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Abstract. Ontology evolution is an important problem in the Seman-
tic Web research. Recently, Alchourrén, Gardenfors and Markinson’s
(AGM) theory on belief change has been applied to deal with this prob-
lem. However, most of current work only focuses on the feasibility of
the application of AGM postulates on contraction to description logics
(DLs), a family of ontology languages. So the explicit construction of a
revision operator is ignored. In this paper, we first generalize the AGM
postulates on revision to DLs. We then define two revision operators in
DLs. One is the weakening-based revision operator which is defined by
weakening of statements in a DL knowledge base and the other is its re-
finement. We show that both operators capture some notions of minimal
change and satisfy the generalized AGM postulates for revision.

1 Introduction

Ontologies play a crucial role for the success of the Semantic Web [6]. One of
the challenging problems for the development of ontology is ontology evolution,
which is defined as the timely adaptation of an ontology to the arisen changes
and the consistent management of these changes [10]. Ontology evolution is a
very complex process, i.e. it consists of six phases [27]. In this paper, we consider
an important phase called semantics of change phase, which prevents inconsis-
tencies by computing additional changes that guarantee the transition of the
ontology into a consistent state [27]. A center problem in this phase is incon-
sistency handling. There are various forms of inconsistencies, such as structural
inconsistency, logical inconsistency and user-defined inconsistency. Among them,
logical inconsistency in ontology evolution has attached lots of attention in recent
years, where ontologies are represented by logical theories, such as description
logics [21,1,8,11,10, 14, 19, 25].

AGM’s theory of belief change [9] has been widely used to deal with logical
inconsistency resulting from revising a knowledge base by newly received infor-
mation. There are three types of belief change, i.e. expansion, contraction and
revision. Expansion is simply to add a sentence to a knowledge base; contraction
requires to consistently remove a sentence from a knowledge base and revision is
the problem of accommodating a new sentence to a knowledge base consistently.
Alchourrén, Gardenfors and Markinson proposed a set of postulates to character-
ize each belief change operator. The application of AGM’ theory to description
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logics is not trivial because it is based on the assumptions that generally fail for
DLs [7]. For example, a DL is not necessarily closed under the usual operators
such as = and A [8]. In [7,8], the basic AGM postulates for contraction were
generalized to DLs and the feasibility of applying the generalized AGM theory
of contraction to DLs and OWL was studied. However, no explicit belief change
operators were proposed in their papers. Furthermore, they did not consider the
application of AGM postulates for revision in DLs.

In this paper, we first generalize the AGM postulates for revision to DLs.
Instead of discussing the feasibility of applying the postulates, we propose two
revision operators in DLs. One is the weakening-based revision operator which is
defined by weakening of statements in a DL knowledge base. Since the weakening-
based revision operator may result in counterintuitive results in some cases, we
propose an operator to refine it. We show that both operators capture some no-
tions of minimal change and satisfy the generalized AGM postulates on revision.

This paper is organized as follows. Section 2 gives a brief review of description
logics. In Section 3, we generalize the Gardenfors postulates on revision to DLs.
We then propose two revision operators and discuss their logical properties in
Section 4. In Section 5, we have a brief discussion on related work. Finally, we
conclude the paper in Section 6 and give some further work.

2 Description logics

In this section, we will introduce some basic notions of Description Logics (DLs),
a family of well-known knowledge representation formalisms [3]. To make our
approach applicable to a family of interesting DLs, we consider the well-known
DL ALC [26], which is a simple yet relatively expressive DL. Let N and Ng
be pairwise disjoint and countably infinite sets of concept names and role names
respectively. We use the letters A and B for concept names, the letter R for
role names, and the letters C' and D for concepts. T and L denote the universal
concept and the bottom concept respectively. The set of ALC concepts is the
smallest set such that: (1) every concept name is a concept; (2) if C and D
are concepts, R is a role name, then the following expressions are also concepts:
—C' (full negation), CMD (concept conjunction), CLUD (concept disjunction),
VR.C (value restriction on role names) and 3R.C' (existential restriction on role
names).

