly, the blame of each individual formula for the inconsistency is determined by the
opposed formulas to the formula in causing the inconsistency. Third, we present some more intuitive
properties to characterize the measure of inconsistency for a prioritized knowledge bases in terms
of minimal inconsistent subset. Moreover, in the case of classical knowledge bases, a combination
of some (not all) new properties can derive all the properties presented in [12] to capture a basic
inconsistency measure except the property of Dominance. However, as illustrated earlier, the property
of Dominance does not hold for the MI inconsistency measure IMI, which was considered as a basic
inconsistency measure in [12]. Also, it is inappropriate to describe the measures based on minimal
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inconsistent subsets if we consider the amount of inconsistency of a knowledge base as the sum of
the amounts of inconsistency of minimal inconsistent subsets.

On the other hand, in the case of classical knowledge bases, we use the inconsistency measure
Incc presented in [22] to derive the measures for the blame of each formula guided by the five
properties (D1)–(D5). The measure Incc states that Incc(M̃)= 1

|M̃| for each M̃ ∈MI(K̃). Actually, it

complies with the maximal η-consistency presented by Knight [15] in upholding the intuition that
bigger size means a smaller amount of the inconsistency. According to the inconsistency measure of
maximalη-consistency, a minimal inconsistent classical knowledge base of n (n>1) size is maximally
n−1

n -consistent.
Note that the inconsistency measures for prioritized knowledge bases presented in this article take

the priority level of formulas into account. In some sense, these measures consider the significance
or strength of inconsistency as well as the degree of inconsistency. In particular, in the case of Type-I
prioritized knowledge bases, Incmax and Incmean agree with the significance functions for quasi-
possibilistic logic presented in [5] in taking the strength of conflicts on literals into account. However,
the significance functions defined in [5] are model-based measures, i.e. these were built upon a mass
assignment over the set of (quasi-possibilistic) models. In contrast, Incmax and Incmean were defined
from the priority level of formulas as well as the minimal inconsistent subsets directly, that is, there
are syntax-based measures. Moreover, these measures are characterized by properties in terms of
minimal inconsistent subsets.

7 Conclusions

We have presented a family of measures for the blame of each formula in a prioritized knowledge base
in terms of minimal inconsistent subsets of that prioritized knowledge base. This article presented
the following contributions to measuring inconsistency for a knowledge base:

• We presented a set of properties to characterize a desirable measure for the amount of
inconsistency of a prioritized knowledge base defined from the minimal inconsistent subsets of
that base, including MinInc Additivity, Contradiction, Monotony with significance, Attenuation
with the size and Almost consistency.

• Motivated by the principle of proportionality, we presented a set of properties to characterize
a desirable measure for the blame of each formula in inconsistency of a minimal inconsistent
prioritized knowledge base, includingAccumulation, Innocence, Necessity, MinInc Distribution
and Proportionality.

• We presented a family of measures for the blame of each formula in inconsistency of a prioritized
knowledge base under guidance of the principle of proportionality.

• We showed that the measures defined in this article satisfy all the expected proper-
ties.

• We used a simple but explanatory example in requirements engineering to illustrate the potential
application of the measures for the blames of formulas in inconsistency presented in this
article.

As pointed out earlier, the Shapley inconsistency value [11] is inappropriate to model the blame of
formulas in inconsistency of a strictly prioritized knowledge base. How to characterize the blame of
each formula for the inconsistency of a prioritized knowledge base by using some other appropriate
social models will be the main direction for our future work.
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Appendix

Proof of Lemma 3.1

Proof. Let K̃ and K̃ ′ be two classical knowledge bases.

• Consistency: Suppose that K̃ is consistent, then MI(K̃)=∅. By (I1), Inc(K̃)= ∑
M̃∈MI(K̃)

Inc(M̃)=0.

• Monotony: Obviously, MI(K̃)⊆MI(K̃ ∪K̃ ′), so Inc(K̃)≤ Inc(K̃ ∪K̃ ′) according to (I1) and (I2).
• Free Formula Independence: If α is a free formula of K̃ ∪{α}, then MI(K̃ ∪{α})=MI(K̃). By

(I1), Inc(K̃ ∪{α})= Inc(K̃). �

 at Peking U
niversity on M

ay 27, 2012
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 

http://logcom.oxfordjournals.org/


[16:25 14/5/2012 exr002.tex] LogCom: Journal of Logic and Computation Page: 510 481–516

510 Measuring the blame of each formula for inconsistent prioritized knowledge bases

Proof of Lemma 3.2

Proof. (1) Let K and K ′ be two knowledge bases.