An interpretation Z = (AZ,-T) consists of a set AZ, called the domain of Z,
and a function -Z which maps every concept C to a subset CT of AT and every
role R to a subset RZ of AT x AT such that, for all concepts C, D, role R, the
following properties are satisfied:

(1) TT = AT and LT =0, (-C)T = AT\ 7,

(2) (cnD)t = C*nD?*, (CuD)* = CTuD?,

(3) BR.C)T = {z|3 y s.t.(z,y)eRT and yeCT},

(4) (VR.C)* = {z|Vy(x,y)eRT implies yeC*}.

A DL knowledge base consists of two components, the terminological box
(TBozx) and the assertional box (ABox). A TBox is a finite set of terminological
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axioms of the form CCD (general concept inclusion or GCI for short) or C=D
(equalities), where C' and D are two (possibly complex) ALC concepts. An inter-
pretation Z satisfies a GCI CCD iff CZCD?, and it satisfies an equality C=D
iff C* = D?. It is clear that C=D can be seen as an abbreviation for the two
GCIs CCD and DCC'. Therefore, we take a TBox to contain only GCIs. We
can also formulate statements about individuals. We denote individual names as
a, b, c. A concept (role) assertion axiom has the form C(a) (R(a,b)), where C is
a concept description, R is a role name, and a, b are individual names. To give
a semantics to ABoxs, we need to extend interpretations to individual names.
For each individual name a, - maps it to an element a* € AZ. The mapping
T should satisfy the unique name assumption (UNA), that is, if a and b are
distinct names, then aZ#b”. An interpretation T satisfies a concept axiom C/(a)
iff aZ€C?, it satisfies a role axiom R(a,b) iff (aZ,b?)€RZ. An ABoz contains a
finite set of concept and role axioms. A DL knowledge base K consists of a TBox
and an ABox, i.e. it is a set of GCIs and assertion axioms. An interpretation
T is a model of a DL (TBox or ABox) axiom iff it satisfies this axiom, and it
is a model of a DL knowledge base K if it satisfies every axiom in K. In the
following, we use M (¢) (or M(K)) to denote the set of models of an axiom ¢ (or
DL knowledge base K). K is consistent iff M (K)#0. Two DL knowledge bases
K7 and K are said to be element-equivalent iff there is a bijectin f from K; to
K such that for every ¢ in Ky, M(f(¢)) = M(¢). Let K be an inconsistent DL
knowledge base. A set K'CK is a conflict of K if K’ is inconsistent, and any
sub-knowledge base K”CK' is consistent. Given a DL knowledge base K and a
DL axiom ¢, we say K entails ¢, denoted as K = ¢, iff M(K)CM(¢). We use
KCB to denote the set of all possible DL knowledge bases.

3 Generalizing the AGM Postulates for Revision to DLs

Let L be a propositional language constructed from a finite alphabet P of propo-
sitional symbols using the usual operators — (not), V (or) and A (and). An in-
terpretation is a mapping from P to {true, false}. A model of a formula ¢ is an
interpretation that makes ¢ true in the usual sense. M (¢) denotes the set of all
the models of ¢. A formula ¢ is satisfiable if M (¢)##(). We denote the classical
consequence relation by F. Two formulas ¢ and v are equivalent, denoted as
o=y iff M(¢) = M(¢). In [17], AGM postulates for revision are rephrased as
follows, where o is a revision operator which is a function from a pair of formulas
1 and p to a new formula denoted by vopu.
(R1) poptp
(R2) If v A p is satisfiable then ¢ o u=¢ A p
(R3) If p is satisfiable then 1 o u is also satisfiable
(RA4) If 91 = 1py and py = po then 1y o g = b 0 g
(R5) (1 0 1) A ¢ implies ¢ o (1 A )
(R6) If (v o u) A ¢ is satisfiable then ¢ o (u A ¢) implies (¢ o ) A ¢

We first define a revision operator in DLs. Before that, we need to introduce
the notion of a disjunctive DL knowledge base (or DKB) in [19], which is defined
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as a set of DL knowledge bases. In the following, a DL knowledge base is viewed
as a disjunctive DL knowledge base which contains a single DL knowledge base.
In propositional logic, disjunction V is a very important connective used to de-
fine revision operators. For example, the result of Dalal’s revision operator is
(syntactically) in disjunction form [5]. However, DL languages do not allow dis-
junctions of TBox statements with ABox statements. The semantics of DKBs is
defined as follows [19]:

Definition 1. A DKB K is satisfied by an interpretation T (or T is a model of
K) iff IKeK such that T = K. K entails ¢, denoted K |= ¢, iff every model of
K is a model of ¢.

Let DKB denote a set of (disjunctive) DL knowledge bases. A revision oper-
ator in DLs can be defined as follows.

Definition 2. A knowledge base revision operator (or revision operator for short)
in DLs is a function o : DICBXKB — DKB which satisfies the following condi-
tion: KoK’ |= ¢, for all ¢ € K'.

That is, both the original knowledge base and the resulting knowledge base can
be a DKB, Whist the newly received knowledge base must be an ordinary DL
knowledge base (i.e. it is not a DKB).

We next generalize postulates (R1)-(R6) to DLs. The generalization is not
as trivial as we have thought. The problem is that both the original knowledge
base the result of revision may be a disjunctive DL knowledge base. To generalize
(R1)-(R6), we need to define the conjunction of a disjunctive DL knowledge base
and an ordinary DL knowledge base. A more simple way to generalize AGM
postulates is to define them in a model-theoretic way as follows.

It is clear that (R1)-(R3) can be generalized in the following way. Let K be
a (disjunctive) DL knowledge base and K’ be a DL knowledge base, we have
(G1) KoK' |= ¢ for all ¢ € K’

(G2) If M(K)NM(K') # 0, then M(KoK") = M(K)NM(K")
(G3) If K’ is consistent, then M(KoK') # ()

(G1) guarantees that the new information is inferred from the revised knowl-
edge base. (G2) requires that when there is no conflict between K and K’, the
result of revision be equivalent to the “union” of K and K’, i.e. the set of its
models are M (K)NM(K'). (G3) is a condition preventing a revision from intro-
ducing unwarranted inconsistency.

The postulate (R4) is the principle of irrelevance of syntax. Its generalization
has the following form:

(G4) If M(K) = M(K;) and M(K') = M(K>), then M(KoK') = M(K,0K>).

(G4) requires that the revised knowledge base be independent of the syntax
of both original knowledge bases and new information. The rule (R4) (and its
generalization (G4)) is (are) very strong condition(s) because many syntax-based
revision operators in propositional logic do not satisfy it. It is interesting to
consider a weakened version of (G4) as follows.
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(G4)' If Ky and K> are element-equivalent and M (K1) = M (K}), then M (K 0K7)
= M(Ky0K}).
Finally, (R5) and (R6) are generalized as follows.
(G5) M(KoK")NnM(K")CM(Ko(K'UK"))
(G6) If M(KoK")NM(K") is not empty, then M(Ko(K'UK"))
CM(KoK")NM(K")
We have the following definition.

Definition 3. A revision operator o is said to be AGM compliant if it satisfies
(G1-G6). It is quasi-AGM compliant if it satisfies (G1)-(G3), (G4), (G5-G6).

4 Revision Operators for DLs

4.1 Definition

In this subsection, we propose a revision operator for DLs and provide a semantic
explanation of it.

In this paper, we only consider inconsistencies arising due to objects being
explicitly introduced in the ABox. That is, suppose K and K’ are the original
knowledge base and the newly received knowledge base respectively, then for
each conflict K. of KUK’, K. must contain an ABox statement. For example,
we exclude the following case: T C dR.C € K and T C VR.-C € K'. The
handling of conflicting axioms in the TBox has been discussed recently in [25,
22]. In this paper, we discuss the resolution of conflicting information which
contains assertional axioms in the context of knowledge revision.