• Distribution: By (D1),

∀αP ∈K, Blame(K,αP)=
∑

M∈MI(K)

Blame(M,αP).

Then ∑
αP∈K

Blame(K,α)=
∑
αP∈K

∑
M∈MI(K)

Blame(M,αP)

=
∑

M∈MI(K)

∑
αP∈K

Blame(M,α).

By (D4),
∑
αP∈M

Blame(M,α)= Inc(M).

By (I1),
∑

M∈MI(K)
Inc(M)= Inc(K). So,

∑
αP∈K

Blame(K,αP)= Inc(K).

• Minimality: If αP is a free formula of K , then from (D1) and (D2),

Blame(K,αP)=
∑

M∈MI(K)

Blame(M,αP)=0.

• Decomposability: From (D1),

Blame(K ∪K ′,αP)=
∑

M∈MI(K∪K ′)
Blame(M,α).

Suppose that MI(K ∪K ′)=MI(K)
⊕

MI(K ′), then∑
M∈MI(K∪K ′)

Blame(M,αP)

=
∑

M∈MI(K)

Blame(M,αP)+
∑

M ′∈MI(K ′)
Blame(M ′,αP)

= Blame(K,αP)+Blame(K ′,αP).

(2) Let K̃ be classical knowledge base.

• Symmetry: For such α and β, ∀M̃ ∈MI(K̃) and α∈M̃,
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◦ if β∈M̃, let K̃ ′ =Opp(M̃,α)−{β}, then

Opp(M̃,β)= K̃ ′ ∪{α}, Opp(M̃,α)= K̃ ′ ∪{β}.

So,
Sig(Opp(M̃,β))=Sig(Opp(M̃,α)).

According to (D5),
Blame(M̃,α)=Blame(M̃,β).

◦ if β �∈M̃, let M̃ ′ =M̃ ∪{β}−{α}, then M̃ ′ ∈MI(K̃). So,

Opp(M̃,α)=Opp(M̃ ′,β) and |M̃|=|M̃ ′|.

Therefore,
Blame(M̃,α)=Blame(M̃ ′,β).

Otherwise, if M̃ ′ ��⊥, then Inc(M̃)>0= Inc(M̃ ′). (By (I2) and (I1)). If ∃M̃ ′′ ⊂M̃ such that
M̃ ′′ ∈MI(M̃ ′), then

Inc(M̃)< Inc(M̃ ′′)≤ Inc(M̃ ′)

since |M̃|> |M̃ ′′| (By (I4) and (I1)) . Both contradict Inc(M̃)= Inc(M̃ ′).
Further, by (D1), Blame(K̃,α)=Blame(K̃,β). �

Proof of Proposition 3.1

Proof. Let K be knowledge base. Suppose that ∀M ∈MI(K), Sig(Opp(M,αP))=Sig(Opp(M,βP).
Then from (D5),

Blame(M,αP)=c(M)×Sig(Opp(M,αP))=Blame(M,βP).

Further, ∑
M∈MI(K)

Blame(M,αP)=
∑

M∈MI(K)

Blame(M,βP).

By (D1), we can get
Blame(K,αP)=Blame(K,βP).

�
Proof of Proposition 3.2

Proof. ‘⇐�’. BlameP(K,αP) satisfies (D1–D5):

(D1) It follows the definition of BlameP.
(D2) ∀M ∈ML, αP �∈M, then Opp(M,αP)=∅. By (S1), Sig(Opp(M,αP))=0. So,

BlameP(M,αP)=0.
(D3) ∀M ∈ML, αP ∈M, then Opp(M,αP) �=∅. By (S1), Sig(Opp(M,αP))>0. So,

BlameP(M,αP)>0.

(D4) ∀M ∈ML,
∑
αP∈M

BlameP(M,αP)= ∑
αP∈M

Sig(Opp(M,αP))∑
βP∈M

Sig(Opp(M,βP))
×Inc(M)= Inc(M).
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(D5) Given M ∈ML, let c(M)= Inc(M)∑
βP∈M

Sig(Opp(M,βP))
, then ∀αP ∈M, BlameP(M,αP)=c(M)×

Sig(Opp(M,αP)).

‘�⇒’. If MI(K)=∅, from (D1), Blame(K,αP)=0=BlameP(K,αP).
If MI(K) �=∅, from (D5) and (D3), we can get ∀M ∈MI(K),∑

βP∈M

Blame(M,βP)=c(M)×
∑
βP∈M

Sig(Opp(M,βP))>0.