In order to define our approach, we need to extend ALC with nominals O
(also called individual names [24]). A nominal has the form {a}, where a is
an individual name. It can be viewed as a powerful generalization of DL ABox
individuals. The semantics of {a} is defined by {a}? = {a’} for an interpretation
7. Nominals are very important expressions and they are included in many
important DLs, such as SHOQ [13].

We give a method to weaken a GCI first.

Definition 4. Let CCD be a GCI. A weakened GCI (CCD)year of CCD has
the form (CM—{ai}N...—{a,})CD, where n is the number of individuals to be
removed from C. We use d((CED)year) = 1 to denote the degree of (CCD)yeak-

It is clear that when d((CED)year) = 0, (CCD)year = CCED. The idea of
weakening a GCI is similar to weaken an uncertain rule in [4]. That is, when a
GCI is involved in conflict, instead of dropping it completely, we remove those
individuals which cause the conflict.

The weakening of an assertion is simpler than that of a GCI. The weakened
assertion ¢yeqr of an ABox assertion ¢ = C(a) is of the form ¢yeqr = T(a) or
Gweak = ¢. When duear = T (a), we have Z = ¢year for all Z. Therefore, when
Gweak = 1 (a), we simply delete ¢. Indeed, we denote ¢y eqr by T(a) when ¢ is to
be deleted for convenience of theoretical analysis. The degree of ¢y eqr, denoted
as d(Pweak), is defined as d(Pweak) = 1 if dpear = T (a) and 0 otherwise.
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Definition 5. Let K and K' be two DL knowledge bases. Suppose K’ is consis-
tent and KUK’ is inconsistent. A DL knowledge base Kyeqk k' is a weakened
knowledge base of K w.r.t K' if it satisfies:

— Kyeak, k' UK’ is consistent, and
— There is a bijection f from K to Kyeak i’ such that for each ¢€K, f(¢) is
a weakening of ¢.

The set of all weakened base of K w.r.t K' is denoted by Weaky (K).

Ezample 1. Let K = {bird(tweety), birdC flies} and K’ = {—flies(tweety)},
where bird and flies are two concepts and tweety is an individual name. It is
easy to check that K U K’ is inconsistent. Let K7 = {T (tweety), birdC flies},
Ky = {bird(tweety), bird—{tweety }C flies}, then both K; and K, are weak-
ened bases of K w.r.t K'.

The degree of a weakened base is defined as follows.

Definition 6. Let Kyeqk, k' be a weakened base of a DL knowledge base K w.r.t
K'. The degree of Kuweak, k' 15 defined as

d(Kuweak, k) = Dok, p 100 U)

In Example 1, we have d(K;) = d(K2) = 1.
We now define a revision operator.

Definition 7. Let K be a (disjunctive) DL knowledge base, and K’ be a newly
received DL knowledge base. The result of weakening-based revision of IC w.r.t
K', denoted as Ko, K, is defined as follows: If K’ is inconsistent, then Ko, K' =
{KUK' : KeK}; Otherwise,

KowK' = | J{K'URwear i’ © Kuwear,ir €Weakg/(K), and
KeKk
/HKiEWGCLkK/ (K),d(KZ) < d(Kweak,K’)}-

If K’ is inconsistent, the result of revision is an inconsistent disjunctive DL

knowledge base. When K’ is consistent, the result of revision of K by K’ is

a disjunctive DL knowledge base consisting of DL knowledge bases which are

unions of K’ and a weakened base of a DL knowledge base K in K with the

minimal degree. In the following, we assume that the original knowledge bases are

ordinary DL knowledge base. This assumption is used to simply our discussions.
We next consider the semantic aspect of our revision operator.

Definition 8. Let W be a non-empty set of interpretations and T € W, ¢ a
DL aziom, and K a DL knowledge base. If ¢ is an assertion, the number of
p-exceptions e?(T) is 0 if T satisfies ¢ and 1 otherwise. If ¢ is a GCI of the
form CED, the number of ¢-exceptions for T is:

9 (T) = {|Czﬂ(ﬂDI)l if CTA(~D7) is finite "

The number of K -exceptions for T is e (T) = Xyexe?(T). The ordering <x on
Wis: T < T' iff 5(2)<eK(T"), for T' € W.

00 otherwise.
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The definition of ¢-exception originates from Definition 6 in [19]. However, in
[19], it is used to define an ordering <7 on a set of interpretations with the same
pre-interpretation m = (A™,d™), where A™ is a domain and d™ is a denotation
function which maps every individual name a to a different element in A™.

We give a proposition to give a semantic explanation of our weakening-based
revision operator.

Proposition 1. Let K be a consistent DL knowledge base. K' is a newly received
DL knowledge base. o, is the weakening-based revision operator. We then have

M(Ko,K') =min(M(K'), k).

Proposition 1 says that the models of the resulting knowledge base of our revision
operator are models of K’ which are minimal w.r.t the ordering <y induced by
K. So it captures some kind of minimal change. All proofs of this paper can be
found in [23].

Ezample 2. Let K = {YhasChild.RichHuman(Bob), hasChild(Bob, M ary),
RichHuman(Mary), hasChild(Bob, Tom)}. Suppose we now receive new infor-
mation K’ = {hasChild (Bob, John),~RichHuman(John)}. It is clear that
KUK’ is inconsistent. Since VhasChild. RichHuman(Bob) is the only assertion
axiom involved in conflict with K’, we only need to delete it to restore consis-
tency, that is, Ko, K’ = {T(Bob), hasChild(Bob, Mary), RichHuman(Mary),
hasChild(Bob, Tom), hasChild(Bob, John), ~RichHuman (John)}.

We have the following proposition.

Proposition 2. Given two DL knowledge bases K and K'. The weakening-based
revision operator is not AGM-compliant but it is quasi-AGM compliant, that is,
it satisfies postulates (G1), (G2), (G3), (G4'), (G5) and (G6).

4.2 Refined weakening-based revision

In the weakening-based revision, to weaken a conflicting assertion axiom, we
simply delete it. The problem for this method of weakening is that it does not
take the constructors of description languages, such as conjunction (M) and value
restriction (VR.C), into account. This may result in counterintuitive conclusions.
In Example 2, after revising K by K’ using the weakening-based operator, we
cannot infer that RichHuman(Tom) because VhasChild. Rich Human(Bob) is
discarded, which is counterintuitive. From hasChild(Bob, Tom) and YhasChild.
Rich Human(Bob) we should have known that RichHuman(Tom) and this as-
sertion is not in any conflict of KUK'. The solution for this problem is to treat
John as an exception and that all children of Bob other than John are rich hu-
mans.

For an ABox assertion of the form VR.C(a), it is weakened by dropping
some individuals which are related to the individual a by the relation R, i.e.
its weakening has the form VR.(C' U {b1,...,b,})(a), where b; (i = 1,n) are
individuals.

We give another example to illustrate the problem of the weakening method.
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Ezample 3. Let K = {birdM flies(tweety), bird(chirpy)} and K’ = {—flies(twee
ty)}. Clearly, birdnflies(tweety) is in conflict with —flies(tweety) in K’. Let
¢ = birdN flies(tweety). The weakening of ¢ is Pyear = T (tweety).

In Example 3, to weaken ¢, we simply delete it. However, bird(tweety), which
can be inferred from K, is not responsible for any conflict of KUK’. Therefore, it
is counterintuitive to delete it. This intuition is based on the assumption of the
independence of concept names. That is, we take concept names as the “basic
unit of change”.

Before defining the new weakening method, we need to define an atomic
concept.

Definition 9. A concept is an atomic concept iff it is either a concept name or
is of one of the forms {a}, VR.C or AR.C, where a is an individual name and
C is a (complex) concept.