From (D4), we can get ∀M ∈MI(K),∑
βP∈M

Blame(M,βP)= Inc(M).

Then

c(M)= Inc(M)∑
βP∈M

Sig(Opp(M,βP))

From (D1) and ((D2)), ∀αP ∈K ,

Blame(K,αP)=
∑

M∈MI(K)

Blame(M,αP)=
∑

M∈MI(K)s.t.αP∈M

Blame(M,αP),

i.e.

Blame(K,αP)=
∑

M∈MI(K)s.t.αP∈M

Sig(Opp(M,αP))∑
βP∈M

Sig(Opp(M,βP))
×Inc(M).

�
Proof of Proposition 4.1

Proof. Let K̃ and K̃ ′ be two classical knowledge bases.

(S1) Sigc(K̃)=|K̃|=0 if K̃ =∅.
(S2) ∀α,β �∈ K̃ , Sigc(K̃ ∪{α})=|K̃|+1=Sigc(K̃ ∪{β}).
(S3) Sigc(K̃ ∪K̃ ′)=|K̃ ∪K̃ ′|≥|K̃|=Sigc(K̃).
(S4) Sigc(K̃)=Sigc(K∗) because of K̃ =K∗. �

Proof of Proposition 4.2

Proof. Let K̃ be a classical knowledge base. Suppose that M̃1 and M̃2 are two minimal inconsistent
knowledge bases such that |M̃1|< |M̃2|.

(I1) If follows the definition directly.
(I2) ∀M̃, Incc(M̃)= 1

|M̃|>0.

(I3) It is trivial, since |M̃1|=|M̃2| iff Sigc(M̃1)=Sigc(M̃2) for any two minimal inconsistent
classical knowledge bases M̃1 and M̃2.

(I4) Incc(M̃1)= 1
|M̃1|>

1
|M̃2| = Incc(M̃2) since |M̃1|< |M̃2|.

(I5) 1
|M̃| →0 if |M̃|→+∞. �
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Proof of Corollary 4.1

Proof. According to Proposition 3.2, Blamec satisfies the properties (D1)–(D5), since Blamec is
an instantiated measure of BlameP. In particular, regarding (D5), given M̃ ∈M̃L, consider c(M̃)={

Incc(M̃)
|M̃|(|M̃|−1)

, if |M̃|>1

1, if |M̃|=1
, then ∀α∈M̃, Blamec(M̃,α)=c(M)×|Opp(M̃,α)|. �

Proof of Corollary 4.2

Proof. It is a direct consequence of Corollary 4.1, Proposition 4.2 and Lemma 3.2. �
Proof of Proposition 4.3

Proof. Let K̂ and K̂ ′ be two knowledge bases.

(S1) Sigmax(K̂)=Sigmean(K̂)=0 if K̂ =∅, since Sigc(K∗)=0.
(S2) If (α,PI(α)),(β,PI(β)) �∈ K̂ such that PI(α)≥PI(β), then

• ηmax(K̂ ∪{(α,PI(α))})≥ηmax(K̂ ∪{(β,PI(β))}),
• ηmean(K̂ ∪{(α,PI(α))})≥ηmean(K̂ ∪{(β,PI(β))}).
On the other hand, Sigc(K∗∪{α})=Sigc(K∗∪{β})=|K̂|+1. So,
• Sigmax(K̂{(α,PI(α))})≥Sigmax(K̂{(α,PI(β))}),
• Sigmean(K̂{(α,PI(α))})≥Sigmean(K̂{(α,PI(β))}).

(S3) Evidently, ηmax(K̂ ∪K̂ ′)≥ηmax(K̂), and Sigc(K∗∪K ′∗)=|K̂ ∪K̂ ′|≥|K̂|=Sigc(K∗), so,

Sigmax(K̂ ∪K̂ ′)≥Sigmax(K̂).

With regard to Sigmean,

ηmean(K̂ ∪K̂ ′)=

∑
(φ,PI(φ))∈K̂

PI(φ)+ ∑
(ψ,PI(ψ))∈K̂ ′−K̂

PI(ψ)

|K̂ ∪K̂ ′| ,

then

Sigmean(K̂ ∪K̂ ′) =
∑

(φ,PI(φ))∈K̂

PI(φ)+
∑

(ψ,PI(ψ))∈K̂ ′−K̂

PI(ψ)

≥
∑

(φ,PI(φ))∈K̂

PI(φ) = Sigmean(K̂).

(S4) ηmean(K̂)≤ηmax(K̂)≤1, so, Sigmean(K̂)≤Sigmax(K̂)≤Sigc(K∗). �
Proof of Proposition 4.4

Proof. Let K̂ be a Type-I knowledge base.

(I1) It follows the definition of Incmax directly.

(I2) ∀M ∈M̂L, Sigmax(M̂)>0. By Proposition 4.2, Incc(M∗)>0. So, Incmax(M̂)= Sigmax(M̂)
|M̂| ×

Incc(M∗)>0.
(I3) Suppose that M̂1 and M̂2 are two minimal inconsistent knowledge bases such that |M̂1|=

|M̂2|, then Incc(M∗
1 )= Incc(M∗

2 ) according to Proposition 4.2. Further, if Sigmax(M̂1)≤
Sigmax(M̂2), then Incmax(M̂1)≤ Incmax(M̂2).
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(I4) Suppose that M̂1 and M̂2 are two minimal inconsistent knowledge bases such that
∀(α,PI(α)),(β,PI(β))∈M̂1 ∪M̂2, PI(α)=PI(β), then ηmax(M̂1)=ηmax(M̂2). if |M̂1|< |M̂2|,
then Incc(M∗

1 )> Incc(M∗
2 ) according to Proposition 4.2. So, Incmax(M̂1)> Incmax(M̂2).

(I5) ∀M̂ ∈M̂L, 0<ηmax(M̂)≤1. By proposition 4.2, Incc(M∗)→0 if |M̂|→0. So, Incmax(M̂)→
0 if |M̂|→0. �

Proof of Proposition 4.5
The proof of this proposition is very similar to that of Proposition 4.4.

Proof. Let K̂ be a Type-I knowledge base.

(I1) It follows the definition of Incmean directly.
(I2) ∀M ∈M̂L, Sigmean(M̂)>0. By Proposition 4.2, Incc(M∗)>0. So, Incmean(M̂)=

Sigmean(M̂)
|M̂| ×Incc(M∗)>0.

(I3) Suppose that M̂1 and M̂2 are two minimal inconsistent knowledge bases such that |M̂1|=
|M̂2|, then Incc(M∗

1 )= Incc(M∗
2 ) according to Proposition 4.2. Further, if Sigmean(M̂1)≤

Sigmean(M̂2), then Incmean(M̂1)≤ Incmean(M̂2).
(I4) Suppose that M̂1 and M̂2 are two minimal inconsistent knowledge bases such that

∀(α,PI(α)),(β,PI(β))∈M̂1 ∪M̂2, PI(α)=PI(β), then ηmean(M̂1)=ηmean(M̂2). if |M̂1|< |M̂2|,
then Incc(M∗

1 )> Incc(M∗
2 ) according to Proposition 4.2. So, Incmean(M̂1)> Incmean(M̂2).

(I5) ∀M̂ ∈M̂L, 0<ηmean(M̂)≤1. By proposition 4.2, Incc(M∗)→0 if |M̂|→0. So,
Incmean(M̂)→0 if |M̂|→0. �

Proof of Corollary 4.3

Proof. Both Blamemax and Blamemean are instances of BlameP, from Proposition 3.2, the two
measures satisfy properties (D1)–(D5). �
Proof of Corollary 4.4

Proof. It is a direct consequence of Corollary 4.3, Proposition 3.1, Lemma 3.2, Proposition 4.4 and
Proposition 4.5. �
Proof of Proposition 4.6

Proof. Let K=〈K(1),K(2),...,K(n)〉 be a Type-II prioritized knowledge base.

(S1) Zero Significance: Sigv(K)=0, where 0 is the zero vector. ⇔ for each i, Sigc(K(i))=0. ⇔
K=∅.

(S2) Preference: Suppose that βP,αP �∈K and PII(α)=k ≤PII(β)=m. Then

Sig(i)
v (K∪{βP})=

{
Sig(i)

v (K), if i �=m,

Sig(i)
v (K)+1, if i=m.

Sig(i)
v (K∪{αP})=

{
Sig(i)

v (K), if i �=k,

Sig(i)
v (K)+1, if i=k.

So, for each i<k, Sig(i)
v (K∪{βP})=Sig(i)

v (K∪{αP}) and Sig(k)
v (K∪{βP})≤Sig(k)

v (K∪
{αP}), i.e.