We assume that each concept C occurring in the original DL knowledge
base K is in conjunctive normal form, i.e., C = CiM...NC,, such that C; =
Ci1U...UCy,, where Cj; is either an atomic concept or the negation of a con-
cept name. Conjunctive normal forms can be generated by the following steps.
First, we transform the concept C' into its negation normal form by the follow-
ing equalities: -—=C; = C;, —~(C;ND;) = -C;u-D;, —~(C;uD;) = —=C; N =D,
-(3R.C;) = VR.-C;, ~(VR.C;) = 3R.~C;. Second, we move disjunction in-
ward and conjunction outward according to De Morgan’s law: C,LI(CoMC3)=(C}
LIC2)M(C1UCS). Suppose C(a) € K, where C' is a concept in conjunctive normal
form, we assume that each concept assertion C(a) is decomposed into ¢q, ...,
¢n such that ¢; = (C;1U...1C;,)(a). Note that a cannot be moved inside the
disjunction constructor because disjunction of ABox assertions is not allowed in
DLs.

We now define a new weakening method. The idea is that we weaken a con-
cept assertion by weakening its atomic concepts. That is, we have the following
definition.

Definition 10. Let ¢ = R(a,b) be a role assertion. A weakened relation as-
Sertion Gweak of ¢ is defined as dyear, = Tr(a,b) OF Gueak = ¢, where Tg is
interpreted as T = AT x AT for each interpretation T = (A%, 7). Let ¢ = C(a)
be a concept assertion. A weakened concept assertion Queqr of ¢ is defined re-
cursively as follows:

1)if C = A or = A for a concept name A, then ¢year = T(a) 0r dweak = b,

2) if C = 3R.D, then dyear = T(a) 0T dweak = 0,

3) if C =VR.D, then ¢pyear = YR.(D U {b1,...,bn})(a) or T(a),

4) if C = {b}, where b is an individual name, then Gyear = T(a) 0T Gweak = @,
5) if C = CyyU...UCyy,, where Cyj is either an atomic concept or the negation of
an atomic concept, then duear = ((Ci1)weakl---U(Cim)wear ) (@) if (Cij)weakZT
for all j and ¢year = T(a) otherwise,

! According to 1), 2), 3), and 4), we have (Cij)wear = T or Cyj if Cy; is either a
concept name or the negation of a concept name or of the form IR.D or {b}, and
(Cij)weak = VR.(D U {b1,...,b,}) if Cy; is of the form VR.D.
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Let us explain the part 5) of Definition 10. Since the concept of ¢ is in disjunctive
form, if there exists a C;; such that (Cij)wear = T, then C' = T. That is,
the weakening of a disjunct concept of ¢ may influence the weakening of other
disjuncts. When weakening a role assertion, we introduce the top role. However,
in implementation, the top role does not exist in the resulting knowledge base
because the role assertion is simply deleted if the role name is weakened into
the top role. In this paper, we only consider the refinement of the weakening of
ABox assertions. Similarly, we can also refine the weakening of TBox axioms.
We next define the degree of a weakened assertion.

Definition 11. Let ¢ = R(a,b), then d(dpwear) = 1 if dweak = T r(a,b) and 0
otherwise. Let ¢ = C(a), then d(¢) is defined recursively as follows:

1) if C = A or A for a concept name A, then d(dweak) = 1 if Gwear = T(a)
and 0 otherwise,

2) if C = 3R.C, then d(dwear) = 1 if Gweak = T(a) and 0 otherwise,

3) if C =VR.D, then d(dweak) = 1 if dweak = VR.(D U {b1,...,0,})(a) and +oc0
otherwise,

4) if C = {b}, where b is an individual name, then d(dweak) = 1 if pwear = T (@)
and 0 otherwise,

5) if C = CinU...UCy,, where Cyj is either an atomic concept or the negation of
an atomic concept, then d(pyear) = max{d(((Cij)weak)(@)) : j =1,...,m},

In part 5) of Definition 11, we use max (instead of sum) to determine the degree
of an assertion in “disjunction” form. This definition agrees with the semantic
interpretations of disjunction in many logics such as fuzzy logic and possibilistic
logic.

We call the weakened base obtained by applying weakening of GCIs in Defi-
nition 4 and weakening of assertions in Definition 10 as a refined weakened base.
We then replace the weakened base by the refined weakened base in Definition 7
and get a new revision operator, which we call a refined weakening-based revision
operator which is denote by o,,,. Let us go back to Example 2 again. Accord-
ing to our discussion before, YhasChild.Rich Human(Bob) is the only assertion
axiom involved in the conflict in K and John is the only ezception which makes
VhasChild.RichHuman(Bob) in conflict with K’, so Ko, K' = {VhasChild.
(RichHumanlJ{John})(Bob), hasChild(Bob, Mary), RichHuman(Mary),
hasChild(Bob, Tom), hasChild(Bob, John), ~RichHuman(John)}. We can then
infer that RichHuman(Tom) from Ko, K.

We consider another example. Let K = {((VR.C)UD)(a), R(a,b)} and K’ =
{=D(a),~C(b)}, where C and D are concept names. Clearly, KUK’ is inconsis-
tent. We can either weaken ((VR.C)UD)(a) or R(a,b) to restore consistency. To
weaken R(a,b), we can simply delete it, i.e. its weakening has the form T g(a, b).
We have d(Tg(a,b)) = 1. For ¢ = ((VR.C)UD)(a), we should weaken VR.C in-
stead of D. This is because if we weaken D to T then (VR.C)UD also needs to be
weakened to T. In this case, we have d(¢year) = +00. In contrast, if we weaken
(VR.C)U D to (VR.(CU{b}))UD, then D does not need to be weakened. In this
case, we have d((VR.(CU{b}))UD)(a)) = 1 and d(¢wear) = 1. Therefore, there
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are two weakened bases of K w.r.t K, i.e. K1 = {((VR.(CU{b}))UD)(a), R(a,b)}
and Ko = {((VR.C)UD)(a)}.

To give a semantic explanation of the refined weakening-based revision op-
erator, we need to define a new ordering between interpretations.

Definition 12. Let W be a non-empty set of interpretations and T € W, ¢ a
DL aziom, and K a DL knowledge base. If ¢ is a concept assertion, then the
number of ¢p-exceptions for I is defined recursively as follows:

1) if ¢ = A(a) or =A(a) for a concept name A, then e?(Z) =0 if T = ¢ and 1
otherwise,

2) if ¢ = AR.C(a), then e?(Z) =0 if T = ¢ and 1 otherwise,

3) If ¢ is an assertion of the form VR.C(a), the number of ¢-exceptions for T
is:

(2)

6(T) — |RT (aT)N(=CT)| if RE(a®)N(=CF) is finite
(1) = 00 otherwise,

where R% (a?) = {be AT : (a®,b)eR?}.
4) If ¢ = {b}(a), where b is an individual name, then e?(Z) =0 if I = ¢ and 1
otherwise,
5) ¢ = (CinU...UCim)(a), where C;; is either an atomic concept or the negation
of an atomic concept, then ef(I) = max{eg”(a) (Z):5=1,...m}.

If ¢ is a role assertion, then e?(Z) =0 if T = ¢ and 1 otherwise.

If ¢ is a GCI of the form CCD, the number of ¢-exceptions for I is:

3)

I(=DT LA (DT .
e?(T) = {|C N(=D*)| if C*N(=D )‘zsﬁmte
00 otherwise.

The number of K -exceptions for I is eX(I) = Lycie?(Z). The refined ordering

T

=i on Wois: T =, ¢ T iff e (Z)<eE(T'), for T' e W.

The following proposition gives the semantic interpretation of the refined
weakening-based revision operator.

Proposition 3. Let K be a consistent DL knowledge base. K' is a newly received
DL knowledge base. o, is the refined weakening-based revision operator. We then
have

M (Ko pyK') = min(M(K'), =, k).

Proposition 3 says that the refined weakening-based operator can be accom-
plished with minimal change. The proof is similar to that of Proposition 1.

Proposition 4. Let K be a consistent DL knowledge base. K’ is a newly received
DL knowledge base. We then have

M (Ko, K'YCM (Ko, K').