Sigv(K∪{βP})�Sigv(K∪{αP}).
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(S3) Monotony: ∀K,K′ ∈KL, for each 1≤ i≤n, K(i)⊆K(i)∪K′(i), then Sig(i)
v (K)≤Sig(i)

v (K ∪
K ′). Therefore, Sigv(K)�Sigv(K ∪K ′).

(S4) Upper Bound: ∀K∈KL, Sig(1)
v (K)≤

n∑
i=1

Sig(i)
v (K)=Sig(1)

v (K∗). So, Sigv(K)�Sigv(K∗). �
Proof of Proposition 4.7

Proof. (I1) ∀K∈KL, Incv(K)= ∑
M∈MI(K)

Incv(M). It follows the definition of Incv directly.

(I2) ∀M∈ML, Incc(M∗)>0 by Proposition 4.2. On the other hand, M �=∅, then 0≺Sigv(M) by
Proposition 4.6. So, 0≺ Incv(M).

(I3) ∀M1,M2 ∈ML, suppose that |M1|=|M2|, then Incc(M1
∗)= Incc(M2

∗). Further, if
Sigv(M1)�Sigv(M2), then Incv(M1)� Incv(M2).

(I4) ∀M1,M2 ∈ML s.t. ∀α,β∈M1 ∪M2, PII(α)=PII(β)=k, then

Sig(i)
v (M1)

|M1| = Sig(i)
v (M2)

|M2| =
{

0, if i �=k,
1, if i=k.

Further, if |M1|< |M2|, then Incc(M∗
1)> Incc(M∗

2) by Proposition 4.2. So, Incv(M2)≺
Incv(M2).

(I5) ∀M∈ML, 0≤ Sig(i)
v (M)
|M| ≤1 for each 1≤ i≤n. By Proposition 4.2, Incc(M∗)→0 if |M|→

+∞. So, lim
|M|→+∞

Incv(M)=0. �
Proof of Proposition 4.8

Proof. (D1) Accumulation: ∀K∈KL, ∀α∈K, from Definition 4.14, for each 1≤k ≤n,

Blame(k)
v (K,α)= ∑

M∈MI(K)
Blame(k)

v (M,α). So,

Blamev(K,α)=
∑

M∈MI(K)

Blamev(M,α).

(D2) Innocence: ∀M∈ML, if α �∈M, then Opp(M,α)=∅. So, Sigv(Opp(M,α))=0. Therefore,

Blame(k)
v (M,α)=0 for each 1≤k ≤n, i.e.

Blamev(M,α)=0.

(D3) Necessity: ∀M∈ML, ∀α∈M, Opp(M,α) �=∅. Then must exist 1≤k ≤n such that

Inc(k)
v (M)>0 and Sig(k)

v (Opp(M,α))>0. So, 0<Blame(k)
v (M,α), i.e.

0≺Blamev(M,α).

(D4) MinInc Distribution: ∀M∈ML,∑
α∈M

Blamev(M,α)

= (
∑
α∈M

Blame(1)
v (M,α),

∑
α∈M

Blame(2)
v (M,α),...,

∑
α∈M

Blame(n)
v (M,α)).
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• If M(i)=∅, then
∑
α∈M

Blame(i)
v (M,α)=0= Inc(i)

v (M).

• If M(i) �=∅, then
∑
α∈M

Blame(i)
v (M,α)=

∑
α∈M

Sig(i)
v (Opp(M,α))∑

β∈M
Sig(i)

v (Opp(M,β))
×Inc(i)

v (M)= Inc(i)
v (M).

So, ∑
α∈M

Blamev(M,α)= Incv(M).

(D5) Proportionality: Given M=〈M(1),...,M(n)〉∈ML, ∀α∈M, for each k (1≤k ≤n),

Blame(k)
v (M,α)=ck(M)×Sig(k)

v (Opp(M,α)), where

ck(M)=

⎧⎪⎨⎪⎩
Inc(k)

v (M)∑
β∈M

Sig(k)
v (Opp(M,β))

, if M(k) �=∅

1, if M(k)=∅
,

i.e. Blamev(M,α)=Sigv(Opp(M,α))·Cn×n, where

Cn×n =

⎡⎢⎢⎣
c1(M) 0 ··· 0
0 c2(M) ··· 0
··· ··· ··· ···
0 ··· 0 cn(M)

⎤⎥⎥⎦.
�

Proof of Corollary 4.5

Proof. It is a direct consequence of Proposition 4.8, Lemma 3.2, Proposition 3.1 and Proposition 4.7.
�
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