By Example 3, Ko,,K’ and Ko, K’ are not equivalent. Thus, we have shown
that the resulting knowledge base of the refined weakening-based revision con-
tains more information than that of the weakening-based revision. However, the



Lecture Notes in Computer Science 11

refined weakening-based revision need to convert every ABox assertion to its
conjunctive normal form. In some cases this conversion can lead to an expo-
nential explosion of the size of the ABox assertion. So the sizes of the revised
DL knowledge bases of the refined weakening-based operator are exponentially
larger than those of the weakening-based operator in the worst case.

The refined weakening-based revision operator is still not AGM compliant.

Proposition 5. Given two DL knowledge bases K and K'. The refined weakening-
based revision operator is not AGM-compliant but it is quasi-AGM compliant.

5 Related Work

The importance of applying AGM theory on belief change to terminological sys-
tems has not been fully recognized until recent years. In his book [20], Nebel
considered the revision problem in terminological logics in 1990. He proposed
some revision operators based on several existing approaches on modification of
a terminological knowledge base. When defining his revision operator, he pre-
sumed that the terminological knowledge is more relevant than the assertional
knowledge. Recently, some work has been done to analyze the feasibility of ap-
plying AGM theory on belief change to DLs [16, 7, 8]. However, none of them
considers the explicit construction of a revision operator. Furthermore, they
did not consider the application of AGM postulates for revision in DLs where
knowledge bases instead of knowledge sets are considered. The work in [16, 8] is
based on the coherence model, i.e. both the original and the revised knowledge
bases should be knowledge sets which are knowledge bases closed under logi-
cal consequence. In [7], Fuhrmann’s postulates for knowledge base contraction is
generalized to DLs. One may wonder if we can establish the relationship between
revisions and contractions via the Levi and Harper identities. However, the prob-
lem is that Levi and Harper identities are not applicable in DLs [8]. In [19], some
revision operators were proposed for revising a stratified DL knowledge base. The
semantic aspects of these revision operators are also considered. To define their
operators, an extra expression in DLs, called cardinality restrictions on concepts,
is necessary. In contrast, our operators are based on nominals. Since cardinality
restrictions can be encoded as nominals, our revision operators can be seen as
a refinement of the revision operators in [19]. In [14], a general framework for
reasoning with inconsistent ontologies was given based on concept relevance. A
problem with their framework is that they do not consider the structure of DL
language. For example, when a GCI is in conflict in a DL knowledge base, it is
deleted to restore consistency. Our work is also related to the work in [1], where
Reiter’s default logic is embedded into terminological representation formalisms.
In their paper, conflicting information is also treated as exceptions. To deal with
conflicting default rules, they instantiated each rule using individuals appearing
in the ABox and applied two existing default reasoning methods to compute all
extensions. This instantiation step is not necessary for our revision operators.
Furthermore, in [1], the resolution of conflicting ABox assertions was not consid-
ered. This work is also related to the work on updating DL ABoxes in [15]. They
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showed that in any standard DL in which nominals and the ”@” constructor
are not expressible, updated ABoxes cannot be expressed. They only consider
a simple form of ABox update where the update information contains possibly
negated ABox assertions that involve only atomic concepts and roles.

6 Conclusions and Further Work

In this paper, we have discussed the problem of applying AGM theory of be-
lief revision to DLs. We first generalized the reformulated AGM postulates for
revision to DLs. Then two revision operators were proposed by weakening as-
sertion axioms and GCIs. We showed that both revision operators satisfy the
generalized postulates and capture some notions of minimal change.

Several problems are left as further work. First, none of our revision opera-
tors is AGM compliant, that is, they do not satisfy (G4). We are looking for a
revision operator satisfying all the AGM postulates. Second, to implement our
revision operators, an important problem is to detect GCIs and and assertions
which are responsible for the conflict. Some existing techniques on debugging
of unsatisfiable classes (such as [25,22]) can be adopted or generalized to deal
with this problem. We will develop tableaux-based algorithms for implement-
ing our revision operators. Based on the results in [25], it is expected that the
computational complexity of our operators may not increase the complexity of
consistency checking in the DL under consideration.
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